
Message Queue

Product Overview

-

Product Overview

What is Message Queue？

Message Queue (MQ) is a professional message middleware as a core product in the enterprise-level
Internet architecture. Based on the highly available distributed cluster technology, MQ provides a
series of message cloud services, including message subscription and publishing, message tracing
query, scheduled and delayed messages, resource statistics, monitoring, and alerts. With more than
nine years of history, MQ provides asynchronous decoupling and load shifting for distributed
application systems and supports features for Internet applications, including massive message
accumulation, high throughput, and reliable retrying. It is one of the core products used to support
the Double 11 Shopping Festival.

Multiple IDCs are deployed in a single region, ensuring extremely high availability. Even when one
IDC completely fails, MQ can still provide a message distribution service for applications with no
SPOF.

Currently, MQ supports access through TCP or HTTP. It also supports seven programming languages:
Java, C++, .NET, Go, Python, Node.js, and PHP, to facilitate quick access to the cloud services of MQ
for applications developed with different programming languages. You can either deploy your
applications on Alibaba Cloud ECS instances or your own enterprise clouds or embed them into a
mobile device or IoT device to connect with MQ for sending and receiving messages. Also, local
developers can access MQ through the Internet to send and receive messages.

Features

MQ supports access through TCP or HTTP and multiple programming languages, and offers
multidimensional management tools. It provides a series of featured functions for different
application scenarios.

Feature Overview

Support for TCP, HTTP, and STOMP

HTTP: MQ supports HTTP and RESTful, making it easy to use, fast to access, and powerful in

Message Queue Product Overview

1

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

cross-network access. Additionally, it supports clients developed in seven programming
languages.
TCP: Different from the HTTP-based access mode of HTTP, the TCP-based SDK access mode
is more specialized, reliable, and stable.
STOMP: Similar to the text-based protocol HTTP. This protocol is used for lightweight
interaction between STOMP clients using script languages (such as Ruby, Python, and Perl)
and MQ brokers.

Management tools

Web console: It supports topic management, producer management, consumer
management, message query, message tracing, statistics, and monitoring.
API: It allows you to integrate MQ management tools into your own console.
mqadmin command set: A rich set of management commands for private clouds is provided
for you to manage MQ by command.

Feature highlights

Transactional messages: MQ provides a distributed transaction processing function similar to
X/Open XA to ensure transaction consistency.
Scheduled and delayed messages: MQ allows producers to specify the length of time to wait
before a scheduled or delayed message is delivered. The maximum length is 40 days.
Large messages: A maximum message size of 4 MB is supported.
Message tracing: This records the complete route of a message from its publishing by the
producer to the MQ broker and then to the consumer. This function facilitates
troubleshooting.
Broadcasting consumption: Consumers identified by the same group ID can consume a
certain message once.
Ordered messages: Message consumers can consume messages in the order in which
messages are delivered.
Reset consumer offset: Users can reset the consumer progress by time to trace back
messages or discard accumulated messages.
Dead-letter queues: Messages that cannot be consumed are stored to a special dead-letter
queue for subsequent processing.
Message routers: These are used to synchronize and copy messages between instances in
different regions all over the world, ensuring data consistency between regions.

Apsara Stack deployment

Customization: Technical solutions, and onsite technical support and training are provided.
Flexible deployment: MQ can be deployed in Apsara Stack separately or in a hybrid cloud.
O&M management: Apsara Stack supports such O&M tools as mqadmin command set and
APIs to facilitate the management of platform integration and unified O&M.

Message Queue Product Overview

2

Message sending and receiving model

MQ supports the publish/subscribe model. A message publisher (producer) can send a message to a
topic of the broker and multiple message receivers (consumers) can subscribe to this topic to receive
the message. The model is illustrated in the following figure.

For more information about MQ concepts, see Terms.

Terms

This topic introduces the MQ related terms to help you better understand and use MQ.

Topic

A topic is used to classify messages. It is the first-level classification. For more information, see Topic
and tag best practices.

Message

A message is a carrier for transferring information in MQ.

Message ID

A message ID is a global unique identifier for a message, which is automatically generated by the MQ
system.

Message Queue Product Overview

3

Message key

A message key is a unique identifier of the message’s service logic, which is set by the message
producer.

Tag

A tag is used to further classify the messages under a topic. It is the second-level classification. For
more information, see Topics and tags.

Producer

A producer, also known as a message publisher, produces and sends messages.

Producer instance

A producer instance is an object instance of a producer. Different producer instances can run in
different processes or on different machines. The producer instance thread is safe and can be shared
between multiple threads in the same process.

Consumer

A consumer, also known as a message subscriber, receives and consumes messages.

Consumer instance

A consumer instance is an object instance of a consumer. Different consumer instances can run in
different processes or on different machines. Thread pool consumption information is configured in a
consumer instance.

Group

A group is a type of producers or consumers that produce or consume messages of the same type
and publish or subscribe to messages based on the same logic.

Group ID

The ID of the group.

Queue

Each topic has one or more queues to store messages. The number of queues for each topic varies
with the region of the instance. For more information about the exact number of queues, submit a
ticket.

Note: The standard edition instances do not support queue number change, while the platinum
edition instances do.

Exactly-Once delivery semantics

The Exactly-Once delivery semantics is used to specify that messages sent to the message system can
be processed by consumers only once. In other words, even if the message producer sends a
message to the message system again, the message can still only be consumed by a consumer once.
For more information, see Exactly-Once delivery semantics.

Message Queue Product Overview

4

Clustering consumption

All consumers identified by the same group ID consume messages in an even manner. For example, a
topic contains nine messages and a group contains three consumer instances. In this case, each
instance consumes three messages. For more information, see Clustering and broadcasting
consumption.

Broadcasting consumption

Each of the consumers identified by the same group ID consumer all messages once. For example, a
topic contains nine messages and a group contains three consumer instances. In this case, each
instance consumes nine messages. For more information, see Clustering and broadcasting
consumption.

Scheduled message

A producer sends a message to the MQ broker, expecting the message to be delivered to a consumer
at a specified time in the future. The message is a scheduled message. For more information, see
Scheduled and delayed messages.

Delayed message

A producer sends a message to the MQ broker, expecting the message to be delivered to a consumer
after a specified period of time. The message is a delayed message. For more information, see
Scheduled and delayed messages.

Transactional message

Transactional messages provide a distributed transaction processing function similar to X/Open XA to
ensure transaction consistency. For more information, see Transactional messages.

Ordered message

An ordered message is a message that is published and consumed in order. Ordered messages in MQ
are classified into globally ordered messages and partitionally ordered messages. For more
information, see Ordered messages.

Globally ordered message

All messages under a specified topic are published and consumed in the strict first-in-first-out (FIFO)
order. For more information, see Ordered messages.

Partitionally ordered message

All messages under a specified topic are partitioned by the sharding key. Messages in one shard are
published and consumed strictly in the FIFO order. A sharding key is a key field used in ordered
messages to distinguish different partitions. It is completely different from the key used in normal
messages. For more information, see Ordered messages.

Message accumulation

A producer has sent messages to the MQ broker but a consumer cannot consume all the messages in

Message Queue Product Overview

5

a short period of time due to limited consumption capability. Therefore, unconsumed messages are
stored in the broker. This process is called message accumulation.

Message filtering

Consumers can filter messages by tag to receive only the message type they want. Message filtering
is completed on the MQ broker. For more information, see Message filtering.

Message trace

A message trace is a complete route record of a message from its publication by a producer, to
consumption by a consumer. It consists of the time, location, and other information on each node.
Message traces clearly display the complete route from message delivery by message producers, to
MQ broker, to message consumption by consumers. It facilitates troubleshooting. For more
information, see Message tracing.

Reset consumption offset

With the timeline as coordinates, reset the consumer progress of a topic subscribed by a message
subscriber over the time span specified for persistent message storage (three days by default). After
the consumption offset is reset, the subscriber can receive a message sent by the message producer
to the MQ broker after a set time point. For more information, see Reset consumer offset.

Dead-letter queue

Dead-letter queues are used to process messages that cannot be consumed. When a message fails to
be consumed for the first time, MQ automatically retries the consumption of the message. If the
message still cannot be consumed after the maximum number of retries is reached, the message
cannot be properly consumed. Instead of immediately discarding the message, MQ sends it to a
particular queue of the corresponding consumer.

In MQ, a message that cannot be properly consumed is called a dead-letter message, which is stored
by a particular queue named dead-letter queue.

For more information, see Dead-letter queue.

Message router

Message routers are often used to synchronize messages between regions to ensure data consistency
between regions. Relying on Express Connect, developed by Alibaba Cloud based on its superb
infrastructure, MQ message routers allows you to efficiently synchronize messages from countries to
countries and regions to regions. For more information, see Global message routers.

Limits

Message Queue Product Overview

6

MQ constrains and regulates certain metrics. To avoid program exceptions when using MQ, do not
exceed the maximum limits. For more information about the maximum limits of relevant items, see
the following table.

Item Limit Description

Maximum number of
instances in a single region

Standard Edition: 8
Enterprise Platinum Edition:
not limited

None

Topic name length 64 characters

If the length of the name of a
topic exceeds this value,
consumers will fail to send or
subscribe to messages under
this topic.

Message size

A normal or ordered
message: 4 MB
A transactional, scheduled,
or delayed message: 64 KB

If the size of a message
exceeds this value, the
message will be discarded.

Message retention period 3 days

Messages are retained for at
most three days, and the
system automatically deletes
them after three days.

Reset consumption offset 3 days Any message consumed
within 3 days can be reset.

TPS for sending and
receiving messages under a
single topic

Standard Edition: 5000
messages/s
Enterprise Platinum Edition:
See the purchased
specifications.

None

Delay of scheduled or
delayed messages 40 days

The msg.setStartDeliverTime
parameter can be set to any
time (unit: milliseconds)
within 40 days. The message
cannot be scheduled to be
sent after 40 days.

Message Queue Product Overview

7

	Product Overview
	What is Message Queue？
	Features
	Feature Overview
	Support for TCP, HTTP, and STOMP
	Management tools
	Feature highlights
	Apsara Stack deployment

	Message sending and receiving model

	Terms
	Limits

