
Message Queue for Apache
RocketMQ

SDK Reference

-

-

-

SDK Reference

SDK guide (TCP)

Java SDK

Release Notes

This topic provides the download links, versions, and updates of all Java SDKs so that you can choose
a suitable one for use.

ons-client v1.8.44.Final

New features

Supported 1.6 JDK；
Supported retries of asynchronous message sending failures;
Supported retries of synchronous message sending failures due to brokerbusy.

ons-client v1.8.0. Final

Release date Version Download

Download
(including the
Exactly-Once
delivery
semantics)

Environment
preparation
guide

2019-09-27 1.8.4.Final ons-client-
1.8.4.Final

ons-client-ext-
1.8.4.Final

Prepare the
Java SDK
environment

Release date Version Download Download Environment

Message Queue for Apache RocketMQ SDK Reference

1

-

-

-

-

-

Bugs fixed

Fixed the automatic retry logic when a message failed to be synchronized from the producer
to a new topic on an instance after MQ instantiation is implemented. A maximum of three
retries are supported by default.

ons-client v1.7.8.Final

New features

Supported dynamic STS token update.

Bugs fixed

Changed the default size of logs from 1 GB to 64 MB.
Fixed the problem of double printing logs.

More historical versions

ons-client v1.7.7.Final

Bugs fixed

Fixed the problem that trajectorial messages cannot be sent when multiple
consumer/producer instances are initialized in one process (in version 1.7.5 or 1.7.6).

(including the
Exactly-Once
delivery
semantics)

preparation
guide

2019-02-21 1.8.0.Final ons-client-
1.8.0.Final

ons-client-ext-
1.8.0.Final

Prepare the
Java SDK
environment

Release date Version Download Environment
preparation guide

2018-07-06 1.7.8.Final ons-client-1.7.8.Final Prepare the Java
SDK environment

Release date Version Download Environment
preparation guide

2018-04-25 1.7.7.Final ons-client-1.7.7.Final Prepare the Java
SDK environment

Message Queue for Apache RocketMQ SDK Reference

2

-

-

-

-

-

-

-

-

ons-client v1.7.6.Final

New features

Supported the compatibility with any log framework.

Bugs fixed

Provided support for Log4j2.
Fixed the problem of client fetchNameserver shutdown.
Upgraded the Fastjson version to 1.2.48.

ons-client v1.7.5.Final

Bugs fixed

Fixed the problem of introducing internal dependencies of Alibaba.

ons-client v1.7.4.Final

New features

Supported STS token access.
Prioritized trajectorial message transmission. Such messages are sent to the MQ broker of
the current cluster in prior by default.

Bugs fixed

Fixed the JDK 1.6 incompatibility problem.

Release date Version Download Environment
preparation guide

2018-04-04 1.7.6.Final ons-client-1.7.6.Final Prepare the Java
SDK environment

Release date Version Download Environment
preparation guide

2018-03-23 1.7.5.Final ons-client-1.7.5.Final Prepare the Java
SDK environment

Release date Version Download Environment
preparation guide

2018-03-02 1.7.4.Final ons-client-1.7.4.Final Prepare the Java
SDK environment

Message Queue for Apache RocketMQ SDK Reference

3

-

-

-

-

-

-

-

-

ons-client v1.7.2.Final

New features

Encrypted transmission of the AcessKeyId/AccessKeySecret signature chain is supported in
the Enterprise Platinum Edition, improving data security.
Supported SQL attribute filtering for consumers in the Enterprise Platinum Edition, greatly
improving the efficiency of message subscription.
Added the feature that the client automatically senses the changes of NameServer, which
facilitates O&M switching and ensures high availability.
Added the function of reporting the exact version of a newly connected client.

ons-client v1.7.1.Final

New features

Added an asynchronous sending operation for customizing callback thread pool.
Added a JVM-D parameter to the asynchronous sending operation, which is used to control
the number of threads in the public thread pool: Dclient.callback.executor.thread.nums=10.

Bugs fixed

Fixed the problem that the cache count in SendBack is not subtracted when consumer
consumption times out.
Fixed the problem of the premature release of the consumer asynchronous signals.

ons-client v1.7.0.Final

New features

Release date Version Download Environment
preparation guide

2018-01-25 1.7.2.Final ons-client-1.7.2.Final Prepare the Java
SDK environment

Release date Version Download Environment
preparation guide

2017-12-19 1.7.1.Final ons-client-1.7.1.Final Prepare the Java
SDK environment

Release date Version Download Environment
preparation guide

2017-10-23 1.7.0.Final ons-client-1.7.0.Final Prepare the Java
SDK environment

Message Queue for Apache RocketMQ SDK Reference

4

-

-

-

-

-

-

-

-

-

-

-

-

Adjusted the client message cache policies in two dimensions: number of messages and
cache size.

Function optimization

Optimized ProducerName of the built-in trace module of the client to apply different values
to different users.

Bugs fixed

Fixed the problem that a client trace thread blocks the client from exiting normally.
Fixed the problem that the message trace ShutDownHook is created repetitively.

ons-client v1.6.1.Final

Function optimization

Added details Java documentation for all client APIs.
Optimized the mode for obtaining client addresses, which is not dependent on the
hostname configuration in /etc/hosts.

ons-client v1.6.0.Final

New features

Shaded the client at the source code level to ensure correct debugging.
Exposed message attributes BornHost and BornTimestamp.
Added the BatchConsumer operation to allow users to consume messages in batches.
Added the demo for integrating ordered messages, BatchConsumer, and Spring.

Function optimization

Placed Sharding Key in the message structure for partitionally ordered messages.
Supported integer values for message attribute settings.

Release date Version Download Environment
preparation guide

2017-08-31 1.6.1.Final ons-client-1.6.1.Final Prepare the Java
SDK environment

Release date Version Download Environment
preparation guide

2017-07-31 1.6.0.Final ons-client-1.6.0.Final Prepare the Java
SDK environment

Message Queue for Apache RocketMQ SDK Reference

5

Demo project (TCP)

This demo helps engineers who are new to MQ to build a MQ test project step by step. The demo
program provides test codes in Java mode for normal messages, transactional messages, and
scheduled messages, as well as Spring configuration.

Prepare the environment

Step 1: Install IDE

You can use IntelliJ IDEA or Eclipse. IntelliJ IDEA is used in this example.

Download IntelliJ IDEA Ultimate from https://www.jetbrains.com/idea/ and install it according to the
instructions.

Step 2: Download the demo project

Download the demo project from https://github.com/AliwareMQ/mq-demo to a local machine and
decompress the .zip file. Then, a folder named Aliware-MQ-demo-master is created on the local
machine.

Set the demo project as follows:

Configure the demo project

Step 1: Import the demo project to IntelliJ IDEA

Prerequisites: You have installed the JDK on your local machine. If not, download and install it first.

In IntelliJ IDEA, select Import Project, and then select the folder mq-demo-master.

Select Import project from external model.

Message Queue for Apache RocketMQ SDK Reference

6

3.

4.

5.

6.

-

Click Next until the project is imported. The dependent JAR package needs to be loaded to
the demo project. Therefore, it takes two to three minutes to import the project.

Step 2: Create resources

Create the required resources in the MQ console, including a MQ instance, a topic, a group ID, and an
AccessKey for authentication.

For more information and operation instructions, see Step 2: Create resources in Quick start for
primary accounts.

Step 3: Configure the demo

Configure two files: MqConfig class and common.xml.

Configure the MqConfig class as follows:

public static final String TOPIC = "the topic you created";

public static final String GROUP_ID = "the group ID you created";
public static final String ACCESS_KEY = "the AccessKeyId of your Alibaba Cloud account";
public static final String SECRET_KEY = "the AccessKeySecret of your Alibaba Cloud
account";
public static final String NAMESRV_ADDR = "the TCP endpoint of your MQ instance that is
displayed as TCP Endpoint in the Endpoint Information area on the Instances page";

Note:

For more information about how to create an AccessKey (including an AccessKeyId and an
AccessKeySecret), see Create an AccessKey.

You can also use the AccessKey of the RAM sub-account if it is granted with the permissions
of the topic you created.

Message Queue for Apache RocketMQ SDK Reference

7

1.

Configure producer.xml.

Configure consumer.xml.

Run the demo project

Start sending and receiving messages in Main mode

Execute SimpleMQProducer to send messages.

 <props>
 <prop key="AccessKey">XXX</prop> <!-- enter values for these parameters -->
 <prop key="SecretKey">XXX</prop>
 <prop key="GROUP_ID">XXX</prop>
 <prop key="Topic">XXX</prop>
 <prop key="NAMESRV_ADDR">XXX</prop>
</props>

<bean id="consumer" class="com.aliyun.openservices.ons.api.bean.Consumerbean"
 init-method="start" destory-method="shutdown">
 <property name="properties">
 <map>
 <entry key="GROUP_ID" value="XXX"/><!——Replace GROUP_ID with the group ID of the
consumer.——>
 <entry key="AccessKey" value="XXX"/><!——Replace AccessKey with the AccessKeyId of your
account.——>
 <entry key="SecretKey" value="XXX"/><!——Replace SecretKey with the AccessKeySecret of your
account.——>
 <entry key="ONSAddr" value="http://onsaddr-internet.aliyun.com/MQ/nsaddr4client-internet"/>
 </map>
 </property>

 <property name="subscriptionTable">
 <map>
 <entry value-ref="messageListener">
 <key>
 <bean class="com.aliyun.openservices.ons.api.bean.Subscription">
 <property name="topic" value="XXX"/><!——Replace the topic with the one you created.——>
 <property name="expression" value="*"/><!——The name of the message type. Separate multiple
message types with "||".——>
 </bean>
 </key>
 </entry>
 </map>
 </property>
 </bean>

Message Queue for Apache RocketMQ SDK Reference

8

1.

2.

Log on to the MQ console. In the left-side navigation pane, choose Message Query > By
Topic. On the page that is displayed, select the topic you want to query. The query result
indicates that the messages have been sent to the topic.

Execute SimpleMQConsumer to receive messages. The log indicating that the messages are
received is printed. The class needs to be initialized, which takes several seconds.
Initialization does not often occur in the production environment.

In the MQ console, choose Consumers > Consumer Status. The system shows that the started
consumer is online and the subscriptions are consistent.

Start sending and receiving messages in Spring mode

Execute ProducerClient to send messages.
Execute ConsumerClient to receive messages.

Perform similar operations as above to view the results.

Send transactional messages

Execute SimpleTransactionProducer to send messages.

Note: LocalTransactionCheckerImpl is an API that you can call to check local transactions. It is used
for verifying transactions. For more information, see Send and receive transactional messages.

Send and receive ordered messages

Execute SimpleOrderConsumer to receive messages.

Execute SimpleOrderProducer to send messages.

Note: In this mode, messages are delivered and consumed in order. For more information, see Send
and receive ordered messages.

Send scheduled/delayed messages

Execute MQTimerProducer to send messages. Messages are delivered in 3s.

Note: You can specify an exact delivery time, which is up to 40 days. For more information, see Send
and receive scheduled messages.

Java SDK introduction

Message Queue for Apache RocketMQ SDK Reference

9

-

-

-

-

-

MQ provides the Java SDK for message delivery and subscription. This topic describes the parameters
of Java interfaces and shows you how to use these interfaces.

Sample code for the transmission and reception of
messages

Send and receive normal messages
Send and receive ordered messages
Send and receive scheduled messages
Send and receive delayed messages
Send and receive transactional messages

Common parameters

Message transmission parameters

Parameter Description

NAMESRV_ADDR The TCP endpoint, which is obtained from the
console.

AccessKey The AccessKeyId you created in the Alibaba
Cloud console for identity authentication.

SecretKey
The AccessKeySecret you created in the
Alibaba Cloud console for identity
authentication.

OnsChannel The user channel, which is ALIYUN by default
and CLOUD for Alibaba Retail Cloud users.

Parameter Description

SendMsgTimeoutMillis The message transmission timeout period (in
milliseconds). Default value: 3000

CheckImmunityTimeInSeconds (transactional
messages)

The shortest time interval (in seconds) before
the first recheck of a transactional message.

shardingKey (ordered messages) The sharding key for ordered messages.

Message Queue for Apache RocketMQ SDK Reference

10

Message subscription parameters

Parameter Description

GROUP_ID The group ID you created in the console.

MessageModel
The consumption mode of a consumer
instance, which can be CLUSTERING (default)
or BROADCASTING.

ConsumeThreadNums The number of consumption threads for a
consumer instance. Default value: 20

MaxReconsumeTimes The maximum number of retries upon a
consumption failure. Default value: 16

ConsumeTimeout

The maximum consumption timeout period
for each message. If a message fails to be
processed within this period, the consumption
fails, and the message needs to be resent for
consumption. Set an appropriate value (in
minutes) for each business application.
Default value: 15.

suspendTimeMillis (ordered message) The retry interval for messages that fail to be
consumed.

Message Queue for Apache RocketMQ SDK Reference

11

Prepare the Java SDK environment

Before executing the Java code described in this section, please prepare the environment according
to the following instructions.

Dependency can be introduced through either one of the following two methods:

Introduce dependency using Maven:

About the version number of the latest Java SDK, see Release notes.

Download a dependency JAR package:

About the download link of the latest Java SDK, see Release notes.

The topic and consumer ID involved in the code need to be created first in the MQ console.
For details on how to create topics and consumer ID, see Step 2: Create resources in Quick
start guide.

Applications using MQ services through TCP need to be deployed on ECS instances in the
same region.

Log configuration

This topic describes how to print the logs of the MQ client and to customize client log configuration.

<dependency>
<groupId>com.aliyun.openservices</groupId>
<artifactId>ons-client</artifactId>
<version>"XXX"</version>
//version number of the latest Java SDK
</dependency>

Message Queue for Apache RocketMQ SDK Reference

12

Print client logs

Client logs are important for problem location. Logs record exceptions during operation of the MQ
client, helping to reproduce the exception that occurs at a specific time. You can locate and fix system
bugs by checking logs.

The TCP Java SDK of MQ is programmed by using Simple Logging Facade for Java (SLF4J).

Java SDK 1.7.8. Final or later

Java SDK 1.7.8.Final for MQ has a built-in logging framework. Therefore, you can print logs of the MQ
client without adding the dependency of logging framework to the application.

For information about the default log configuration for the MQ client and how to modify the default
configuration, see Customize log configuration below.

Java SDK earlier than 1.7.8. Final

Java SDK earlier than 1.7.8.Final for MQ only supports log4j and logback other than log4j2. For these
versions, you must add the dependency of logging framework to the pom.xml configuration file or lib
file before you can print logs of the MQ client.

The sample code for adding the dependency of log4j or logback is as follows.

Method 1: Depend on the log4j logging framework

Method 2: Depend on the logback logging framework

<dependency>
<groupId>org.slf4j</groupId>
<artifactId>jcl-over-slf4j</artifactId>
<version>1.7.7</version>
</dependency>
<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-log4j12</artifactId>
<version>1.7.7</version>
</dependency>
<dependency>
<groupId>log4j</groupId>
<artifactId>log4j</artifactId>
<version>1.2.17</version>
</dependency>

<dependency>
<groupId>ch.qos.logback</groupId>
<artifactId>logback-core</artifactId>
<version>1.1.2</version>
</dependency>

Message Queue for Apache RocketMQ SDK Reference

13

-

-

-

-

-

-

-

-

-

-

Note: If an application depends on both log4j and logback, the client logs cannot be printed properly
due to log conflicts. To print client logs properly, ensure that the application depends only on one
logging framework. We recommended that you run the mvn clean dependency: tree | grep log
command to check the dependency of logging framework.

Customize log configuration

The MQ client allows you to set the log storage path, log level, and maximum number of historical
log files retained. To facilitate log transmission and reading, MQ does not allow you to change the
size of each log file and retains the default value of 64 MB.

These parameters are described as follows:

Log storage path: Ensure that the application has the write permission for this path.
Otherwise, logs cannot be printed.
Maximum number of historical log files retained: You can set this parameter to a value in the
range from 1 to 100. If you enter a value beyond this range or in an invalid format, the
system retains 10 historical log files by default.
Log level: The system supports logs of the ERROR, WARN, INFO, and DEBUG levels. If an
incorrect value is entered, the system retains the default value INFO.

Default configuration

After you start the client, the client generates log files based on the following default configuration:

Log storage path: /{user.home}/logs/ons.log, where {user.home} is the root directory of the
account that runs the current Java process
Maximum number of historical log files retained: 10
Log level: INFO
Size of a single log file: 64 MB

Custom configuration

Note: To customize the log configuration for the MQ client, upgrade the Java SDK to 1.2.5 or later.

To customize the log configuration in the Java SDK, configure the following system parameters:

ons.client.logRoot: log storage path
ons.client.logFileMaxIndex: maximum number of historical log files that are retained
ons.client.logLevel: log level

<dependency>
<groupId>ch.qos.logback</groupId>
<artifactId>logback-classic</artifactId>
<version>1.1.2</version>
</dependency>

Message Queue for Apache RocketMQ SDK Reference

14

-

Example

Add the following system parameters to the startup script or IDE VM options:

Spring integration

This topic introduces how to send and receive messages using MQ in Spring framework. This section
mainly include 3 parts: integration of normal message producer and Spring, integration of
transactional message producer and Spring, and integration of message consumer and Spring.

Make sure the subscriptions of all consumer instances under the same consumer ID are
consistent. For detailed information, see Subscription consistency.

Configuration parameters supported in Spring framework are the same with those in TCP Java. For
detailed information, see Java SDK introduction.

For more information about the Java SDK versions, see Release Notes.

Integration of Producer and Spring

Define information such as producer Bean in producer.xml.

-Dons.client.logRoot=/home/admin/logs -Dons.client.logLevel=WARN -Dons.client.logFileMaxIndex=20

 <?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

<bean id="producer" class="com.aliyun.openservices.ons.api.bean.ProducerBean" init-method="start"
destroy-method="shutdown">
<!-- All configuration items supported in Java SDK are also supported in Spring method. -->
<property name="properties" > <!--Producer configuration-->
<props>
<prop key="ProducerId">PID_DEMO</prop> <!--Please replace XXX-->
<prop key="AccessKey">XXX</prop>
<prop key="SecretKey">XXX</prop>
</props>
</property>
</bean>

</beans>

Message Queue for Apache RocketMQ SDK Reference

15

Produce messages through the producer that has been integrated with Spring.

Integration of Transactional Message Producer and
Spring

 package demo;

import com.aliyun.openservices.ons.api.Message;
import com.aliyun.openservices.ons.api.Producer;
import com.aliyun.openservices.ons.api.SendResult;
import com.aliyun.openservices.ons.api.exception.ONSClientException;
import org.springframework.context.ApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;

public class ProduceWithSpring {
public static void main(String[] args) {
/**
* The producer Bean is configured in producer.xml, which can be obtained through ApplicationContext
or directly injected to other classes (such as specific controller).
*/
ApplicationContext context = new ClassPathXmlApplicationContext("producer.xml");

Producer producer = (Producer) context.getBean("producer");
//Send messages in loop
for (int i = 0; i < 100; i++) {
Message msg = new Message(//
// The topic of the message
"TopicTestMQ",
//Message tag, which is similar to tag in Gmail, and is used to classify messages. Consumers can then set
filtering conditions for messages to be filtered in MQ broker.
"TagA",
// Message body, which can be any data in binary format.
// Serialization and deserialization methods need to be negotiated and remain consistent between the
producer and the consumer.
"Hello MQ".getBytes());
// The setting represents the key business property of the message, so please keep it globally unique.
// You can query a message and resend it through the MQ console when you cannot receive the
message properly.
// Note: Message sending and receiving is not affected if you do not configure this setting.
msg.setKey("ORDERID_100");
// Synchronous message sending will succeed as long as no exception is thrown.
try {
SendResult sendResult = producer.send(msg);
assert sendResult != null;
System.out.println("send success: " + sendResult.getMessageId());
}catch (ONSClientException e) {
System.out.println(“Message sending fails");
}

}
}
}

Message Queue for Apache RocketMQ SDK Reference

16

For the concept of transactional messages, see Send and receive transactional messages.

Implement LocalTransactionChecker, as shown below. A message producer can have only
one LocalTransactionChecker.

Define information such as transactional message producer Bean in
transactionProducer.xml.

Produce transactional messages through the producer that has been integrated with
Spring.

 package demo;

import com.aliyun.openservices.ons.api.Message;
import com.aliyun.openservices.ons.api.transaction.LocalTransactionChecker;
import com.aliyun.openservices.ons.api.transaction.TransactionStatus;

public class DemoLocalTransactionChecker implements LocalTransactionChecker {
public TransactionStatus check(Message msg) {
System.out.println("Start to check status of the local transaction");
return TransactionStatus.CommitTransaction; //Return different transaction status according to the check
result
}
}

 <?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

<bean id="localTransactionChecker" class="demo.DemoLocalTransactionChecker"></bean>

<bean id="transactionProducer" class="com.aliyun.openservices.ons.api.bean.TransactionProducerBean"
init-method="start" destroy-method="shutdown">
<property name="properties" > <!--Transactional message producer configuration-->
<props>
<prop key="ProducerId">PID_DEMO</prop> <!--Please replace XXX-->
<prop key="AccessKey">AKDEMO</prop>
<prop key="SecretKey">SKDEMO</prop>
</props>
</property>
<property name="localTransactionChecker" ref="localTransactionChecker"></property>
</bean>

</beans>

 package demo;

Message Queue for Apache RocketMQ SDK Reference

17

Integration of Consumer and Spring

Create MessageListener, as shown below.

import com.aliyun.openservices.ons.api.Message;
import com.aliyun.openservices.ons.api.SendResult;
import com.aliyun.openservices.ons.api.transaction.LocalTransactionExecuter;
import com.aliyun.openservices.ons.api.transaction.TransactionProducer;
import com.aliyun.openservices.ons.api.transaction.TransactionStatus;
import org.springframework.context.ApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;

public class ProduceTransMsgWithSpring {

public static void main(String[] args) {
/**
* The transactional message producer Bean is configured in transactionProducer.xml, which can be
obtained through ApplicationContext or directly injected to other classes (such as specific controller).
* Refer to the example "Send Transactional Messages"
*/
ApplicationContext context = new ClassPathXmlApplicationContext("transactionProducer.xml");

TransactionProducer transactionProducer = (TransactionProducer)
context.getBean("transactionProducer");

Message msg = new Message("XXX", "TagA", "Hello MQ transaction===".getBytes());

SendResult sendResult = transactionProducer.send(msg, new LocalTransactionExecuter() {
@Override
public TransactionStatus execute(Message msg, Object arg) {
System.out.println("Execute local transaction");
return TransactionStatus.CommitTransaction; //Return different transaction status according to the
execution result of local transaction
}
}, null);
}
}

 package demo;

import com.aliyun.openservices.ons.api.Action;
import com.aliyun.openservices.ons.api.ConsumeContext;
import com.aliyun.openservices.ons.api.Message;
import com.aliyun.openservices.ons.api.MessageListener;

public class DemoMessageListener implements MessageListener {

public Action consume(Message message, ConsumeContext context) {

System.out.println("Receive: " + message.getMsgID());
try {

Message Queue for Apache RocketMQ SDK Reference

18

Define information such as consumer Bean in consumer.xml.

//do something..
return Action.CommitMessage;
}catch (Exception e) {
//Consumption fails
return Action.ReconsumeLater;
}
}
}

 <?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

<bean id="msgListener" class="demo.DemoMessageListener"></bean> <!--Listener configuration-->
<!-- You can create multiple ConsumerBeans for multiple CIDs to subscribe to the same topic-->
<bean id="consumer" class="com.aliyun.openservices.ons.api.bean.ConsumerBean" init-method="start"
destroy-method="shutdown">
<property name="properties" > <!--Consumer configuration-->
<props>
<prop key="ConsumerId">CID_DEMO</prop> <!--Please replace XXX-->
<prop key="AccessKey">AKDEMO</prop>
<prop key="SecretKey">SKDEMO</prop>
<!--Fix the number of consumer threads at 50
<prop key="ConsumeThreadNums">50</prop>
-->
</props>
</property>
<property name="subscriptionTable">
<map>
<entry value-ref="msgListener">
<key>
<bean class="com.aliyun.openservices.ons.api.bean.Subscription">
<property name="Topic" value="TopicTestMQ"/>
<property name="expression" value="*"/><!--”expression” is the tag, which can be set to a specific tag,
such as taga||tagb||tagc, or can be set to *. * means subscribing to all tags, and wildcards are not
supported-->
</bean>
</key>
</entry>
<!--For more subscriptions, you can add entry nodes, as shown below-->
<entry value-ref="msgListener">
<key>
<bean class="com.aliyun.openservices.ons.api.bean.Subscription">
<property name="Topic" value="TopicTestMQ-Other"/> <!--subscribe to another topic -->
<property name="expression" value="Taga||Tagb"/> <!-- subscribe to multiple tags -->
</bean>
</key>
</entry>
</map>
</property>
</bean>

Message Queue for Apache RocketMQ SDK Reference

19

Run the consumer that has been integrated with Spring, as shown below.

Exactly-Once delivery semantics

This topic descibes how to send and receive messages through Exactly-Once delivery semantics. By
doing so, the final processing result of a message is written to the database for once only.

Note: Currently, the Exactly-Once delivery semantics is only supported in Java SDK. For more
information about the SDK download, refer to Release Notes.

Background Information

The Exactly-Once delivery semantics of MQ applies to the following process: receive a message >
process the message > persistently store the result in database. It ensures that the final consumption
result of each message is written to your database only once, keeping message consumption
idempotent.

Procedure

To use the Exactly-Once delivery semantics, follow these steps:

</beans>

 package demo;

import org.springframework.context.ApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;

public class ConsumeWithSpring {
public static void main(String[] args) {

/**
* The consumer Bean is configured in consumer.xml, which can be obtained through ApplicationContext
or directly injected to other classes (such as specific controller).
*/
ApplicationContext context = new ClassPathXmlApplicationContext("consumer.xml");
System.out.println("Consumer Started");
}
}

Message Queue for Apache RocketMQ SDK Reference

20

Add dependencies of the SDK package and Spring 3.0 or later to the application. For more
information, see Step 1: Add dependencies.

Create a table named transaction_record in the database that stores message consumption
results. For more information, see Step 2: Create a consumption transaction table.

Note: The database system that stores message consumption results must support local transactions.

On the message producer, set the PropertyKeyConst.EXACTLYONCE_DELIVERY attribute to
enable the Exactly-Once delivery semantics. For more information, see Step 3: Enable the
Exactly-Once delivery semantics on the producer.

Create an Exactly-Once consumer on the consumer client and enable Exactly-Once
consumption. For more information, see Step 4: Enable the Exactly-Once delivery semantics
on the consumer.

Step 1: Add dependencies

The Exactly-Once consumer feature of MQ is released in SDK ons-client-ext-1.8.4.Final . To use the
Exactly-Once delivery semantics, add the dependency of this SDK in the application.

In addition, the Exactly-Once consumer depends on Spring to enable Exactly-Once consumption by
using the annotation @MQTransaction. Therefore, you must also add the dependency of Spring 3.0
or later in the application.

Add the dependencies as follows:

Step 2: Create a consumption transaction table
To use the Exactly-Once delivery semantics of MQ, create a table named transaction_record in the

<dependency>
<groupId>com.aliyun.openservices</groupId>
<artifactId>ons-client-ext</artifactId>
<version>1.8.4.Final</version>
</dependency>
<dependency>
<groupId>org.springframework</groupId>
<artifactId>spring-context</artifactId>
<version>${spring-version}</version>
</dependency>
<dependency>
<groupId>org.springframework</groupId>
<artifactId>spring-jdbc</artifactId>
<version>${spring-version}</version>
</dependency>

Message Queue for Apache RocketMQ SDK Reference

21

-

-

database that persistently stores business processing results. Ensure that this table is in the same
database as the table that stores business processing results, and that the database supports local
transactions.

The Exactly-Once delivery semantics of MQ support access to MySQL and SQL Server data sources.
The statements for creating the transaction_record table for the two types of data sources are as
follows.

MySQL

SQL Server

Note:

If you are using Enterprise SQL Server, we recommend that you run ALTER DATABASE
[USERDB] SET PARTNER SAFETY OFF; to enable the asynchronous mode, which improves the
database read and write performance.

CREATE TABLE `transaction_record` (
`consumer_group` varchar(128) NOT NULL DEFAULT '',
`message_id` varchar(255) NOT NULL DEFAULT '',
`topic_name` varchar(255) NOT NULL DEFAULT '',
`ctime` bigint(20) NOT NULL,
`queue_id` int(11) NOT NULL,
`offset` bigint(20) NOT NULL,
`broker_name` varchar(255) NOT NULL DEFAULT '',
`id` bigint(20) NOT NULL AUTO_INCREMENT,
PRIMARY KEY (`id`),
UNIQUE KEY `message_id_unique_key` (`message_id`),
KEY `ctime_key` (`ctime`),
KEY `load_key` (`queue_id`,`broker_name`,`topic_name`,`ctime`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

CREATE TABLE transaction_record
(
[consumer_group] varchar(128) NOT NULL ,
[message_id] varchar(255) NOT NULL ,
[topic_name] varchar(255) NOT NULL ,
[ctime] bigint NOT NULL ,
[queue_id] int NOT NULL ,
[offset] bigint NOT NULL ,
[broker_name] varchar(50) NOT NULL ,
[id] bigint IDENTITY(1,1) PRIMARY KEY
)
CREATE NONCLUSTERED INDEX load_key ON transaction_record
(queue_id, broker_name, topic_name, ctime);
CREATE UNIQUE NONCLUSTERED INDEX message_id_uniq_key ON transaction_record
(message_id);
CREATE NONCLUSTERED INDEX ctime_key ON transaction_record
(ctime);

Message Queue for Apache RocketMQ SDK Reference

22

You can also enable the delayed durability feature for the SQL Server database by running
ALTER DATABASE [USERDB] SET DELAYED_DURABILITY=FORCED. This feature reduces the
IOPS of the database.

Step 3: Enable the Exactly-Once delivery semantics on the producer

On the producer, set the PropertyKeyConst.EXACTLYONCE_DELIVERY attribute to true to enable the
Exactly-Once delivery semantics. The sample code is as follows:

Step 4: Enable the Exactly-Once delivery semantics on the
consumer

When the Exactly-Once delivery semantics of MQ is used for consumption, you need to create an
Exactly-Once consumer on the consumer client by using ExactlyOnceONSFactory to call the
createExactlyOnceConsumer operation. The Exactly-Once consumer then implements Exactly-Once
consumption.

/**
* Start TestExactlyOnceProducer.
* Set the PropertyKeyConst.EXACTLYONCE_DELIVERY attribute to enable the Exactly-Once delivery semantics.
*/

public class TestExactlyOnceProducer {
public static void main(String[] args) {
Properties producerProperties = new Properties();
producerProperties.setProperty(PropertyKeyConst.GROUP_ID, "{gid}");
producerProperties.setProperty(PropertyKeyConst.AccessKey, "{accessKey}");
producerProperties.setProperty(PropertyKeyConst.SecretKey, "{secretKey}");
producerProperties.setProperty(PropertyKeyConst.NAMESRV_ADDR, "{NAMESRV_ADDR}");
producerProperties.setProperty(PropertyKeyConst.EXACTLYONCE_DELIVERY, "true");
Producer producer = ExactlyOnceONSFactory.createProducer(producerProperties);
producer.start();
System.out.println("Producer Started");

for (int i = 0; i < 10; i++) {
Message message = new Message("{topic}", "{tag}", "mq send transaction message test".getBytes());
try {
SendResult sendResult = producer.send(message);
assert sendResult ! = null;
System.out.println(new Date() + " Send mq message success! msgId is: " + sendResult.getMessageId());
} catch (ONSClientException e) {
System.out.println("Sending failure");
// This exception indicates a message sending failure. To prevent message loss, we recommend that you cache the
message and try again.
}
}
producer.shutdown();
}
}

Message Queue for Apache RocketMQ SDK Reference

23

For an Exactly-Once consumer, pay attention to the following:

When creating an Exactly-Once consumer, set the
PropertyKeyConst.EXACTLYONCE_DELIVERY attribute to enable or disable the Exactly-Once
delivery semantics. Exactly-Once delivery semantics is enabled for an Exactly-Once consumer
by default.

When an Exactly-Once consumer is used for consumption, your business processing logic
needs to use MQDataSource in the consume method of the message listener to read and
write data in the database.

Use any of the following methods to enable the Exactly-Once delivery semantics on the consumer:

Enable Exactly-Once delivery semantics without using Spring

Create transactions on the message listener for database operations and message
consumption

Use the Spring Boot annotation to enable the Exactly-Once delivery semantics on the
message listener

Use MyBatis to enable the Exactly-Once delivery semantics on the message listener

Enable Exactly-Once delivery semantics without using Spring

Example:

/**
* Start the Exactly-Once consumer.
* Set the PropertyKeyConst.EXACTLYONCE_DELIVERY attribute to enable the Exactly-Once delivery semantics.
*/
public class TestExactlyOnceConsumer {
private ExactlyOnceConsumer consumer;
private TxMessageListener listener;

public TestExactlyOnceConsumer() {
Properties consumerProperties = new Properties();
consumerProperties.setProperty(PropertyKeyConst.GROUP_ID, "{gid}");
consumerProperties.setProperty(PropertyKeyConst.AccessKey, "{accessKey}");
consumerProperties.setProperty(PropertyKeyConst.SecretKey, "{secretKey}");
consumerProperties.setProperty(PropertyKeyConst.NAMESRV_ADDR, "{NAMESRV_ADDR}");
this.consumer = ExactlyOnceONSFactory.createExactlyOnceConsumer(consumerProperties);
this.consumer.subscribe("{topic}", "", new TestExactlyOnceListener());
consumer.start();
System.out.println("Consumer start success.") ;

Message Queue for Apache RocketMQ SDK Reference

24

Create transactions on the message listener for database operations and

}
}

/**
* SimpleListener is an example of the use of Exactly-Once delivery consumer for message consumption.
* It completes a simple process of recording messages in the database, and ensures that each message is
persistently stored in the database and takes effect only once.
*/
public class SimpleListener implements MessageListener {
private MQDataSource dataSource;

public SimpleListener() {
this.dataSource = new MQDataSource("{url}", "{user}", "{passwd}", "{driver}");
}

@Override
public Action consume(Message message, ConsumeContext context) {
Connection connection = null;
PreparedStatement statement = null;
try {
/**
* The consumed messages are processed for business accounting, and the processing results are persistently stored
in the database system by using MQDataSource.
* This example demonstrates how messages are consumed and recorded in the database system. The actual
business processing process is as follows: receive a message > process the message > persistently store the result.
* Exactly-Once delivery semantics ensures that each message is persistently stored only once.
*/
connection = dataSource.getConnection();
statement = connection.prepareStatement("INSERT INTO app(msg, ctime) VALUES(?, ?") ;
statement.setString(1, new String(message.getBody()));
statement.setLong(2, System.currentTimeMillis());
statement.execute();
System.out.println("consume message success");
return Action.CommitMessage;
} catch (Throwable e) {
System.out.println("consume message fail:" + e.getMessage());
return Action.ReconsumeLater;
} finally {
if (statement ! = null) {
try {
statement.close();
} catch (Exception e) {
}
}
if (connection ! = null) {
try {
connection.close();
} catch (Exception e) {
}
}
}
}
}

Message Queue for Apache RocketMQ SDK Reference

25

message consumption

Example:

/**
* Implement TestExactlyOnceListener
* Multiple business tables are updated in one transaction, and each operation in the transaction takes effect only
once.
*/
public class SimpleTxListener implements MessageListener {
private MQDataSource dataSource;

public SimpleTxListener() {
this.dataSource = new MQDataSource("{url}", "{user}", "{passwd}", "{driver}");
}

@Override
public Action consume(Message message, ConsumeContext context) {
Connection connection = null;
Statement statement = null;
try {
/**
* The consumed messages are processed for business accounting, and the processing results are persistently stored
in the database system by using MQDataSource.
* This example demonstrates an update of multiple tables in one transaction. The use of Exactly-Once delivery
semantics ensures that each operation is performed only once in the transaction.
* The business processing logic is designed based on the following process: receive a message > process the
message > persistently store the result.
*/
connection = dataSource.getConnection();
connection.setAutoCommit(false);
String insertSql = String.format("INSERT INTO app(msg, message_id, ctime) VALUES(\"%s\", \"%s\", %d)",
new String(message.getBody()), message.getMsgID(), System.currentTimeMillis());
String updateSql = String.format("UPDATE consume_count SET cnt = count + 1 WHERE consumer_group = \"%s\"",
"GID_TEST");
statement = connection.createStatement();
statement.execute(insertSql);
statement.execute(updateSql);
connection.commit();
System.out.println("consume message :" + message.getMsgID());
return Action.CommitMessage;
} catch (Throwable e) {
try {
connection.rollback();
} catch (Exception e1) {
}
System.out.println("consume message fail");
return Action.ReconsumeLater;
} finally {
if (statement ! = null) {
try {
statement.close();
} catch (Exception e) { }
}
if (connection ! = null) {

Message Queue for Apache RocketMQ SDK Reference

26

1.

Use the Spring Boot annotation to enable the Exactly-Once delivery semantics on
the message listener

Create a message listener.

try {
connection.close();
} catch (Exception e) { }
}
}
}
}

/**
* On the message listener, use an annotation to enable the Exactly-Once delivery semantics.
* You only need to add @MQTransaction to the consume method of the message listener.
* This method is applicable to the Spring Boot microservice.
*/

public class TestMessageListener implements MessageListener {
private final static String INSERTSQLFORMAT = "INSERT INTO app(message_id, ctime) VALUES(\"%s\", %d)";
private MQDataSource dataSource;

@Override
@MQTransaction
public Action consume(Message message, ConsumeContext context) {

Connection connection = null;
Statement statement = null;
try {
String insertSql = String.format(INSERTSQLFORMAT, message.getMsgID(), System.currentTimeMillis());
connection = this.dataSource.getConnection();
statement = connection.createStatement();
statement.execute(insertSql);
return Action.CommitMessage;
} catch (Throwable e) {
return Action.ReconsumeLater;
} finally {
if (statement ! = null) {
try {
statement.close();
} catch(Exception e) { }
}
if (connection ! = null) {
try {
connection.close();
} catch (Exception e) { }
}
}
}

public void setDataSource(MQDataSource dataSource) {
this.dataSource = dataSource;
}

Message Queue for Apache RocketMQ SDK Reference

27

1. Define a consumer bean and other related information in consumer.xml.

}

<? xml version="1.0" encoding="UTF-8"? >
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

<bean id="mqDataSource"
class="com.aliyun.openservices.ons.api.impl.MQ.exactlyonce.datasource.MQDataSource" init-method="init"
destroy-method="close">
<property name="url" value="{url}" />
<property name="username" value="{user}" />
<property name="password" value="{passwd}" />
<property name="driverClass" value="{driver}" />
</bean>

<bean id="msgListener" class="com.aliyun.openservices.ons.api.impl.MQ.exactlyonce.spring.TestMessageListener">
<property name="dataSource" ref="mqDataSource"> <! --Consumer configuration-->
</property>
</bean> <! --Listener configuration -->

<! --When multiple group IDs subscribe to the same topic, you can create multiple consumer beans.
<bean id="consumer" class="com.aliyun.openservices.ons.api.bean.ExactlyOnceConsumerBean" init-
method="start" destroy-method="shutdown">
<property name="properties" > <! --Consumer configuration-->
<props>
<prop key="GROUP_ID">{gid}</prop>
<prop key="AccessKey">{accessKey}</prop>
<prop key="SecretKey">{secretKey}</prop>
<! --Set the number of consumer threads to 50.
<prop key="ConsumeThreadNums">50</prop>
-->
</props>
</property>
<property name="subscriptionTable">
<map>
<entry value-ref="msgListener">
<key>
<bean class="com.aliyun.openservices.ons.api.bean.Subscription">
<property name="topic" value="{topic}"/>
<property name="expression" value="{subExpression}"/><! --The expression is a tag. You can set it to a specific
tag, such as taga||tagb||tagc, or enter an asterisk (*) in this field. The asterisk (*) indicates subscription of all tags, but
is not used as a wildcard.-->
</bean>
</key>
</entry>
</map>
</property>
</bean>
</beans>

Message Queue for Apache RocketMQ SDK Reference

28

1.

1.

1.

1.

Run the consumer that is integrated with Spring.

Use MyBatis to enable the Exactly-Once delivery semantics on the message
listener

Design the data access object (DAO) for write operations in the business database.

Write the INSERT statement in the mapper.xml file.

Call MQDataSource to define the custom DataSourceFactory.

public class ConsumeWithSpring {
public static void main(String[] args) {
/**
* The consumer bean is configured in consumer.xml. You can call ApplicationContext to obtain the bean or to inject
it to other classes, such as a controller.
*/
ApplicationContext context = new ClassPathXmlApplicationContext("consumer.xml");
System.out.println("Consumer Started");
}

package com.aliyun.openservices.tcp.example.mybatis;

public interface AppDAO {
Integer insertMessage(String msgId);
}

<? xml version="1.0" encoding="UTF-8" ? >
<! DOCTYPE mapper
PUBLIC "-//mybatis.org//DTD Mapper 3.0//EN"
"http://mybatis.org/dtd/mybatis-3-mapper.dtd">
<mapper namespace="com.aliyun.openservices.tcp.example.mybatis.AppDAO">
<insert id="insertMessage">
INSERT INTO app (message_id, ctime) VALUES (#{msgId}, now())
</insert>
</mapper>

public class MQDataSourceFactoty extends DruidDataSourceFactory implements DataSourceFactory {
protected Properties properties;

@Override
public void setProperties(Properties properties) {
this.properties = properties;
}

@Override
public DataSource getDataSource() {
try {
DruidDataSource druidDataSource = (DruidDataSource) createDataSource(this.properties);
return new MQDataSource(druidDataSource);

Message Queue for Apache RocketMQ SDK Reference

29

1.

1.

Register the data source as the MQDataSourceFactoty class in mybatis-config.xml.

Connect to the database from the message listener by using MyBatis to implement Exactly-
Once consumption.

} catch (Exception e) {
System.out.println("err:" + e.getMessage());
}
return null;
}
}

<configuration>
<environments default="development">
<environment id="development">
<transactionManager type="JDBC"/>
<! --Database connection configuration-->
<dataSource type="com.aliyun.openservices.tcp.example.mybatis.MQDataSourceFactoty">
<property name="driverClass" value="com.mysql.jdbc.Driver"/>
<property name="url" value="{url}"/>
<property name="username" value="{username}"/>
<property name="password" value="{password}"/>

<property name="initialSize" value="10" />
<property name="maxActive" value="20"/>
</dataSource>
</environment>
</environments>
<mappers>
<mapper resource="mapper.xml"/>
</mappers>
</configuration>

public class TestMybatisListener implements MessageListener {
private static SqlSessionFactory sqlSessionFactory;

static {
String resource = "mybatis-config.xml";
Reader reader = null;
try {
reader= Resources.getResourceAsReader(resource);
} catch (IOException e) {
e.printStackTrace();
}
sqlSessionFactory = new SqlSessionFactoryBuilder().build(reader);
}

@Override
public Action consume(Message message, ConsumeContext context) {
long begion = System.currentTimeMillis();
SqlSession sqlSession = null;
try {
sqlSession = sqlSessionFactory.openSession();

Message Queue for Apache RocketMQ SDK Reference

30

-

Precautions

When using an Exactly-Once consumer of MQ for message consumption, pay attention to the
following points:

The consumer offset cannot be reset manually in the console. If you reset the consumer
offset to a consumed time point, the Exactly-Once delivery semantics becomes ineffective.

Each insert or update operation in a database triggers an update operation. In addition, the
Exactly-Once consumer queries and deletes data in the database periodically. These extra
operations increase the IOPS of the database.

Send normal messages (in three modes)

MQ can send normal messages in three modes: reliable synchronous mode, reliable asynchronous
mode, and one-way mode. This topic describes the working principles, scenarios, and differences of
the three modes, and provides sample code for reference.

Note: Ordered messages can only be sent in reliable synchronous mode.

Reliable synchronous transmission

Principle: In synchronous mode, the sender waits for the response from the receiver to the last data
message before sending the next data message.

Scenario: This mode is applicable to extensive scenarios, such as email notification delivery,
registration SMS notification delivery, and marketing SMS delivery.

AppDAO appDAO = sqlSession.getMapper(AppDAO.class);
appDAO.insertMessage(message.getMsgID());
System.out.println("consume : " + message.getMsgID());
sqlSession.commit();
return Action.CommitMessage;
} catch (Exception e) {
e.printStackTrace();
sqlSession.rollback();
return Action.ReconsumeLater;
} finally {
sqlSession.close();
}
}
}

Message Queue for Apache RocketMQ SDK Reference

31

-

-

Reliable asynchronous transmission
Principle: In asynchronous mode, the sender sends the next data message without waiting for the
receiver’s response to the last data message. MQ needs to call the SendCallback operation to
implement asynchronous transmission. The sender sends the second message immediately after the
first one, without waiting for the response from the broker. The sender calls the SendCallback
operation to receive responses from the broker and processes the responses.

Scenario: This mode is used on time-consuming links for business scenarios that are sensitive to
response time (RT). For example, after a user uploads a video, a notification is sent to enable the
encoding service. After encoding is complete, a notification is sent to return the encoding result.

One-way transmission

Principle: In one-way transmission mode, the sender only sends messages and does not wait for
broker responses or call any callback function. This mode consumes the least time and completes
transmission within microseconds.

Scenario: This mode is applicable to least time-consuming scenarios that pose low reliability
requirements, for example, log collection.

The following table summarizes the features of the three transmission modes and the differences
between them.

Sample code

Synchronous transmission

Transmission mode TPS Response Reliability

Synchronous
transmission High Yes No message loss

Asynchronous
transmission High Yes No message loss

One-way
transmission Highest None Possible message

loss

import com.aliyun.openservices.ons.api.Message;
import com.aliyun.openservices.ons.api.Producer;
import com.aliyun.openservices.ons.api.SendResult;
import com.aliyun.openservices.ons.api.ONSFactory;
import com.aliyun.openservices.ons.api.PropertyKeyConst;

import java.util.Properties;

public class ProducerTest {
public static void main(String[] args) {
Properties properties = new Properties();
// The AccessKeyId you created in the Alibaba Cloud console for identity authentication.
properties.put(PropertyKeyConst.AccessKey,"XXX");

Message Queue for Apache RocketMQ SDK Reference

32

Asynchronous transmission

// The AccessKeySecret you created in the Alibaba Cloud console for identity authentication.
properties.put(PropertyKeyConst.SecretKey, "XXX");
// Set the message transmission timeout period (in milliseconds).
properties.setProperty(PropertyKeyConst.SendMsgTimeoutMillis, "3000");
// Set the TCP endpoint: Go to the **Instances** page in the MQ console, and view the endpoint in the **Endpoint
Information** area.
properties.put(PropertyKeyConst.NAMESRV_ADDR,
"XXX ");

Producer producer = ONSFactory.createProducer(properties);
//Before sending a message, call the start() method once to start the producer.
producer.start();

// Send messages cyclically.
for (int i = 0; i < 100; i++){
Message msg = new Message(//
// The topic of the message.
"TopicTestMQ",
// The message tag, which is similar to a Gmail tag. It is used to sort messages, enabling the consumer to filter
messages on the MQ broker based on the specified criteria.
"TagA",
// The message body in any binary format. MQ does not process the message body.
// The producer and consumer must negotiate the consistent serialization and deserialization methods.
"Hello MQ".getBytes());
// Set a key service property representing the message, that is, the message key, and try to keep it globally unique.
// A unique identifier enables you to query a message and resend it in the Alibaba Cloud console if you fail to
receive the message.
// Note: Messages can still be sent and received if you do not set this attribute.
msg.setKey("ORDERID_" + i);

try {
SendResult sendResult = producer.send(msg);
// Send the message in synchronous mode. The message is sent if no exception is thrown.
if (sendResult ! = null) {
System.out.println(new Date() + " Send mq message success. Topic is:" + msg.getTopic() + " msgId is: " +
sendResult.getMessageId());
}
}
catch (Exception e) {
// The message failed to be sent and requires a retry. The system can resend the message or store message data
persistently.
System.out.println(new Date() + " Send mq message failed. Topic is:" + msg.getTopic());
e.printStackTrace();
}
}

// Destroy the producer object before exiting from the application.
// Note: You can choose not to destroy the producer object.
producer.shutdown();
}
}

import com.aliyun.openservices.ons.api.Message;

Message Queue for Apache RocketMQ SDK Reference

33

import com.aliyun.openservices.ons.api.OnExceptionContext;
import com.aliyun.openservices.ons.api.Producer;
import com.aliyun.openservices.ons.api.SendCallback;
import com.aliyun.openservices.ons.api.SendResult;
import com.aliyun.openservices.ons.api.ONSFactory;
import com.aliyun.openservices.ons.api.PropertyKeyConst;

import java.util.Properties;

public static void main(String[] args) {
Properties properties = new Properties();
// The AccessKeyId you created in the Alibaba Cloud console for identity authentication.
properties.put(PropertyKeyConst.AccessKey, "XXX");
// The AccessKeySecret you created in the Alibaba Cloud console for identity authentication.
properties.put(PropertyKeyConst.SecretKey, "XXX");
// Set the message transmission timeout period (in milliseconds).
properties.setProperty(PropertyKeyConst.SendMsgTimeoutMillis, "3000");
// Set the TCP endpoint: Go to the **Instances** page in the MQ console, and view the endpoint in the **Endpoint
Information** area.
properties.put(PropertyKeyConst.NAMESRV_ADDR,
"XXX ");

Producer producer = ONSFactory.createProducer(properties);
//Before sending a message, call the start() method once to start the producer.
producer.start();

Message msg = new Message(
// The topic of the message.
"TopicTestMQ",
// The message tag, which is similar to a Gmail tag. It is used to sort messages, enabling the consumer to filter
messages on the MQ broker based on the specified criteria.
"TagA",
// The message body in any binary format. MQ does not process the message body. The producer and consumer
must negotiate the consistent serialization and deserialization methods.
"Hello MQ".getBytes());

// Set a key service property representing the message, that is, the message key, and try to keep it globally unique.
A unique identifier enables you to query a message and resend it in the console if you fail to receive the message.
// Note: Messages can still be sent and received if you do not set this attribute.
msg.setKey("ORDERID_100");

// Send the message in asynchronous mode. The result is returned to the client through the callback function.
producer.sendAsync(msg, new SendCallback() {
@Override
public void onSuccess(final SendResult sendResult) {
// The message is sent to the consumer.
System.out.println("send message success. topic=" + sendResult.getTopic() + ", msgId=" +
sendResult.getMessageId());
}

@Override
public void onException(OnExceptionContext context) {
// The message failed to be sent and requires a retry. The system can resend the message or store message data
persistently.
System.out.println("send message failed. topic=" + context.getTopic() + ", msgId=" + context.getMessageId());
}

Message Queue for Apache RocketMQ SDK Reference

34

One-way transmission

});

// The message ID can be obtained before the callback function returns the result.
System.out.println("send message async. topic=" + msg.getTopic() + ", msgId=" + msg.getMsgID());

// Destroy the producer object before exiting from the application. Note: You can choose not to destroy the
producer object.
producer.shutdown();
}

import com.aliyun.openservices.ons.api.Message;
import com.aliyun.openservices.ons.api.Producer;
import com.aliyun.openservices.ons.api.ONSFactory;
import com.aliyun.openservices.ons.api.PropertyKeyConst;

import java.util.Properties;

public static void main(String[] args) {
Properties properties = new Properties();
// The AccessKeyId you created in the Alibaba Cloud console for identity authentication.
properties.put(PropertyKeyConst.AccessKey, "XXX");
// The AccessKeySecret you created in the Alibaba Cloud console for identity authentication.
properties.put(PropertyKeyConst.SecretKey, "XXX");
// Set the message transmission timeout period (in milliseconds).
properties.setProperty(PropertyKeyConst.SendMsgTimeoutMillis, "3000");
// Set the TCP endpoint: Go to the **Instances** page in the MQ console, and view the endpoint in the **Endpoint
Information** area.
properties.put(PropertyKeyConst.NAMESRV_ADDR,
"XXX ");

Producer producer = ONSFactory.createProducer(properties);
//Before sending a message, call the start() method once to start the producer.
producer.start();
// Send messages cyclically.
for (int i = 0; i < 100; i++){
Message msg = new Message(
// The topic of the message.
"TopicTestMQ",
// The message tag,
// It is similar to a Gmail tag. It is used to sort messages, enabling the consumer to filter messages on the MQ
broker based on the specified criteria.
"TagA",
// The message body
// It is in any binary format. MQ does not process the message body. The producer and consumer must negotiate
the consistent serialization and deserialization methods.
"Hello MQ".getBytes());

// Set a key service property representing the message, that is, the message key, and try to keep it globally unique.
// A unique identifier enables you to query a message and resend it in the Alibaba Cloud console if you fail to
receive the message.
// Note: Messages can still be sent and received if you do not set this attribute.
msg.setKey("ORDERID_" + i);

Message Queue for Apache RocketMQ SDK Reference

35

Send messages (using multiple threads)

The consumer and producer client objects of MQ are thread-secure and can be shared among
multiple threads.

You can deploy multiple producer and consumer instances on one or more servers. A producer or
consumer instance can also run multiple threads to send or receive messages, improving the
message transmitting or receiving TPS. Do not create a client instance for every thread.

The sample code for sharing a producer instance among multiple threads is as follows:

// In one-way transmission mode, the sender does not wait for the response from the broker. Therefore, if
messages that fail to be delivered are not retransmitted, data is lost. If data loss is not acceptable, we recommend
that you use the reliable synchronous or asynchronous transmission mode.
producer.sendOneway(msg);
}

// Destroy the producer object before exiting from the application.
// Note: You can choose not to destroy the producer object.
producer.shutdown();
}

import com.aliyun.openservices.ons.api.Message;
import com.aliyun.openservices.ons.api.Producer;
import com.aliyun.openservices.ons.api.ONSFactory;
import com.aliyun.openservices.ons.api.PropertyKeyConst;

import com.aliyun.openservices.ons.api.SendResult;
import java.util.Properties;

public class SharedProducer {
 public static void main(String[] args) {
 // Initialize the producer configuration.
 Properties properties = new Properties();
 // The group ID you created in the console.
 properties.put(PropertyKeyConst.GROUP_ID, "XXX");
 // The AccessKeyId you created in the Alibaba Cloud console for identity authentication.
 properties.put(PropertyKeyConst.AccessKey,"XXX");
 // The AccessKeySecret you created in the Alibaba Cloud console for identity authentication.
 properties.put(PropertyKeyConst.SecretKey, "XXX");
 // Set the message transmission timeout period (in milliseconds).
 properties.setProperty(PropertyKeyConst.SendMsgTimeoutMillis, "3000");
 // Set the TCP endpoint: Go to the **Instances** page in the MQ console, and view the endpoint in the
Endpoint Information area.
 properties.put(PropertyKeyConst.NAMESRV_ADDR,
 "XXX ");
 final Producer producer = ONSFactory.createProducer(properties);
 //Before sending a message, call the start() method once to start the producer.

Message Queue for Apache RocketMQ SDK Reference

36

 producer.start();

 // The created producer and consumer objects are thread-secure and can be shared among multiple threads.
Do not create a client instance for every thread.

 // Two threads share the producer object and concurrently send messages to MQ.
 Thread thread = new Thread(new Runnable() {
 @Override
 public void run() {
 try {
 Message msg = new Message(//
 // The topic of the message.
 "TopicTestMQ",
 // The message tag, which is similar to a Gmail tag. It is used to sort messages, enabling the consumer
to filter messages on the MQ broker based on the specified criteria.
 "TagA",
 // The message body in any binary format. MQ does not process the message body.
 // The producer and consumer must negotiate the consistent serialization and deserialization methods.
 "Hello MQ".getBytes());
 SendResult sendResult = producer.send(msg);
 // Send the message in synchronous mode. The message is sent if no exception is thrown.
 if (sendResult ! = null) {
 System.out.println(new Date() + " Send mq message success. Topic is:" + MqConfig.TOPIC + " msgId
is: " + sendResult.getMessageId());
 }
 } catch (Exception e) {
 // The message failed to be sent and requires a retry. The system can resend the message or store
message data persistently.
 System.out.println(new Date() + " Send mq message failed. Topic is:" + MqConfig.TOPIC);
 e.printStackTrace();
 }
 }
 });
 thread.start();

 Thread anotherThread = new Thread(new Runnable() {
 @Override
 public void run() {
 try {
 Message msg = new Message("TopicTestMQ", "TagA", "Hello MQ".getBytes());
 SendResult sendResult = producer.send(msg);
 // Send the message in synchronous mode. The message is sent if no exception is thrown.
 if (sendResult ! = null) {
 System.out.println(new Date() + " Send mq message success. Topic is:" + MqConfig.TOPIC + " msgId
is: " + sendResult.getMessageId());
 }
 } catch (Exception e) {
 // The message failed to be sent and requires a retry. The system can resend the message or store
message data persistently.
 System.out.println(new Date() + " Send mq message failed. Topic is:" + MqConfig.TOPIC);
 e.printStackTrace();
 }
 }
 });
 anotherThread.start();

Message Queue for Apache RocketMQ SDK Reference

37

Send and receive ordered messages

Use Java SDK 1.2.7 or later to send and subscribe to ordered messages.

Ordered messages are delivered and consumed in order. MQ provides this type of messages for
applications that require message delivery and consumption in strict FIFO order. For more
information, see Ordered messages.

Globally and partitionally ordered messages are sent and received in similar ways. See the following
sample code for reference.

Send ordered messages

The sample code for sending messages is as follows:

 // If the producer instance is no longer used, disable it to release resources.
 // producer.shutdown();
 }
}

package com.aliyun.openservices.ons.example.order;

import com.aliyun.openservices.ons.api.Message;
import com.aliyun.openservices.ons.api.ONSFactory;
import com.aliyun.openservices.ons.api.PropertyKeyConst;
import com.aliyun.openservices.ons.api.SendResult;
import com.aliyun.openservices.ons.api.order.OrderProducer;

import java.util.Properties;

public class ProducerClient {

 public static void main(String[] args) {
 Properties properties = new Properties();
 // The group ID you created in the console.
 properties.put(PropertyKeyConst.GROUP_ID, "XXX");
 // The AccessKeyId you created in the Alibaba Cloud console for identity authentication.
 properties.put(PropertyKeyConst.AccessKey, "XXX");
 // The AccessKeySecret you created in the Alibaba Cloud console for identity authentication.
 properties.put(PropertyKeyConst.SecretKey, "XXX");
 // Set the TCP endpoint: Go to the **Instances** page in the MQ console, and view the endpoint in the
Endpoint Information area.
 properties.put(PropertyKeyConst.NAMESRV_ADDR,

Message Queue for Apache RocketMQ SDK Reference

38

Subscribe to ordered messages

The sample code for subscribing to ordered messages is as follows:

 "XXX ");
 OrderProducer producer = ONSFactory.createOrderProducer(properties);
 //Before sending a message, call the start() method once to start the producer.
 producer.start();
 for (int i = 0; i < 1000; i++) {
 String orderId = "biz_" + i % 10;
 Message msg = new Message(//
 // The topic of the message.
 "Order_global_topic ",
 // The message tag, which is similar to a Gmail tag. It is used to sort messages, enabling the consumer
to filter messages on the MQ broker based on the specified criteria.
 "TagA",
 // The message body in any binary format. MQ does not process the message body. The producer and
consumer must negotiate the consistent serialization and deserialization methods.
 "send order global msg".getBytes()
);
 // Set a key service property representing the message, that is, the message key, and try to keep it globally
unique.
 // A unique identifier enables you to query a message and resend it in the console if you fail to receive the
message.
 // Note: Messages can still be sent and received if you do not set this attribute.
 msg.setKey(orderId);
 // The key field that identifies the partition of partitionally ordered messages. This sharding key is different
from the key of normal messages.
 // This field can be set to any non-empty string for globally ordered messages.
 String shardingKey = String.valueOf(orderId);
 try {
 SendResult sendResult = producer.send(msg, shardingKey);
 // The message is sent if no exception is thrown.
 if (sendResult ! = null) {
 System.out.println(new Date() + " Send mq message success. Topic is:" + msg.getTopic() + " msgId is: "
+ sendResult.getMessageId());
 }
 }
 catch (Exception e) {
 // The message failed to be sent and requires a retry. The system can resend the message or store
message data persistently.
 System.out.println(new Date() + " Send mq message failed. Topic is:" + msg.getTopic());
 e.printStackTrace();
 }
 }
 // Destroy the producer object before exiting from the application.
 // Note: You can choose not to destroy the producer object.
 producer.shutdown();
 }

}

package com.aliyun.openservices.ons.example.order;

Message Queue for Apache RocketMQ SDK Reference

39

import com.aliyun.openservices.ons.api.Message;
import com.aliyun.openservices.ons.api.ONSFactory;
import com.aliyun.openservices.ons.api.PropertyKeyConst;
import com.aliyun.openservices.ons.api.order.ConsumeOrderContext;
import com.aliyun.openservices.ons.api.order.MessageOrderListener;
import com.aliyun.openservices.ons.api.order.OrderAction;
import com.aliyun.openservices.ons.api.order.OrderConsumer;

import java.util.Properties;

public class ConsumerClient {

 public static void main(String[] args) {
 Properties properties = new Properties();
 // The group ID you created in the console.
 properties.put(PropertyKeyConst.GROUP_ID, "XXX");
 // The AccessKeyId you created in the Alibaba Cloud console for identity authentication.
 properties.put(PropertyKeyConst.AccessKey, "XXX");
 // The AccessKeySecret you created in the Alibaba Cloud console for identity authentication.
 properties.put(PropertyKeyConst.SecretKey, "XXX");
 // Set the TCP endpoint: Go to the **Instances** page in the MQ console, and view the endpoint in the
Endpoint Information area.
 properties.put(PropertyKeyConst.NAMESRV_ADDR,
 "XXX ");
 // Set the delay time (in milliseconds) before the retry upon an ordered message consumption failure. Value
range: 10~1800.
 properties.put(PropertyKeyConst.SuspendTimeMillis, "100");
 // Set the maximum number of retries upon a message consumption failure.
 properties.put(PropertyKeyConst.MaxReconsumeTimes,"20");

 // Before message subscription, call the start() method once to start the consumer.
 OrderConsumer consumer = ONSFactory.createOrderedConsumer(properties);

 consumer.subscribe(
 // The topic of the message.
 "Jodie_Order_Topic ",
 // Subscribe to message tags under the specified topic.
 // 1. * indicates the subscription of all messages.
 // 2. TagA || TagB || TagC indicates the subscription of messages with TagA, TagB, or TagC.
 "*",
 new MessageOrderListener() {
 /**
 * 1. OrderAction.Suspend is returned if a message fails to be consumed or an exception occurs during
message processing.

 * 2. OrderAction.Success is returned if a message is processed.
 */
 @Override
 public OrderAction consume(Message message, ConsumeOrderContext context) {
 System.out.println(message);
 return OrderAction.Success;
 }
 });

 consumer.start();
 }

Message Queue for Apache RocketMQ SDK Reference

40

1.

Send and receive transactional messages

Interaction process

The following figure shows the transactional message interaction among MQ components.

Send transactional messages

Follow these steps to send a transactional message:

Send a half message and execute a local transaction. The sample code is as follows:

}

package com.alibaba.webx.TryHsf.app1;

import com.aliyun.openservices.ons.api.Message;
import com.aliyun.openservices.ons.api.PropertyKeyConst;
import com.aliyun.openservices.ons.api.SendResult;
import com.aliyun.openservices.ons.api.transaction.LocalTransactionExecuter;
import com.aliyun.openservices.ons.api.transaction.TransactionProducer;
import com.aliyun.openservices.ons.api.transaction.TransactionStatus;
import java.util.Properties;
import java.util.concurrent.TimeUnit;

public class TransactionProducerClient {
 private final static Logger log = ClientLogger.getLog(); // Set your own logger to facilitate troubleshooting.

 public static void main(String[] args) throws InterruptedException {
 final BusinessService businessService = new BusinessService(); // Local business
 Properties properties = new Properties();
 // The group ID you created in the console. Note: Transactional messages cannot share the group ID with
other types of messages.
 properties.put(PropertyKeyConst.GROUP_ID, "XXX");
 // The AccessKeyId you created in the Alibaba Cloud console for identity authentication.

Message Queue for Apache RocketMQ SDK Reference

41

 properties.put(PropertyKeyConst.AccessKey, "XXX");
 // The AccessKeySecret you created in the Alibaba Cloud console for identity authentication.
 properties.put(PropertyKeyConst.SecretKey, "XXX");
 // Set the TCP endpoint: Go to the **Instances** page in the MQ console, and view the endpoint in the
Endpoint Information area.
 properties.put(PropertyKeyConst.NAMESRV_ADDR,
 "XXX ");

 TransactionProducer producer = ONSFactory.createTransactionProducer(properties,
 new LocalTransactionCheckerImpl());
 producer.start();
 Message msg = new Message("Topic", "TagA", "Hello MQ transaction===".getBytes());
 try {
 SendResult sendResult = producer.send(msg, new LocalTransactionExecuter() {
 @Override
 public TransactionStatus execute(Message msg, Object arg) {
 // The message ID. Two messages may have the same message body but different message IDs. The
current message ID cannot be obtained in the console.
 String msgId = msg.getMsgID();
 // Compute the message body by using CRC32, MD5, or other algorithms.
 long crc32Id = HashUtil.crc32Code(msg.getBody());
 // The message ID and CRC32 ID are used to prevent duplication of messages.
 // You do not need to specify the message ID or CRC32 ID if the business itself achieves
idempotence. Otherwise, set the message ID or CRC32 ID to ensure idempotence.
 // To avoid duplication of messages, compute the message body by using the CRC32 or MD5
algorithm.
 Object businessServiceArgs = new Object();
 TransactionStatus transactionStatus = TransactionStatus.Unknow;
 try {
 boolean isCommit =
 businessService.execbusinessService(businessServiceArgs);
 if (isCommit) {
 // Submit the message if the local transaction succeeds.
 transactionStatus = TransactionStatus.CommitTransaction;
 } else {
 // Roll back the message if the local transaction fails.
 transactionStatus = TransactionStatus.RollbackTransaction;
 }
 } catch (Exception e) {
 log.error("Message Id:{}", msgId, e);
 }
 System.out.println(msg.getMsgID());
 log.warn("Message Id:{}transactionStatus:{}", msgId, transactionStatus.name());
 return transactionStatus;
 }
 }, null);
 }
 catch (Exception e) {
 // The message failed to be sent and requires a retry. The system can resend the message or store
message data persistently.
 System.out.println(new Date() + " Send mq message failed. Topic is:" + msg.getTopic());
 e.printStackTrace();
 }
 // The demo example to prevent the process from exiting (not necessary in practical use)
 TimeUnit.MILLISECONDS.sleep(Integer.MAX_VALUE);
 }

Message Queue for Apache RocketMQ SDK Reference

42

1. Submit the transactional message status.

After the execution of a local transaction (successful or failed), the broker must be notified of the
transaction status of the current message. Two notification modes are supported:

Submit the status after executing the local transaction.

Wait until the broker requests to check the transaction status of the message.

A transaction may be in one of the following states:

TransactionStatus.CommitTransaction: The transaction is submitted, and the consumer can
consume the message.

TransactionStatus.RollbackTransaction: The transaction is rolled back, and the message is
discarded and cannot be consumed.

TransactionStatus.Unknown: The transaction status is unknown, and the sender is waiting for
the MQ broker to query the transaction status of the message.

}

public class LocalTransactionCheckerImpl implements LocalTransactionChecker {
 private final static Logger log = ClientLogger.getLog();
 final BusinessService businessService = new BusinessService();

 @Override
 public TransactionStatus check(Message msg) {
 // The message ID (Two messages may have the same message body but different message IDs. The current
message is a half message, and therefore its message ID cannot be obtained in the console.)
 String msgId = msg.getMsgID();
 // Compute the message body by using CRC32, MD5, or other algorithms.
 long crc32Id = HashUtil.crc32Code(msg.getBody());
 // The message ID and CRC32 ID are used to prevent duplication of messages.
 // You do not need to specify the message ID or CRC32 ID if the business itself achieves idempotence.
Otherwise, set the message ID or CRC32 ID to ensure idempotence.
 // To eliminate the duplication of messages, we recommend that you use CRC32 or MD5 to process the
message body.
 // The parameter object of the business. This is an example. Set the object based on the actual situation of your
business.
 Object businessServiceArgs = new Object();
 TransactionStatus transactionStatus = TransactionStatus.Unknow;
 try {
 boolean isCommit = businessService.checkbusinessService(businessServiceArgs);
 if (isCommit) {
 // Submit the message if the local transaction succeeds.
 transactionStatus = TransactionStatus.CommitTransaction;

Message Queue for Apache RocketMQ SDK Reference

43

-

-

Tool class

Transaction check mechanism

Why is the check mechanism required for transactional message delivery?

If the half message is sent in step 1 but TransactionStatus.Unknown is returned, or if no status is
submitted because the application exits, the status of the half message is unknown to the broker.
Therefore, the broker periodically requests the sender to check and report the status of the half
message.

What does the business logic do when the check method is called back?

The check method for transactional messages needs to contain the logic of transaction consistency
check. After a transactional message is sent, MQ needs to use the LocalTransactionChecker operation
to respond to the request of the broker for the local transaction status. Therefore, the check method
for the transactional message needs to complete the following tasks:

(1) Check the status of the local transaction corresponding to the half message (committed or
rollback).

(2) Submit the status of the local transaction to the broker.

Subscribe to transactional messages

The method for subscribing to transactional messages is the same as that for subscribing to normal
messages. For more information, see Subscribe to messages.

 } else {
 // Roll back the message if the local transaction fails.
 transactionStatus = TransactionStatus.RollbackTransaction;
 }
 } catch (Exception e) {
 log.error("Message Id:{}", msgId, e);
 }
 log.warn("Message Id:{}transactionStatus:{}", msgId, transactionStatus.name());
 return transactionStatus;
 }
}

import java.util.zip.CRC32;
public class HashUtil {
 public static long crc32Code(byte[] bytes) {
 CRC32 crc32 = new CRC32();
 crc32.update(bytes);
 return crc32.getValue();
 }
}

Message Queue for Apache RocketMQ SDK Reference

44

Send and receive delayed messages

Delayed messages are delivered to a consumer after a delay (3 seconds, for example) from when they
are sent to the MQ broker. Send this type of message when a time window is required between the
production and consumption of the message, or when tasks need to be triggered after a delay.
Delayed messages are similar to delayed queues.

For more information about the concept behind delayed messages and for precautions for use of
these messages, see Delayed messages.

Send delayed messages

The sample code for sending delayed messages is as follows:

import com.aliyun.openservices.ons.api.Message;
import com.aliyun.openservices.ons.api.ONSFactory;
import com.aliyun.openservices.ons.api.Producer;
import com.aliyun.openservices.ons.api.PropertyKeyConst;

import com.aliyun.openservices.ons.api.SendResult;
import java.util.Properties;

public class ProducerDelayTest {
 public static void main(String[] args) {
 Properties properties = new Properties();
 // The AccessKeyId you created in the Alibaba Cloud console for identity authentication.
 properties.put(PropertyKeyConst.AccessKey, "XXX");
 // The AccessKeySecret you created in the Alibaba Cloud console for identity authentication.
 properties.put(PropertyKeyConst.SecretKey, "XXX");
 // Set the TCP endpoint: Go to the **Instances** page in the MQ console, and view the endpoint in the
Endpoint Information area.
 properties.put(PropertyKeyConst.NAMESRV_ADDR,
 "XXX ");

 Producer producer = ONSFactory.createProducer(properties);
 //Before sending a message, call the start() method once to start the producer.
 producer.start();
 Message msg = new Message(//
 // The topic you created in the console.
 "Topic",
 // The message tag, which is similar to a Gmail tag. It is used to sort messages, enabling the consumer to
filter messages on the MQ broker based on the specified criteria.
 "tag",
 // The message body in any binary format. MQ does not process the message body. The producer and
consumer must negotiate the consistent serialization and deserialization methods.
 "Hello MQ".getBytes());
 // Set a key service property representing the message, that is, the message key, and try to keep it globally
unique.

Message Queue for Apache RocketMQ SDK Reference

45

Subscribe to delayed messages

The method for subscribing to delayed messages is the same as that for subscribing to normal
messages. For more information, see Subscribe to messages.

Send and receive scheduled messages

Scheduled messages are consumed after a specified timestamp. These messages are sent when a
time window is required between message production and consumption, or when tasks need to be
triggered at a scheduled time.

For information about the concept of scheduled messages and use precautions for these messages,
see Scheduled messages.

Send scheduled messages

 // A unique identifier enables you to query a message and resend it in the console if you fail to receive the
message.
 // Note: Messages can still be sent and received if you do not set this attribute.
 msg.setKey("ORDERID_100");
 try {
 // The message delivery delay time, in milliseconds (ms). Messages are delivered after the specified delay
(against the current time), for example, 3 seconds.
 long delayTime = System.currentTimeMillis() + 3000;

 // Set the message delivery time.
 msg.setStartDeliverTime(delayTime);

 SendResult sendResult = producer.send(msg);
 // Send the message in synchronous mode. The message is sent if no exception is thrown.
 if (sendResult ! = null) {
 System.out.println(new Date() + " Send mq message success. Topic is:" + msg.getTopic() + " msgId is: " +
sendResult.getMessageId());
 }
 } catch (Exception e) {
 // The message failed to be sent and requires a retry. The system can resend the message or store message
data persistently.
 System.out.println(new Date() + " Send mq message failed. Topic is:" + msg.getTopic());
 e.printStackTrace();
 }
 // Destroy the producer object before exiting from the application.

 // Note: You can choose not to destroy the producer object.
 producer.shutdown();
 }
}

Message Queue for Apache RocketMQ SDK Reference

46

The sample code for sending scheduled messages is as follows:

import com.aliyun.openservices.ons.api.Message;
import com.aliyun.openservices.ons.api.ONSFactory;
import com.aliyun.openservices.ons.api.Producer;
import com.aliyun.openservices.ons.api.PropertyKeyConst;

import com.aliyun.openservices.ons.api.SendResult;
import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.Properties;

public class ProducerDelayTest {
 public static void main(String[] args) {
 Properties properties = new Properties();
 // The AccessKeyId you created in the Alibaba Cloud console for identity authentication.
 properties.put(PropertyKeyConst.AccessKey, "XXX");
 // The AccessKeySecret you created in the Alibaba Cloud console for identity authentication.
 properties.put(PropertyKeyConst.SecretKey, "XXX");
 // Set the TCP endpoint: Go to the **Instances** page in the MQ console, and view the endpoint in the
Endpoint Information area.
 properties.put(PropertyKeyConst.NAMESRV_ADDR,
 "XXX ");
 Producer producer = ONSFactory.createProducer(properties);
 //Before sending a message, call the start() method once to start the producer.
 producer.start();
 Message msg = new Message(//
 // The topic of the message.
 "Topic",
 // The message tag, which is similar to a Gmail tag. It is used to sort messages, enabling the consumer to
filter messages on the MQ broker based on the specified criteria.
 "tag",
 // The message body in any binary format. MQ does not process the message body. The producer and
consumer must negotiate the consistent serialization and deserialization methods.
 "Hello MQ".getBytes())
 // Set a key service property representing the message, that is, the message key, and try to keep it globally
unique.
 // A unique identifier enables you to query a message and resend it in the console if you fail to receive the
message.
 // Note: Messages can still be sent and received if you do not set this attribute.
 msg.setKey("ORDERID_100");

 try {
 // The scheduled message delivery time (unit: ms) after a specific timestamp, for example, 2016-03-07
16:21:00. If the scheduled time is earlier than the current timestamp, the message is immediately delivered to the
consumer.
 long timeStamp = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").parse("2016-03-07
16:21:00").getTime();

 msg.setStartDeliverTime(timeStamp);
 // The message is sent if no exception is thrown.
 SendResult sendResult = producer.send(msg);
 System.out.println("Message Id:" + sendResult.getMessageId());
 }
 catch (Exception e) {

Message Queue for Apache RocketMQ SDK Reference

47

-

Subscribe to scheduled messages

The method for subscribing to scheduled messages is the same as that for subscribing to normal
messages. For more information, see Subscribe to messages.

Subscribe to messages

This topic describes how to subscribe to messages by using the Java SDK of MQ.

Note:

Maintain consistent subscription for all consumer instances with the same group ID. For
more information, see Subscription consistency.

Subscription modes

MQ supports the following two message subscription modes:

Clustering subscription: All the consumers identified by the same group ID equally share
messages. For example, a topic contains nine messages and a group contains three
consumer instances. In this case, each instance consumes three messages.

Broadcasting subscription: All the consumers identified by the same group ID consume every
message once. For example, a topic contains nine messages and a group contains three
consumer instances. In this case, each instance consumes nine messages.

 // The message failed to be sent and requires a retry. The system can resend the message or store message
data persistently.
 System.out.println(new Date() + " Send mq message failed. Topic is:" + msg.getTopic());
 e.printStackTrace();
 }

 // Destroy the producer object before exiting from the application.
 // Note: You can choose not to destroy the producer object.
 producer.shutdown();
 }
}

 // The configuration of clustering subscription (default mode).
 properties.put(PropertyKeyConst.MessageModel, PropertyValueConst.CLUSTERING);

Message Queue for Apache RocketMQ SDK Reference

48

Sample code

 // The configuration of broadcasting subscription.
 properties.put(PropertyKeyConst.MessageModel, PropertyValueConst.BROADCASTING);

import com.aliyun.openservices.ons.api.Action;
import com.aliyun.openservices.ons.api.ConsumeContext;
import com.aliyun.openservices.ons.api.Consumer;
import com.aliyun.openservices.ons.api.Message;
import com.aliyun.openservices.ons.api.MessageListener;
import com.aliyun.openservices.ons.api.ONSFactory;
import com.aliyun.openservices.ons.api.PropertyKeyConst;

import java.util.Properties;

public class ConsumerTest {
 public static void main(String[] args) {
 Properties properties = new Properties();
 // The group ID you created in the console.
 properties.put(PropertyKeyConst.GROUP_ID, "XXX");
 // The AccessKeyId you created in the Alibaba Cloud console for identity authentication.
 properties.put(PropertyKeyConst.AccessKey, "XXX");
 // The AccessKeySecret you created in the Alibaba Cloud console for identity authentication.
 properties.put(PropertyKeyConst.SecretKey, "XXX");
 // Set the TCP endpoint: Go to the **Instances** page in the MQ console, and view the endpoint in the
Endpoint Information area.
 properties.put(PropertyKeyConst.NAMESRV_ADDR,
 "XXX ");
 // Clustering subscription (default)
 // properties.put(PropertyKeyConst.MessageModel, PropertyValueConst.CLUSTERING);
 // Broadcasting subscription
 // properties.put(PropertyKeyConst.MessageModel, PropertyValueConst.BROADCASTING);

 Consumer consumer = ONSFactory.createConsumer(properties);
 consumer.subscribe("TopicTestMQ", "TagA||TagB", new MessageListener() { // Subscribe to multiple tags.
 public Action consume(Message message, ConsumeContext context) {
 System.out.println("Receive: " + message);
 return Action.CommitMessage;
 }
 });

 // Subscribe to another topic.
 consumer.subscribe("TopicTestMQ-Other", "*", new MessageListener() { // Subscribe to all tags.
 public Action consume(Message message, ConsumeContext context) {
 System.out.println("Receive: " + message);
 return Action.CommitMessage;
 }
 });

 consumer.start();
 System.out.println("Consumer Started");
 }
}

Message Queue for Apache RocketMQ SDK Reference

49

Note:

In broadcasting consumption mode, you cannot set a message accumulation alarm or query
the message accumulation condition in the console. Therefore, you can create multiple
group IDs to enable message broadcasting. For more information, see Use the clustering
consumption mode to simulate the broadcasting consumption mode in Clustering and
broadcasting consumption.

For more information about the best practices for throttling on MQ consumer clients, see
MQ client traffic control design.

C/C++ SDK

Release Notes

This topic provides the download links, versions, and updates of all C++ SDKs so that you can choose
a suitable one for use.

ons-cpp v1.1.2

New features

Enabled instance user access to the service in either of the following modes (that for non-
instance users unchanged):

Configure NAMESRV_ADDR with InstanceId.

Release date Version
Download
(Windows
version)

Download
(Linux version)

Environment
preparation
guide

2019-01-16 1.1.2
aliyun-mq-
windows-cpp-
sdk.zip

aliyun-mq-
linux-cpp-
sdk.tar.gz

Prepare the
C/C++ SDK
environment

Message Queue for Apache RocketMQ SDK Reference

50

-

-

-

-

-

-

-

-

-

-

Configure InstanceId and NAMESRV_ADDR without InstanceId.

Replaced ProducerId and ConsumerId with GroupId.

ons-cpp v1.1.1

New features

Supported SSL encrypted transmission. (Note: This function is only applicable to the MQ
Enterprise Platinum Edition.)
Added the feature that PushConsumer pulls messages in asynchronous mode to improve the
message push efficiency.

Bugs fixed

Fixed issues related to ordered messages.
Optimized logging so that logs are printed only when Rebalance results are changed.
Fixed the problem that the system flag is not serialized to the one-way request header.

More historical versions

ons-cpp v1.1.0

Bugs fixed

Fixed coredump caused by consumer shutdown.
Fixed the problem that the underlying URL class does not support HTTP access on Windows.
Fixed the timestamp error of message trace.
Fixed the problem that an incorrect IP address is displayed in message trace.
Fixed the problem of memory leakage on Windows.

Release date Version
Download
(Windows
version)

Download
(Linux version)

Environment
preparation
guide

2018-07-31 1.1.1
aliyun-mq-
windows-cpp-
sdk.zip

aliyun-mq-
linux-cpp-
sdk.tar.gz

Prepare the
C/C++ SDK
environment

Release date Version
Download
(Windows
version)

Download
(Linux version)

Environment
preparation
guide

2017-07-25 1.1.0
aliyun-mq-
windows-cpp-
sdk.zip

aliyun-mq-
linux-cpp-
sdk.zip

Prepare the
C/C++ SDK
environment

Message Queue for Apache RocketMQ SDK Reference

51

-

-

-

-

-

-

-

-

-

-

-

-

ons-cpp v1.0.9

New features

Supported the transmission of one-way messages.
Added ordered messages.
Added the timeout duration settings for ordered messages.
Added the message retry count settings.

Bugs fixed

Fixed the problem of resource leakage at shutdown.
Fixed the problem of coredump at shutdown.

ons-cpp v1.0.8

New features

Abandoned the old C# SDK. Instead, a new C# SDK is generated with SWIG, which is more
stable in the ASP.NET support.
Supported log path customization.
Provided built-in Chinese UTF-8 encoding. Users no longer need to explicit encoding and
decoding.
Added the MQ_GUIDE document and ASP.NET demo.

Function optimization

Upgraded the boost library version to 1.6.2.

Bugs fixed

Fixed the problem that coredump occurs when an ordered message exits.

Release date Version
Download
(Windows
version)

Download
(Linux version)

Environment
preparation
guide

2016-12-29 1.0.9 - -
Prepare the
C/C++ SDK
environment

Release date Version
Download
(Windows
version)

Download
(Linux version)

Environment
preparation
guide

2016-12-02 1.0.8 - -
Prepare the
C/C++ SDK
environment

Message Queue for Apache RocketMQ SDK Reference

52

-

-

-

-

-

-

-

-

-

-

ons-cpp v1.0.7

New features

Added consumption throttling for consumers. By default, 1,000 messages are pulled and
stored in the memory. Then, callback functions of users are called back one by one.
Added ordered messages.
Added the timeout duration settings for ordered messages.
Added the message retry count settings.

Function optimization

Improved the message tracing function by sending trace data in a separate thread pool.
Optimized the TCP lock granularity.

Bugs fixed

Fixed several bugs in message tracing.
Fixed the problem of coredump at shutdown.
Fixed the problem of memory leakage.
Fixed the problem that an exception is thrown when the message tag contains the special
character “||”.

Prepare the C_C++ SDK environment

The following preparation is required for accessing MQ through the C++ SDK.

Note:

You need to create the topic and group ID involved in the code in the MQ console first. The
message tag can be specified by the application users. For more information about the
creation process, see Step 2: Create resources in Quick start for primary accounts.

Applications that use MQ must be deployed on Alibaba Cloud ECS instances.

Release date Version
Download
(Windows
version)

Download
(Linux version)

Environment
preparation
guide

2016-11-15 1.0.7 - -
Prepare the
C/C++ SDK
environment

Message Queue for Apache RocketMQ SDK Reference

53

-

-

-

-

-

Download SDK

C++ supports cross-platform SDKs for both Windows and Linux, and the APIs are the same. For more
information about the download URL of the latest C++ SDK, see Release Notes.

Download and decompress the .zip package of the C++ SDK. The .zip package contains the following
directories and files:

example/
include/
lib/
SDK_GUIDE.pdf
changelog

The preceding directories and files serve the following purposes:

demo: This folder contains a created Windows C++ demo.

example:This folder contains examples for sending and consuming normal messages and
ordered messages and examples for sending messages in one-way mode. Besides, the
package for Linux also contains a file Makefile for compiling and managing the examples.

include: This folder contains the header file to be included in your program.

lib: The Linux SDK sub-directories are as follows, which are 64-bit status library and dynamic
library, respectively.

The Windows SDK sub-directories are as follows, which is the 64-bit SDK DLL library. If Visual Studio
2015 is not installed, install vc_redist.x64. This is the runtime environment for Visual C++ 2015.

SDK_GUIDE.pdf: This file describes how to prepare the SDK environment and contains FAQ.

changelog: This file lists the problems that have been fixed and the new features of the new
version.

lib-boost-share/
libonsclient4cpp.so
lib-boost-static/
libonsclient4cpp.a

64/
vc_redist.x64

Message Queue for Apache RocketMQ SDK Reference

54

Linux C++ SDK

From December 2, 2016, Linux C++ SDK added dependency on high performance Boost libraries
(v1.62.0), which reduces the CPU resource usage and enhances the efficiency. Currently, Linux C++
SDK depends on four libraries: boost_system, boost_thread, boost_chrono, and boost_filesystem. We
provide solutions for both static library and dynamic library.

Static solution

The MQ library file is in the directory lib/lib-boost-static and the Boost libraries are statically linked to
libonsclient4cpp.a. Service providers who have no dependent Boost libraries can directly choose the
static library solution. In the static library solution, the Boost libraries have been linked to
ibonsclient4cpp.a, and you just need to link to libonsclient4cpp.a when compiling the file. The code is
as follows:

Note: For completely static links, make sure that required static libraries such as libstdc++ and
pthread have been installed on your machine. libstdc ++ that is installed by default does not contain
static libraries. You need to run the yum or > apt-get command to install the static libraries. The
following warning message may be returned when you use the preceding method:

The best practice is to avoid the use of completely static links, but to use statically linked
lonsclient4cpp only and link to other libraries dynamically. The code is as follows:

Additionally, since GCC 5.x introduces Dual ABI, you need to add -D_GLIBCXX_USE_CXX11_ABI=0
when compiling the links.

Dynamic solution

The MQ library file is in the directory lib/lib-boost-share. When generating executable files, service
providers need to link the Boost dynamic libraries to libonsclient4cpp.so. Since the service providers
have depended on Boost libraries, in scenarios where the dynamic library solution is required,
perform the following steps for the dependency of Boost libraries:

cd aliyun-mq-linux-cpp-sdk //The path to which the downloaded SDK package is decompressed.
cd example //Go to the demo directory and enter the topic and key you created and other information in the demo
file.
make static=1

warning: Using 'gethostbyaddr' in statically linked applications requires at runtime the shared libraries from the
glibc version used for linking

g++ -ggdb -Wall -O3 -I../include ../example/ProducerExampleForEx.cpp -Wl,-static -lonsclient4cpp -L../lib/lib-
boost-static/ -Wl,-Bdynamic -lpthread -ldl -lrt -o ../example/ProducerExampleForEx

Message Queue for Apache RocketMQ SDK Reference

55

1.

1.

1.

Download Boost 1.62.0:
boost 1.62.0

Decompress the Boost 1.62.0 package:

tar —bzip2 -xf /path/to/boost_1_62_0.tar.bz2
Install Boost 1.62.0:

1) cd path/to/boost_1_62_0

2) Configure Boost: ./bootstrap.sh

3) Compile Boost: ./b2 link=shared runtime-link=shared

4) Install Boost: ./b2 install

Run ldconfig -v|grep libboost. If the system makes output, the boost dynamic libraries are
in the search paths of the dynamic libraries.

When executable files are generated, you need to link Boost dynamic libraries to the MQ
dynamic library. The method for this is as follows:

Windows C++ SDK

Use C++ SDK in the Visual Studio 2015 environment

Use Visual Studio 2015 to create your project.

cd aliyun-mq-linux-cpp-sdk //The path to which the downloaded SDK package is decompressed.
cd example //Go to the demo directory and enter the topic and key you created in the MQ console and other
information in the demo file.
g++ -Wall -Wno-deprecated -L ../lib/lib-boost-share/ -I ../include/ ProducerExampleForEx.cpp -lonsclient4cpp -
lboost_system -lboost_thread -lboost_chrono -lboost_filesystem -lpthread
export LD_LIBRARY_PATH="../lib/lib-boost-share/" //Add dynamically loaded search paths.
./a.out //Run the program.

Message Queue for Apache RocketMQ SDK Reference

56

Right-click the project, choose Properties > Configuration Manager, and set Active Solution
Configuration to release and Active Solution platform to x64.

Message Queue for Apache RocketMQ SDK Reference

57

Message Queue for Apache RocketMQ SDK Reference

58

Right-click the project, and choose Properties > Configure Properties > General > Output
Directory: /A. Based on the setting of Active Solution Platform, copy all files in the 64-bit lib
directory to the output directory /A.

Right-click the property, and choose Properties > Configure Properties > C/C++ - General
> Additional Include Directories: /B. Copy the header files in the include directory to the
include directory /B.

Message Queue for Apache RocketMQ SDK Reference

59

Right-click the project, and choose Properties > Configure Properties > Linker > General >
Additional Library Directories: /A.

Right-click the project, and choose Properties > Configure Properties > Linker > Input >
Additional Dependencies: ONSClient4CPP.lib.

Message Queue for Apache RocketMQ SDK Reference

60

Right-click the project, and choose Properties > Configure Properties > C/C++ - General >
Preprocessor Definitions: Add theWIN32 macro.

Use C++ SDK in non-Visual Studio 2015 environment

Follow the preceding steps to configure your project based on the Visual Studio 2015
environment.

Install vc_redist.x64. This is the runtime environment for Visual C++ 2015.

Message Queue for Apache RocketMQ SDK Reference

61

Note: To avoid implementing complex settings, use the SDK demo that has already been
set up. Download and decompress the SDK package, go to the demo directory, and run the
project with Visual Studio 2015.

Now the compilation environment has been set up. Click Build to compile the executable application,
and copy the DLL to the directory of the executable application or to the system directory to run the
DLL.

Send and receive normal messages

Send Normal Messages
Refer to the example below to send messages.

Message Queue for Apache RocketMQ SDK Reference

62

#include "ONSFactory.h"
#include "ONSClientException.h"

using namespace ons;

int main()
{

//Create producer and configure parameters required for sending messages;
ONSFactoryProperty factoryInfo;
factoryInfo.setFactoryProperty(ONSFactoryProperty::PublishTopics,"XXX");// Message content
factoryInfo.setFactoryProperty(ONSFactoryProperty::MsgContent, "XXX");//Message content
factoryInfo.setFactoryProperty(ONSFactoryProperty::AccessKey, "XXX");//AccessKey, Alibaba Cloud ID verification,
which is created on Alibaba Cloud Management Console
factoryInfo.setFactoryProperty(ONSFactoryProperty::SecretKey, "XXX");//SecretKey, Alibaba Cloud ID verification,
which is created on Alibaba Cloud Management Console

//create producer;
Producer *pProducer = ONSFactory::getInstance()->createProducer(factoryInfo);

// Before sending messages, the start method must be called once to start the producer;
pProducer->start();

Message msg(
//Message Topic
factoryInfo.getPublishTopics(),
//Message tag, which is similar to tag in Gmail, and is used to classify messages. Consumers can then set filtering
conditions for messages to be filtered in MQ broker.
"TagA",
//Message Body, which cannot be null. Serialization and deserialization methods need to be negotiated and remain
consistent between the producer and the consumer.
factoryInfo.getMessageContent()
);

// The setting represents the key business property of the message, so please keep it globally unique.
// You can query a message and resend it through the MQ console when you cannot receive the message properly.
// Note: Normal sessage sending and receiving will not be affected if message key is not configured.
msg.setKey("ORDERID_100");

// If no exceptions are thrown, then the message is sent successfully.
try
{
SendResultONS sendResult = pProducer->send(msg);
}
catch(ONSClientException & e)
{
//Customize the details for processing the exception
}
// The object Producer must be destroyed before exiting the application. Otherwise there will be memory leakage.
pProducer->shutdown();

return 0;
}

Message Queue for Apache RocketMQ SDK Reference

63

Subscribe to Normal Messages

For instructions and sample codes of subscribing to standard messages, see Subscribe to messages.

Send and receive ordered messages

Send ordered messages

Sample code:

#include "ONSFactory.h"
#include "ONSClientException.h"
#include <iostream>
using namespace ons;

int main()
{
//parameter required for producer creation and message sending and receiving
ONSFactoryProperty factoryInfo;
factoryInfo.setFactoryProperty(ONSFactoryProperty::PublishTopics,"xxxxxxxxxxxx");// The msg topic created on MQ
console
factoryInfo.setFactoryProperty(ONSFactoryProperty::MsgContent, "input msg content");//Message content
factoryInfo.setFactoryProperty(ONSFactoryProperty::AccessKey, "xxxxxxxxx");//MQ AccessKey
factoryInfo.setFactoryProperty(ONSFactoryProperty::SecretKey, "xxxxxxxxxxxxxxxxxxx");// MQ SecretKey
// Set TCP endpoint (This example is for the public cloud environment)
factoryInfo.setFactoryProperty(ONSFactoryProperty::ONSAddr, "http://onsaddr-
internet.aliyun.com/MQ/nsaddr4client-internet")

//Create a producer
OrderProducer *pProducer = ONSFactory::getInstance()->createOrderProducer(factoryInfo);

//Before sending a message, the start method must be called once to start the producer.
pProducer->start();

Message msg(
//Message Topic
factoryInfo.getPublishTopics(),
//Message tag, which is similar to tag in Gmail, and is used to classify messages. Consumers can then set filtering
conditions for messages to be filtered in MQ broker.
"TagA",
//Message body. Any binary data is allowed and MQ does not perform any processing on it. Serialization and
deserialization methods need to be negotiated and remain consistent between the producer and the consumer.
factoryInfo.getMessageContent()
);

Message Queue for Apache RocketMQ SDK Reference

64

Receive ordered messages

Sample code:

// The setting represents the key business property of the message, so please keep it globally unique.
// You can query a message and resend it through the MQ console when you cannot receive the message properly.
// Note: Normal sessage sending and receiving will not be affected if message key is not configured.
msg.setKey("ORDERID_100");
// For partitionally ordered messages, sharding keys are used to distinguish different partitions.
// For globally ordered messages, it can be set as any string that is not null.
std::string shardingKey = "abc"; //Messages with the same shardingKey will be sent in order.
try
{
//Send message. If no exceptions are thrown, then the message is sent successfully.
SendResultONS sendResult = pProducer->send(msg, key);
std::cout << "send success" << std::endl;
}
catch(ONSClientException & e)
{
//Handle exceptions
}
// You must destroy the object Producer before exiting the application. Otherwise there will be memory leakage.
pProducer->shutdown();

return 0;
}

#include "ONSFactory.h"
using namespace std;
using namespace ons;

//Create a message consumer instance
//When pushConsumer has pulled the message, it will actively invoke the consumeMessage function of the
instance.
class ONSCLIENT_API MyMsgListener : public MessageOrderListener
{
public:
MyMsgListener()
{
}
virtual ~MyMsgListener()
{
}

virtual OrderAction consume(Message &message, ConsumeOrderContext &context)
{
//Consume messages, based on business requirements
return Success; //CONSUME_SUCCESS;
}
};

int main(int argc, char* argv[])
{

Message Queue for Apache RocketMQ SDK Reference

65

Send and receive scheduled messages

The currently supported regions include Internet, East China 1, East China 2, North China 2, and South
China 1.

Scheduled messages can be consumed by consumers after a specified period, which are used in
scenarios where there are time window requirements for message production and consumption, or
when messages are used to trigger scheduled tasks, similar to delayed queues.

Send Scheduled Messages

The following are sample codes for sending scheduled messages:

//OrderConsumer property required for creation and normal operation
ONSFactoryProperty factoryInfo;
factoryInfo.setFactoryProperty(ONSFactoryProperty::ConsumerId, "");//The consumerId created on the console
factoryInfo.setFactoryProperty(ONSFactoryProperty::PublishTopics,"");// The msg topic created on the console
factoryInfo.setFactoryProperty(ONSFactoryProperty::AccessKey, "");// MQ AccessKey
factoryInfo.setFactoryProperty(ONSFactoryProperty::SecretKey, "");//MQ SecretKey
// Set TCP endpoint (This example is for the public cloud environment)
factoryInfo.setFactoryProperty(ONSFactoryProperty::ONSAddr, "http://onsaddr-
internet.aliyun.com/MQ/nsaddr4client-internet");

// Create orderConsumer
OrderConsumer* orderConsumer = ONSFactory::getInstance()->createOrderConsumer(factoryInfo);
MyMsgListener msglistener;
//Specify the topics and tags that the orderConsumer subscribes to
orderConsumer->subscribe(factoryInfo.getPublishTopics(), "*",&msglistener);

// Register the message listener processing instance. After orderConsumer pulls the message, it calls the
consumeMessage method of this class.

//Start orderConsumer
orderConsumer->start();

for(volatile int i = 0; i < 1000000000; ++i) {
//wait
}

//Destroy orderConsumer. You must be destroy the object Consumer before exiting the application, otherwise there
will be memory leaks.
orderConsumer->shutdown();

return 0;
}

Message Queue for Apache RocketMQ SDK Reference

66

#include "ONSFactory.h"
#include "ONSClientException.h"
using namespace ons;
int main()
{

//Create producer and configure parameters required for sending messages;
ONSFactoryProperty factoryInfo;
factoryInfo.setFactoryProperty(ONSFactoryProperty::PublishTopics,"XXX");//The topic you created on the MQ
console
factoryInfo.setFactoryProperty(ONSFactoryProperty::MsgContent, "xxx");//msg content
factoryInfo.setFactoryProperty(ONSFactoryProperty::AccessKey, "xxx");//Alibaba Cloud ID verification, which is
created on Alibaba Cloud Management Console
factoryInfo.setFactoryProperty(ONSFactoryProperty::SecretKey, "xxx");//Alibaba Cloud ID verification, which is
created on Alibaba Cloud Management Console

//create producer
Producer *pProducer = ONSFactory::getInstance()->createProducer(factoryInfo);

// Before sending messages, the start method must be called once to start the producer;
pProducer->start();

Message msg(
// Message topic
factoryInfo.getPublishTopics(),
//Message tag, which is similar to tag in Gmail, and is used to classify messages. Consumers can then set filtering
conditions for messages to be filtered in MQ broker.
"TagA",
//Message Body, which cannot be null. Serialization and deserialization methods need to be negotiated and remain
consistent between the producer and the consumer.
factoryInfo.getMessageContent()
);

// The setting represents the key service property of the message, so please set it as globally unique as possible.
// You can query a message and resend it through the MQ console when you cannot receive the message properly.
// Note: Normal sessage sending and receiving will not be affected if message key is not configured.
msg.setKey("ORDERID_100");

// Deliver time (ms) specifies the time point after which the message can be consumed. The example means that
the message will be consumed after 3 seconds.
long deliverTime = obtain current system time (ms) + 3000;
msg.setStartDeliverTime(deliverTime);

// If no exceptions are thrown, then the message is sent successfully.
try
{
SendResultONS sendResult = pProducer->send(msg);
}
catch(ONSClientException e)
{
//Customize the details for processing exceptions
}

// The object Producer must be destroyed before exiting the application. Otherwise there will be memory leakage.
pProducer->shutdown();

Message Queue for Apache RocketMQ SDK Reference

67

1.

Subscribe to Scheduled Messages

For instructions and example codes of subscribing to scheduled messages, see Subscribe Message.

Send and receive transactional messages

The currently supported regions include Internet, China (Hangzhou), China (Beijing), China
(Shanghai), and China (Shenzhen).

Interaction process

The interaction process of transactional messages is shown in the following figure.

Send transactional messages

Follow these steps to send a transactional message:

Send a half message and execute a local transaction. The sample code is as follows:

return 0;
}

#include "ONSFactory.h"
#include "ONSClientException.h"
using namespace ons;

class MyLocalTransactionExecuter : LocalTransactionExecuter
{
MyLocalTransactionExecuter()
{
}

~MyLocalTransactionExecuter()

Message Queue for Apache RocketMQ SDK Reference

68

{
}
virtual TransactionStatus execute(Message &value)
{
// The message ID. Two messages may have the same message body but different message IDs. The current
message ID cannot be obtained in the console.
string msgId = value.getMsgID();
// Compute the message body by using CRC32, MD5, or other algorithms.
// The message ID and CRC32 ID are used to prevent duplication of messages.
// You do not need to specify the message ID or CRC32 ID if the business itself achieves idempotence. Otherwise,
set the message ID or CRC32 ID to ensure idempotence.
// To avoid duplication of messages, compute the message body by using the CRC32 or MD5 algorithm.
TransactionStatus transactionStatus = Unknow;
try {
boolean isCommit = Execution result of the local transaction
if (isCommit) {
// If the local transaction succeeded, the message is submitted.
transactionStatus = CommitTransaction;
} else {
// If the local transaction failed, the message is rolled back.
transactionStatus = RollbackTransaction;
}
} catch (...) {
//exception handle
}
return transactionStatus;
}
}

int main(int argc, char* argv[])
{
//The information that is required to create a producer and to send messages.
ONSFactoryProperty factoryInfo;
factoryInfo.setFactoryProperty(ONSFactoryProperty::ProducerId,"XXX");//The group ID you created in the console.
factoryInfo.setFactoryProperty(ONSFactoryProperty::NAMESRV_ADDR, "XXX"); //Set the TCP endpoint: Go to the
Instances page in the MQ console, and view the endpoint in the **Endpoint Information** area.
factoryInfo.setFactoryProperty(ONSFactoryProperty::PublishTopics,"XXX");//The topic you created in the console.
factoryInfo.setFactoryProperty(ONSFactoryProperty::MsgContent, "XXX");//msg content
factoryInfo.setFactoryProperty(ONSFactoryProperty::AccessKey, "xxx");//The AccessKeyId that was created in the
Alibaba Cloud console for identity authentication.
factoryInfo.setFactoryProperty(ONSFactoryProperty::SecretKey, "xxxxxxxxxxxxxxxxxxxx");//The AccessKeySecret that
was created in the Alibaba Cloud console for identity authentication.

//Create a producer. MQ does not release pChecker, which must be released by the service provider.
MyLocalTransactionChecker *pChecker = new MyLocalTransactionChecker();
g_producer = ONSFactory::getInstance()->createTransactionProducer(factoryInfo,pChecker);

//Before sending a message, call the start method once to start the producer.
pProducer->start();

Message msg(
//The message topic.
factoryInfo.getPublishTopics(),
// The message tag, which is similar to a Gmail tag. It is used to sort messages, enabling the consumer to filter
messages on the MQ broker based on the specified criteria.
"TagA",

Message Queue for Apache RocketMQ SDK Reference

69

1. Submit the status of the transactional message.

After the execution of a local transaction (successful or failed), the broker must be notified of the
transaction status of the current message. Two notification modes are supported:

Submit the status after executing the local transaction.

Wait until the broker requests to check the transaction status of the message.

A transaction may be in one of the following states:

TransactionStatus.CommitTransaction: The transaction is submitted, and the consumer can
consume the message.

TransactionStatus.RollbackTransaction: The transaction is rolled back, and the message is
discarded and cannot be consumed.

TransactionStatus.Unknow: The transaction is in an unknown status, and the broker is
expected to query the status of the local transaction that corresponds to the message from

//The body of the message. The message body cannot be empty. MQ makes no interventions. The compatible
serialization and deserialization methods must be negotiated by the producer and the consumer.
factoryInfo.getMessageContent()
);

// Set a key service property representing the message, that is, the message key, and try to keep it globally unique.
// A unique identifier enables you to query a message and resend it in the console if you fail to receive the
message.
// Note: Messages can still be sent and received if you do not set this attribute.
msg.setKey("ORDERID_100");

// The message is sent if no exception is thrown.
try
{
//MQ does not release pExecuter, which must be released by the service provider.
MyLocalTransactionExecuter pExecuter = new MyLocalTransactionExecuter();
SendResultONS sendResult = pProducer->send(msg,pExecuter);
}
catch(ONSClientException & e)
{
//Customize the exception handling details.
}
// Destroy the producer before exiting the application. Otherwise, memory leakage may occur.
pProducer->shutdown();

return 0;

}

Message Queue for Apache RocketMQ SDK Reference

70

the message sender.

Transaction check mechanism

Why must the transaction status check mechanism be implemented when transactional
messages are sent?

When a half message is sent in step 1, but the returned status of the local transaction is
TransactionStatus.Unknow, or no status is submitted because the application exits, the status
of the half message is unknown to the MQ broker. Therefore, the MQ broker requires the
message sender to check the status of the half message and to periodically report the final
status.

 class MyLocalTransactionChecker : LocalTransactionChecker
{
MyLocalTransactionChecker()
{
}

~MyLocalTransactionChecker()
{
}

virtual TransactionStatus check(Message &value)
{
// The ID of the message. Two messages may have the same body but different IDs. Currently, you cannot
query message IDs in the console.
string msgId = value.getMsgID();
// Compute the message body by using CRC32, MD5, or other algorithms.
// The message ID and CRC32 ID are used to prevent duplication of messages.
// You do not need to specify the message ID or CRC32 ID if the business itself achieves idempotence.
Otherwise, set the message ID or CRC32 ID to ensure idempotence.
// To avoid duplication of messages, compute the message body by using the CRC32 or MD5 algorithm.
TransactionStatus transactionStatus = Unknow;
try {
boolean isCommit = Execution result of the local transaction
if (isCommit) {
// If the local transaction succeeded, the message is submitted.
transactionStatus = CommitTransaction;
} else {
// If the local transaction failed, the message is rolled back.
transactionStatus = RollbackTransaction;
}
} catch(...) {
//exception error
}
return transactionStatus;
}
}

Message Queue for Apache RocketMQ SDK Reference

71

-

What does the business logic do when the check method is called back?

The check method for transactional messages needs to contain the logic of transaction consistency
check. After a transactional message is sent, MQ needs to use the LocalTransactionChecker operation
to respond to the request of the broker for the local transaction status. Therefore, the check method
for the transactional message needs to complete the following tasks:

(1) Check the status of the local transaction corresponding to the half message (committed or
rollback).

(2) Submit the status of the local transaction to the broker.

What is the impact of different local transaction statuses on the half message?

TransactionStatus.CommitTransaction: The transaction is submitted, and the consumer can
consume the message.

TransactionStatus.RollbackTransaction: The transaction is rolled back, and the message is
discarded and cannot be consumed.

TransactionStatus.Unknow: The transaction is in an unknown status, and the broker is
expected to query the status of the local transaction that corresponds to the message from
the message sender.

For more information about the code, see the implementation of MyLocalTransactionChecker.

Subscribe to transactional messages

For instructions and sample codes for subscribing to normal messages, see Subscribe to messages.

Subscribe to messages

This topic describes how to subscribe to messages by using the C/C++ SDK of MQ.

Note:

Maintain consistent subscription for all consumer instances with the same group ID. For
more information, see Subscription consistency.

Message Queue for Apache RocketMQ SDK Reference

72

-

-

Subscription modes

MQ supports the following two message subscription modes:

Clustering subscription:

Clustering consumption is realized in this mode. All consumers that are identified by the same group
ID consume messages in an even manner. For example, a topic contains nine messages and a group
contains three consumer instances. In this case, each instance consumes three messages.

Broadcasting subscription:

Broadcasting subscription is implemented in this mode. Each of the consumers that is identified by
the same group ID consumes all messages once. For example, a topic contains nine messages and a
group contains three consumer instances. In this case, each instance consumes nine messages.

Sample code


```
// Set the subscription mode to clustering. Clustering subscription is used by default when this parameter is not
configured.
factoryInfo.setFactoryProperty(ONSFactoryProperty:: MessageModel, ONSFactoryProperty::CLUSTERING);
```

```
// Set the subscription mode to broadcasting.
factoryInfo.setFactoryProperty(ONSFactoryProperty:: MessageModel, ONSFactoryProperty::BROADCASTING);
```

#include "ONSFactory.h"
using namespace ons;

// MyMsgListener: Create a message consumer instance.
//When pushConsumer pulls the message, it actively calls the consumer function of the instance.
class MyMsgListener : public MessageListener
{

public:

MyMsgListener()
{
}

virtual ~MyMsgListener()
{
}

virtual Action consume(Message &message, ConsumeContext &context)

Message Queue for Apache RocketMQ SDK Reference

73

.NET SDK

{
//Customize the details of the message processing policy.
return CommitMessage; //CONSUME_SUCCESS;
}
};

int main(int argc, char* argv[])
{

//Required parameter for creating and executing pushConsumer.
ONSFactoryProperty factoryInfo;
factoryInfo.setFactoryProperty(ONSFactoryProperty::ConsumerId, "XXX");//The group ID you created in the console.
factoryInfo.setFactoryProperty(ONSFactoryProperty::NAMESRV_ADDR, "XXX"); //Set the TCP endpoint: Go to the
Instances page in the MQ console, and view the endpoint in the **Endpoint Information** area.
factoryInfo.setFactoryProperty(ONSFactoryProperty::PublishTopics,"XXX");//The message topic you created in the
console.
factoryInfo.setFactoryProperty(ONSFactoryProperty::AccessKey, "XXX");//The AccessKeyId you created in the
Alibaba Cloud console for identify authentication.
factoryInfo.setFactoryProperty(ONSFactoryProperty::SecretKey, "XXX");//The AccessKeySecret you created in the
Alibaba Cloud console for identify authentication.
// Set the subscription mode to clustering, which is the default subscription mode.
// factoryInfo.setFactoryProperty(ONSFactoryProperty:: MessageModel, ONSFactoryProperty::CLUSTERING);
//Set the subscription mode to broadcasting.
// factoryInfo.setFactoryProperty(ONSFactoryProperty:: MessageModel, ONSFactoryProperty::BROADCASTING);

//create pushConsumer
PushConsumer* pushConsumer = ONSFactory::getInstance()->createPushConsumer(factoryInfo);

//Specify the topic and tag of the message to which pushConsumer subscribes, and register the message callback
function.
MyMsgListener msglistener;
pushConsumer->subscribe(factoryInfo.getPublishTopics(), "*",&msglistener);

//start pushConsumer
pushConsumer->start();

//Note: Shutdown can be called only after the consumer no longer receives messages. After shutdown is called, the
consumer exits and cannot receive any message any more.

//Destroy pushConsumer. You must destroy the consumer before exiting the application. Otherwise, memory
leakage may occur.
pushConsumer->shutdown();
return 0;

}

Message Queue for Apache RocketMQ SDK Reference

74

-

-

Release Notes

This topic provides the download links, versions, and updates of all .NET SDKs so that you can choose
a suitable one for use.

ons-.net v1.1.3

New features

Enabled instance user access to the service in either of the following modes (that for non-
instance users unchanged):

Configure NAMESRV_ADDR with InstanceId.

Configure InstanceId and NAMESRV_ADDR without InstanceId.

Replaced ProducerId and ConsumerId with GroupId.

ons-.net v1.1.2

Function optimization

Provided the recommended Chinese encoding mode in the demo.

Bugs fixed

Fixed the problem of consumption of ordered messages.

Release date Version Download (Windows
version)

Environment
preparation guide

2019-02-01 1.1.3 aliyun-mq-windows-
net-sdk.zip

. Prepare the .NET
SDK environment

Release date Version Download (Windows
version)

Environment
preparation guide

2018-10-24 1.1.2 aliyun-mq-windows-
net-sdk.zip

. Prepare the .NET
SDK environment

Message Queue for Apache RocketMQ SDK Reference

75

-

-

-

-

-

-

-

More historical versions

ons-.net v1.1.1

New features

Added an operation for sending byte messages.

Bugs fixed

Fixed the problem that the IP address obtained from the message trace is incorrect.

ons-.net v1.1.0

Bugs fixed

Fixed coredump caused by consumer shutdown.
Fixed the problem that the underlying URL class does not support HTTP access on Windows.
Fixed the timestamp error of message trace.
Fixed the problem that an incorrect IP address is displayed in message trace.
Fixed the problem of memory leakage on Windows.

.NET SDK preparation

Complete the following preparations before accessing MQ through .NET SDK.

Note:

Release date Version
Earlier version
download
(Windows)

New version
download
(Windows)

Environment
preparation
guide

2018-01-09 1.1.1
None (not
maintained
anymore)

aliyun-mq-
windows-net-
sdk.zip

. Prepare the

.NET SDK
environment

Release date Version
Earlier version
download
(Windows)

New version
download
(Windows)

Environment
preparation
guide

2017-07-31 1.1.0
aliyun-mq-
windows-net-
sdk.zip

aliyun-mq-
windows-net-
sdk.zip

. Prepare the

.NET SDK
environment

Message Queue for Apache RocketMQ SDK Reference

76

-

-

-

-

-

-

-

-

-

The topic and group ID in the code must have been created in the MQ console first. The
message tag can be specified by the application users. For more information about the
creation process, see Step 2: Create resources in Quick start for primary accounts.

Applications that use MQ must be deployed on Alibaba Cloud ECS instances.

Download SDK

Windows .NET SDK

The .NET SDK we provide is based on the managed wrapper of MQ C++. In this way, the .NET SDK is
independent of Windows .NET SDK public libraries. C++ multi-thread concurrent processing is used
to ensure the efficiency and stability of the .NET SDK.

When Visual Studio is used to develop .NET applications and class libraries, the default target
platform is “Any CPU”, that is, X86 or X64 is automatically selected according to the CPU type when
the application runs. When running, CLR transmits its JIT as the machine code X86 or X64. The C or
C++ compiled DLL is the machine code. Accordingly, the policies of the platform are determined
when the application is compiled. When the compilation options are set, the C/C++ project is
compiled as an X64 64-bit DLL. Therefore, the 64-bit DLL in release mode compiled using Visual
Studio 2015 is provided. Other Visual Studio versions also can be used.

Download earlier versions of Windows .NET SDK

Note:

The SDK based on the managed wrapper has a lot of problems, and cannot normally operate
on ASP.NET. Therefore, a new version SDK was released on December 29, 2016.
The new SDK calls underlying DLLs based on C# PInvoke and uses the open-source software
SWIG to generate the PInvoke wrapped code. Compared with the managed SDK, the new
SDK is more stable and easier to deploy and install.
The managed SDK is no longer maintained. Only the latest stable version is provided.

We recommend that both new users and old users download the new SDK.

For the URL to download the latest .NET SDK, see Release Notes.

Download and decompress the .rar package of the .NET SDK. The .rar package contains the following
directories and files:

example/
lib/
demo/
interface/
SDK_GUIDE.pdf
changelog

Message Queue for Apache RocketMQ SDK Reference

77

The preceding directories and files serve the following purposes:

example: This folder contains examples for sending and consuming normal messages and
ordered messages, and examples for sending messages in one-way mode.

lib: This folder contains the C++ DLL files and the runtime installation package for Virtual
C++ 2015.

SDK_GUIDE.pdf: This file describes how to prepare the SDK environment and contains FAQ.

changelog: This file lists the problems that have been fixed and the new features of the new
version.

interface: This folder contains codes that are called to wrap PInvoke, which needs to be used
in the user project code.

.NET SDK configuration

Configuration for using .NET SDK in Visual Studio 2015

Use Visual Studio 2015 to create your project.

64/
NSClient4CPP.lib
ONSClient4CPP.dll
ONSClient4CPP.pdb
vc_redist.x64.exe

Message Queue for Apache RocketMQ SDK Reference

78

Right-click the project and choose Add > Existing Itemto add all the files in the interface
folder in the downloaded SDK package.

Right-click the project and choose Properties > Configuration Manager. Set Active Solution
Configuration to Release, and Active Solution Platform to x64.

Write a test program and compile it. Move the DLL in the SDK to the same directory of the
executable files or to the system directory. Then, the DLL can be executed.

Note:

The SDK provides a demo that has been set up, and you can open the project and compile it. When
running the SDK, copy the DLL files to the same directory of the executable files, as shown in the
following figure:

Message Queue for Apache RocketMQ SDK Reference

79

Configuration for using MQ SDK to create ASP.NET in Visual Studio 2015

Create an ASP.NET Web Forms project by using Visual Studio 2015.

Right-click the project and choose Properties > Configuration Manager. Set Active Solution
Configuration to Release, and Active Solution Platform to x64.

Right-click the project and choose Add > Existing Item to add all the files in the interface

Message Queue for Apache RocketMQ SDK Reference

80

1.

folder in the downloaded SDK package.

See the preceding step 2 for configuring the normal .NET project.

In the file Global.asax.cs, add the codes for enabling and disabling the SDK.

Note:

We recommend that you wrap the SDK code to a singleton class, to prevent the SDK code from being
collected by the garbage collector due to scope issues. The folder example in the SDK provides
Example.cs, which implements a simple singleton. To use Example.cs, you need to include Example.cs
in your project.

sing System;using System.Collections.Generic;using System.Linq;using System.Web;using
System.Web.Optimization;using System.Web.Routing;using System.Web.Security;using
System.Web.SessionState;using ons; //It is the namespace where the SDK resides.using test; // It is
the namespace where a wrapped SDK class resides. For more information, see Example.cs in the
folder example in the SDK.namespace WebApplication4{public class Global : HttpApplication{void
Application_Start(object sender, EventArgs e){// Code that runs on application
startupRouteConfig.RegisterRoutes(RouteTable.Routes);BundleConfig.RegisterBundles(BundleTable.B
undles);try{// The code for starting the SDK. The following is a code after the SDK is wrapped into a
simple singleton.OnscSharp.CreateProducer();OnscSharp.StartProducer();}catch (Exception
ex){//Handle exceptions.}}protected void Application_End(object sender, EventArgs e){try{// The code
for disabling the SDK.OnscSharp.ShutdownProducer();}catch (Exception ex){// Handle exceptions.}}}}```

Write a test program and compile it.

Move the DLL in the SDK to the same directory of the executable files or to the system
directory. Then, the DLL can be executed.


```csharp

Message Queue for Apache RocketMQ SDK Reference

81



1. Choose Tools > Options > Projects and Solutions > Web Projects. On the page that is
displayed, select Use the 64 bit version of IIS Express for web sites and projects .
 

 

 
 
 
Send and receive normal messages
 
 

Message Queue for Apache RocketMQ SDK Reference

82



Send normal messages
 
Execute the following code to send messages. Set parameters correctly according to the instructions.
 

using System;
using ons;

public class ProducerExampleForEx
{
public ProducerExampleForEx()
{
}

static void Main(string[] args) {
// Configure your account according to the settings in the console.
ONSFactoryProperty factoryInfo = new ONSFactoryProperty();
// The AccessKeyId you created in the Alibaba Cloud console for identity authentication.
factoryInfo.setFactoryProperty(ONSFactoryProperty.AccessKey, "Your access key");
// The AccessKeySecret you created in the Alibaba Cloud console for identity authentication.
factoryInfo.setFactoryProperty(ONSFactoryProperty.SecretKey, "Your access secret");
// The group ID you created in the console.
factoryInfo.setFactoryProperty(ONSFactoryProperty.ProducerId, "GID_example");
// The topic you created in the console.
factoryInfo.setFactoryProperty(ONSFactoryProperty.PublishTopics, "T_example_topic_name");
// Set the TCP endpoint: Go to the **Instances** page in the MQ console, and view the endpoint in the **Endpoint
Information** area.
factoryInfo.setFactoryProperty(ONSFactoryProperty.NAMESRV_ADDR, "NameSrv_Addr");
// Set the log path.
factoryInfo.setFactoryProperty(ONSFactoryProperty.LogPath, "C://log");

// Create producer instances.
// Note: Producer instances are thread-secure and can be used to send messages of different topics. Each of your
threads
// needs only one producer instance.
Producer producer = ONSFactory.getInstance().createProducer(factoryInfo);

// Start the instance at the client.
producer.start();

// Create message objects.
Message msg = new Message(factoryInfo.getPublishTopics(), "tagA", "Example message body");
msg.setKey(Guid.NewGuid(). ToString());
for (int i = 0; i < 32; i++) {
try
{
SendResultONS sendResult = producer.send(msg);
Console.WriteLine("send success {0}", sendResult.getMessageId());
}
catch (Exception ex)
{
Console.WriteLine("send failure{0}", ex.ToString());
}
}

Message Queue for Apache RocketMQ SDK Reference

83



Subscribe to normal messages
 
For instructions and sample codes of subscribing to normal messages, see Subscribe to messages.
 
 
 
Send and receive ordered messages
 
  
Send ordered messages
 
The sample code for sending ordered messages is as follows:
 

// Disable the producer instance when the thread is about to exit.
producer.shutdown();

}
}

using System;
using ons;

public class OrderProducerExampleForEx
{
public OrderProducerExampleForEx()
{
}

static void Main(string[] args) {
// Configure your account according to the following settings. You can obtain these settings in the console.
ONSFactoryProperty factoryInfo = new ONSFactoryProperty();
// The AccessKeyId you created in the Alibaba Cloud console for identity authentication.
factoryInfo.setFactoryProperty(ONSFactoryProperty.AccessKey, "Your access key");
// The AccessKeySecret you created in the Alibaba Cloud console for identity authentication.
factoryInfo.setFactoryProperty(ONSFactoryProperty.SecretKey, "Your access secret");
// The group ID you created in the console.
factoryInfo.setFactoryProperty(ONSFactoryProperty.ProducerId, "GID_example");
// The topic you created in the console.
factoryInfo.setFactoryProperty(ONSFactoryProperty.PublishTopics, "T_example_topic_name");
// Set the TCP endpoint: Go to the **Instances** page in the MQ console, and view the endpoint in the **Endpoint
Information** area.
factoryInfo.setFactoryProperty(ONSFactoryProperty.NAMESRV_ADDR, "NameSrv_Addr");
// Set the log path.
factoryInfo.setFactoryProperty(ONSFactoryProperty.LogPath, "C://log");

// Create producer instances.
// Note: Producer instances are thread-secure and can be used to send messages of different topics. Each of your
threads
// needs only one producer instance.

Message Queue for Apache RocketMQ SDK Reference

84



The sample code for consuming ordered messages is as follows:
 

OrderProducer producer = ONSFactory.getInstance().createOrderProducer(factoryInfo);

// Start the instance at the client.
producer.start();

// Create message objects.
Message msg = new Message(factoryInfo.getPublishTopics(), "tagA", "Example message body");
string shardingKey = "App-Test";
for (int i = 0; i < 32; i++) {
try
{
SendResultONS sendResult = producer.send(msg, shardingKey);
Console.WriteLine("send success {0}", sendResult.getMessageId());
}
catch (Exception ex)
{
Console.WriteLine("send failure{0}", ex.ToString());
}
}

// Disable the producer instance when the thread is about to exit.
producer.shutdown();

}
}

using System;
using System.Text;
using System.Threading;
using ons;

namespace demo
{

public class MyMsgOrderListener : MessageOrderListener
{
public MyMsgOrderListener()
{

}

~MyMsgOrderListener()
{
}

public override ons.OrderAction consume(Message value, ConsumeOrderContext context)
{
Byte[] text = Encoding.Default.GetBytes(value.getBody());
Console.WriteLine(Encoding.UTF8. GetString(text));
return ons.OrderAction.Success;
}
}

Message Queue for Apache RocketMQ SDK Reference

85



 
 
Send and receive scheduled messages
 
 
The currently supported domains include Internet, East China 1, East China 2, North China 2, and
South China 1.
 
Scheduled messages can be consumed by consumers after a specified period, which are used in
scenarios where there are time window requirements for message production and consumption, or
when messages are used to trigger scheduled tasks, similar to delayed queues.
  

class OrderConsumerExampleForEx
{
static void Main(string[] args)
{
// Configure your account according to the following settings. You can obtain these settings in the console.
ONSFactoryProperty factoryInfo = new ONSFactoryProperty();
// The AccessKeyId you created in the Alibaba Cloud console for identity authentication.
factoryInfo.setFactoryProperty(ONSFactoryProperty.AccessKey, "Your access key");
// The AccessKeySecret you created in the Alibaba Cloud console for identity authentication.
factoryInfo.setFactoryProperty(ONSFactoryProperty.SecretKey, "Your access secret");
// The group ID you created in the console.
factoryInfo.setFactoryProperty(ONSFactoryProperty.ConsumerId, "GID_example");
// The topic you created in the console.
factoryInfo.setFactoryProperty(ONSFactoryProperty.PublishTopics, "T_example_topic_name");
// Set the TCP endpoint: Go to the **Instances** page in the MQ console, and view the endpoint in the **Endpoint
Information** area.
factoryInfo.setFactoryProperty(ONSFactoryProperty.NAMESRV_ADDR, "NameSrv_Addr");
// Set the log path.
factoryInfo.setFactoryProperty(ONSFactoryProperty.LogPath, "C://log");

// Create producer instances.
OrderConsumer consumer = ONSFactory.getInstance().createOrderConsumer(factoryInfo);

// Subscribe to topics.
consumer.subscribe(factoryInfo.getPublishTopics(), "*",new MyMsgOrderListener());

// Start the consumer instance.
consumer.start();

// Enable the main thread to sleep for a period of time.
Thread.Sleep(30000);

// Disable the consumer instance when you no longer use it.
consumer.shutdown();
}
}
}

Message Queue for Apache RocketMQ SDK Reference

86



Send Scheduled Messages
 
The following are sample codes for sending scheduled messages:
 

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Runtime.InteropServices;
using ons;

namespace ons
{
class onscsharp
{
static void Main(string[] args)
{
//A mandatory parameter required for the producer creation and message handling
ONSFactoryProperty factoryInfo = new ONSFactoryProperty();
factoryInfo.setFactoryProperty(factoryInfo.PublishTopics, "XXX");//The topic you created on the MQ console
factoryInfo.setFactoryProperty(factoryInfo.MsgContent, "XXX");//Message content
factoryInfo.setFactoryProperty(factoryInfo.AccessKey, "XXX");//AccessKey, Alibaba Cloud ID verification, which is
created on Alibaba Cloud Management Console
factoryInfo.setFactoryProperty(factoryInfo.SecretKey,"XXX");//SecretKey, Alibaba Cloud ID verification, which is
created on Alibaba Cloud Management Console

//Create a producer
ONSFactory onsfactory = new ONSFactory();
Producer pProducer = onsfactory.getInstance().createProducer(factoryInfo);

//Before sending messages, the start method must be called once to start the producer.
pProducer.start();

Message msg = new Message(
//Message Topic
factoryInfo.getPublishTopics(),
//Message Tag
"TagA",
//Message Body
factoryInfo.getMessageContent()
);

// The setting represents the key service property of the message, so please set it as globally unique as possible.
// You can query a message and resend it through the MQ console when you cannot receive the message properly.
// Note: Normal sessage sending and receiving will not be affected if message key is not configured.
msg.setKey("ORDERID_100");

// Deliver time (ms) specifies the time point after which the message can be consumed. The example means that
the message will be consumed after 3 seconds.
long deliverTime = obtain current system time (ms) + 3000;
msg.setStartDeliverTime(deliverTime);

//If no exceptions are thrown, then the message is sent successfully.
try

Message Queue for Apache RocketMQ SDK Reference

87



Subsribe to Scheduled Messages
 
For instructions and example codes of subscribing to scheduled messages, see Subscribe to
messages.
 
 
 
Send and receive transactional messages
 
 
The currently supported regions include Internet, China (Hangzhou), China (Beijing), China
(Shanghai), and China (Shenzhen).
  
Interaction process
 
The following figure shows the interaction process of MQ transactional messages.
 

  
Send transactional messages
 
Follow these steps to send a transactional message:
 

 

{
SendResultONS sendResult = pProducer.send(msg);
}
catch(ONSClientException e)
{
//Handle the message sending failures
}

//The object Producer must be destroyed before exiting the application. Otherwise there will be memory leakage.
pProducer.shutdown();

}
}
}

Message Queue for Apache RocketMQ SDK Reference

88



Send a half message and execute a local transaction. The sample code is as follows:
 

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Runtime.InteropServices;
using ons;

namespace ons
{
public class MyLocalTransactionExecuter : LocalTransactionExecuter
{
public MyLocalTransactionExecuter()
{
}

~MyLocalTransactionExecuter()
{
}
public override TransactionStatus execute(Message value)
{
Console.WriteLine("execute topic: {0}, tag:{1}, key:{2}, msgId:{3},msgbody:{4}, userProperty:{5}",
value.getTopic(), value.getTag(), value.getKey(), value.getMsgID(), value.getBody(),
value.getUserProperty("VincentNoUser"));

//The ID of the message. Two messages can have the same message body but different message IDs.
Currently, message IDs cannot be queried in the console.
string msgId = value.getMsgID();
// Compute the message body by using CRC32, MD5, or other algorithms.
// The message ID and CRC32 ID are used to prevent duplication of messages.
// To avoid duplication of messages, compute the message body by using the CRC32 or MD5 algorithm.

TransactionStatus transactionStatus = TransactionStatus.Unknow;
try {
boolean isCommit = Execution result of the local transaction;
if (isCommit) {
// Submit the message if the local transaction succeeds.
transactionStatus = TransactionStatus.CommitTransaction;
} else {
// Roll back the message if the local transaction fails.
transactionStatus = TransactionStatus.RollbackTransaction;
}
} catch (Exception e) {
//exception handle
}
return transactionStatus;
}
}
class onscsharp
{

static void Main(string[] args)
{
ONSFactoryProperty factoryInfo = new ONSFactoryProperty();

Message Queue for Apache RocketMQ SDK Reference

89



Submit the transactional message status.

factoryInfo.setFactoryProperty(factoryInfo.NAMESRV_ADDR, "XXX");//Set the TCP endpoint: Go to the
**Instances** page in the MQ console, and view the endpoint in the **Endpoint Information** area.
factoryInfo.setFactoryProperty(factoryInfo.ProducerId, "");//The group ID you created in the console.
factoryInfo.setFactoryProperty(factoryInfo.PublishTopics, "");//The topic you created in the console.
factoryInfo.setFactoryProperty(factoryInfo.MsgContent, "");//The message body.
factoryInfo.setFactoryProperty(factoryInfo.AccessKey, "");//The AccessKeyId you created in the Alibaba
Cloud console for identity authentication.
factoryInfo.setFactoryProperty(factoryInfo.SecretKey, "");//The AccessKeySecret you created in the Alibaba
Cloud console for identity authentication.

//Create transaction producers
ONSFactory onsfactory = new ONSFactory();
LocalTransactionChecker myChecker = new MyLocalTransactionChecker();
TransactionProducer pProducer = onsfactory.getInstance().createTransactionProducer(factoryInfo,ref
myChecker);

// Before sending messages, call the start method once to start the producer. After the producer is started,
messages can be concurrently sent through multiple threads.
pProducer.start();

Message msg = new Message(
//The message topic.
factoryInfo.getPublishTopics(),
//The message tag.
"TagA",
// The message body.
factoryInfo.getMessageContent()
);

// Set a key service property representing the message, that is, the message key, and try to keep it globally
unique.
// A unique identifier enables you to query a message and resend it in the console if you fail to receive the
message.
// Note: Messages can still be sent and received if you do not set this attribute.
msg.setKey("ORDERID_100");

// The message is sent if no exception is thrown.
try
{
LocalTransactionExecuter myExecuter = new MyLocalTransactionExecuter();
SendResultONS sendResult = pProducer.send(msg, ref myExecuter);
}
catch(ONSClientException e)
{
Console.WriteLine("\nexception of sendmsg:{0}",e.what() );
}

// Destroy the producer before exiting the application. Otherwise, memory leakage may occur.
// The producer cannot be started again after shutdown.
pProducer.shutdown();
}
}
}

Message Queue for Apache RocketMQ SDK Reference

90



After the execution of a local transaction (successful or failed), the broker must be notified of the
transaction status of the current message. Two notification modes are supported:
 

 
Submit the status after executing the local transaction.
 
 
Wait until the broker requests to check the transaction status of the message.
 
 

A transaction may be in one of the following states:
 

 
TransactionStatus.CommitTransaction: The transaction is submitted, and the consumer can
consume the message.
 
 
TransactionStatus.RollbackTransaction: The transaction is rolled back, and the message is
discarded and cannot be consumed.
 
 
TransactionStatus.Unknow: The transaction is in an unknown status, and the broker is
expected to query the status of the local transaction that corresponds to the message from
the message sender.
 

 Public class MyLocalTransactionChecker: LocalTransactionChecker
{
public MyLocalTransactionChecker()
{
}

~MyLocalTransactionChecker()
{
}

public override TransactionStatus check(Message value)
{
Console.WriteLine("check topic: {0}, tag:{1}, key:{2}, msgId:{3},msgbody:{4}, userProperty:{5}",
value.getTopic(), value.getTag(), value.getKey(), value.getMsgID(), value.getBody(),
value.getUserProperty("VincentNoUser"));
// The ID of the message. Two messages can have the same message body but different message IDs.
Currently, message IDs cannot be queried in the console.
string msgId = value.getMsgID();
// Compute the message body by using CRC32, MD5, or other algorithms.
// The message ID and CRC32 ID are used to prevent duplication of messages.
// You do not need to specify the message ID or CRC32 ID if the business itself achieves idempotence.
Otherwise, set the message ID or CRC32 ID to ensure idempotence.
// To avoid duplication of messages, compute the message body by using the CRC32 or MD5 algorithm.
TransactionStatus transactionStatus = TransactionStatus.Unknow;
try {
boolean isCommit = Execution result of the local transaction;
if (isCommit) {
// If the local transaction succeeded, the message is submitted.
transactionStatus = TransactionStatus.CommitTransaction;

Message Queue for Apache RocketMQ SDK Reference

91



 
Transaction check mechanism
 

 
Why must the transaction status check mechanism be implemented when transactional
messages are sent?
  
When a half message is sent in step 1, but either the returned status of the local transaction
is TransactionStatus.Unknow, or no status is submitted because the application exits, the
status of the half message is unknown to the MQ broker. Therefore, the MQ broker requires
the message sender to periodically check the status of the half message and report the final
status.
 
 
What does the business logic do when the check method is called back?
  
The check method for transactional messages needs to contain the logic of transaction
consistency check. After a transactional message is sent, MQ needs to use the
LocalTransactionChecker operation to respond to the request of the broker for the local
transaction status. Therefore, the check method for the transactional message needs to
complete the following tasks:
 
 

(1) Check the status of the local transaction corresponding to the half message (committed or
rollback).
 
(2) Submit the status of the local transaction to the broker.
 

 
What is the impact of different local transaction statuses on the half message?
 

 
TransactionStatus.CommitTransaction: The transaction is submitted, and the
consumer can consume the message.
 
 
TransactionStatus.RollbackTransaction: The transaction is rolled back, and the
message is discarded and cannot be consumed.
 
 
TransactionStatus.Unknow: The transaction is in an unknown status, and the broker

} else {
// If the local transaction failed, the message is rolled back.
transactionStatus = TransactionStatus.RollbackTransaction;
}
} catch (Exception e) {
//exception handle
}
return transactionStatus;
}
}

Message Queue for Apache RocketMQ SDK Reference

92



is expected to query the status of the local transaction that corresponds to the
message from the message sender.
  
For more information about the code, see the implementation of
MyLocalTransactionChecker.
 

  
Subscribe to transactional messages
 
For instructions and sample codes of subscribing to normal messages, see Subscribe to messages.
 
 
 
Subscribe to messages
 
 
This topic describes how to subscribe to messages by using the .NET SDK of MQ.
 
Note:
 
Maintain consistent subscription for all consumer instances with the same group ID. For more
information, see Subscription consistency.
  
Subscription modes
 
MQ supports the following two message subscription modes:
 

 
Clustering subscription: All the consumers identified by the same group ID equally share
messages. For example, a topic contains nine messages and a group contains three
consumer instances. In this case, each instance consumes three messages.
 

 
Broadcasting subscription: All the consumers identified by the same group ID consume every
message once. For example, a topic contains nine messages and a group contains three
consumer instances. In this case, each instance consumes nine messages.
 

 

 // The configuration of clustering subscription (default mode).
factoryInfo.setFactoryProperty(ONSFactoryProperty.MessageModel, ONSFactoryProperty.CLUSTERING);

 // The configuration of broadcasting subscription.
factoryInfo.setFactoryProperty(ONSFactoryProperty.MessageModel,
ONSFactoryProperty.BROADCASTING);

Message Queue for Apache RocketMQ SDK Reference

93



Sample code
 

using System;
using System.Threading;
using System.Text;
using ons;

// The callback function you need to execute when the message is pulled from the broker.
public class MyMsgListener : MessageListener
{
public MyMsgListener()
{
}

~MyMsgListener()
{
}

public override ons.Action consume(Message value, ConsumeContext context)
{
Byte[] text = Encoding.Default.GetBytes(value.getBody());
Console.WriteLine(Encoding.UTF8. GetString(text));
return ons.Action.CommitMessage;
}
}

public class ConsumerExampleForEx
{
public ConsumerExampleForEx()
{
}

static void Main(string[] args) {
// Configure your account according to the following settings. You can obtain these settings in the console.
ONSFactoryProperty factoryInfo = new ONSFactoryProperty();
// The AccessKeyId you created in the Alibaba Cloud console for identity authentication.
factoryInfo.setFactoryProperty(ONSFactoryProperty.AccessKey, "Your access key");
// The AccessKeySecret you created in the Alibaba Cloud console for identity authentication.
factoryInfo.setFactoryProperty(ONSFactoryProperty.SecretKey, "Your access secret");
// The group ID you created in the console.
factoryInfo.setFactoryProperty(ONSFactoryProperty.ConsumerId, "GID_example");
// The topic you created in the console.
factoryInfo.setFactoryProperty(ONSFactoryProperty.PublishTopics, "T_example_topic_name");
// Set the TCP endpoint: Go to the **Instances** page in the MQ console, and view the endpoint in the **Endpoint
Information** area.
factoryInfo.setFactoryProperty(ONSFactoryProperty.NAMESRV_ADDR, "NameSrv_Addr");
// Set the log path.
factoryInfo.setFactoryProperty(ONSFactoryProperty.LogPath, "C://log");
// Clustering consumption
// factoryInfo.setFactoryProperty(ONSFactoryProperty:: MessageModel, ONSFactoryProperty.CLUSTERING);
// Broadcasting consumption
// factoryInfo.setFactoryProperty(ONSFactoryProperty:: MessageModel, ONSFactoryProperty.BROADCASTING);

// Create consumer instances.

Message Queue for Apache RocketMQ SDK Reference

94



-

-

-

-

-

-

-

-

-

-

  
SDK guide (HTTP)
 
  
SDK guide (HTTP)
 
 
HTTP-based MQ instances are currently supported in the following regions:
 

China (Hangzhou)
China (Shanghai)
China (Shenzhen)
China (Beijing)
Germany (Frankfurt)
 

This type of instance will soon be supported in other regions.
  
Supported languages
 
MQ supports HTTP communication based on RESTful and provides SDKs in the following seven
languages:
 

Go
Python
Node.js
PHP
Java

PushConsumer consumer = ONSFactory.getInstance().createPushConsumer(factoryInfo);

// Subscribe to topics.
consumer.subscribe(factoryInfo.getPublishTopics(), "*", new MyMsgListener());

// Start the instance at the client.
consumer.start();

//This setting is only used in the demo. In actual production environment, you cannot exit the process.
Thread.Sleep(300000);

// Disable the consumer instance when the process is about to exit.
consumer.shutdown();
}
}

Message Queue for Apache RocketMQ SDK Reference

95



-

-

-

-

-

-

C++
C#
  

SDKs and sample codes
 
Go to MQ HTTP SDK Repository to download the SDKs of the required languages, to read SDK
instructions, and to view sample codes for sending and receiving messages.
  
Limits
 
HTTP-based MQ instances have the following limits:
 

Currently, advanced feature messages are not supported, including ordered messages,
transactional messages, and scheduled messages.
Currently, message trace query is not supported.
Currently, broadcasting mode is not supported.
The group IDs of TCP-based instances cannot be used for HTTP-based instances and vice
versa. You need to create a group ID for a TCP-based instance and an HTTP-based instance
separately.
 

Message Queue for Apache RocketMQ SDK Reference

96


	SDK Reference
	SDK guide (TCP)
	Java SDK
	Release Notes
	ons-client v1.8.44.Final
	ons-client v1.8.0. Final
	ons-client v1.7.8.Final
	More historical versions
	ons-client v1.7.7.Final
	ons-client v1.7.6.Final
	ons-client v1.7.5.Final
	ons-client v1.7.4.Final
	ons-client v1.7.2.Final
	ons-client v1.7.1.Final
	ons-client v1.7.0.Final
	ons-client v1.6.1.Final
	ons-client v1.6.0.Final


	Demo project (TCP)
	Prepare the environment
	Step 1: Install IDE
	Step 2: Download the demo project

	Configure the demo project
	Step 1: Import the demo project to IntelliJ IDEA
	Step 2: Create resources
	Step 3: Configure the demo

	Run the demo project
	Start sending and receiving messages in Main mode
	Start sending and receiving messages in Spring mode
	Send transactional messages
	Send and receive ordered messages
	Send scheduled/delayed messages


	Java SDK introduction
	Sample code for the transmission and reception of messages
	Common parameters
	Message transmission parameters
	Message subscription parameters

	Prepare the Java SDK environment
	Log configuration
	Print client logs
	Java SDK 1.7.8. Final or later
	Java SDK earlier than 1.7.8. Final

	Customize log configuration
	Default configuration
	Custom configuration


	Spring integration
	Integration of Producer and Spring
	Integration of Transactional Message Producer and Spring
	Integration of Consumer and Spring

	Exactly-Once delivery semantics
	Background Information
	Procedure
	Step 1: Add dependencies
	Step 2: Create a consumption transaction table
	Step 3: Enable the Exactly-Once delivery semantics on the producer
	Step 4: Enable the Exactly-Once delivery semantics on the consumer
	Enable Exactly-Once delivery semantics without using Spring
	Create transactions on the message listener for database operations and message consumption
	Use the Spring Boot annotation to enable the Exactly-Once delivery semantics on the message listener
	Use MyBatis to enable the Exactly-Once delivery semantics on the message listener


	Precautions

	Send normal messages (in three modes)
	Sample code

	Send messages (using multiple threads)
	Send and receive ordered messages
	Send ordered messages
	Subscribe to ordered messages

	Send and receive transactional messages
	Interaction process
	Send transactional messages
	Subscribe to transactional messages

	Send and receive delayed messages
	Send delayed messages
	Subscribe to delayed messages

	Send and receive scheduled messages
	Send scheduled messages
	Subscribe to scheduled messages

	Subscribe to messages
	Subscription modes
	Sample code

	C/C++ SDK
	Release Notes
	ons-cpp v1.1.2
	ons-cpp v1.1.1
	More historical versions
	ons-cpp v1.1.0
	ons-cpp v1.0.9
	ons-cpp v1.0.8
	ons-cpp v1.0.7


	Prepare the C_C++ SDK environment
	Download SDK
	Linux C++ SDK
	Static solution
	Dynamic solution

	Windows C++ SDK
	Use C++ SDK in the Visual Studio 2015 environment
	Use C++ SDK in non-Visual Studio 2015 environment


	Send and receive normal messages
	Send Normal Messages
	Subscribe to Normal Messages

	Send and receive ordered messages
	Send ordered messages
	Receive ordered messages

	Send and receive scheduled messages
	Send Scheduled Messages
	Subscribe to Scheduled Messages

	Send and receive transactional messages
	Interaction process
	Send transactional messages

	Subscribe to transactional messages

	Subscribe to messages
	Subscription modes
	Sample code

	.NET SDK
	Release Notes
	ons-.net v1.1.3
	ons-.net v1.1.2
	More historical versions
	ons-.net v1.1.1
	ons-.net v1.1.0


	.NET SDK preparation
	Download SDK
	.NET SDK configuration

	Send and receive normal messages
	Send normal messages
	Subscribe to normal messages

	Send and receive ordered messages
	Send ordered messages

	Send and receive scheduled messages
	Send Scheduled Messages
	Subsribe to Scheduled Messages

	Send and receive transactional messages
	Interaction process
	Send transactional messages
	Subscribe to transactional messages

	Subscribe to messages
	Subscription modes
	Sample code

	SDK guide (HTTP)
	SDK guide (HTTP)
	Supported languages
	SDKs and sample codes
	Limits


