
Message Queue

Advanced Features

Advanced Features

Message retry

Retries for ordered messages

For ordered messages, when the consumer failed to consume a message, MQ will automatically retry
sending the message continuously at an interval of one second. This may lead to the occurrence of
consumption blocking. Therefore, when you use ordered messages, ensure that the application can
monitor and handle the consumption failures promptly to prevent blocking of message consumption.

Retries for unordered messages

Unordered messages include normal, scheduled, delayed, and transactional messages. When a
consumer fails to consume such messages, you can set the returned status to achieve the same effect
as message retry.

Unordered message retry takes effect only in clustering consumption mode. In broadcasting
consumption mode, if message consumption fails, failed messages are not re-consumed, and new
messages are consumed instead.

Note: The following information is applicable to unordered messages only.

Number of retries

MQ allows a maximum of 16 retries for each message by default, and the intervals for each retry is as
follows:

Retry number Interval Retry number Interval

1 10s 9 7 min

2 30s 10 8 min

3 1 min 11 9 min

4 2 min 12 10 min

5 3 min 13 20 min

Message Queue Advanced Features

1

-

-

-

If the message fails after 16 retries, it will not be delivered. Strictly according to the intervals above, if
the consumption of a message continuously fails, there will be 16 retries within 4 hours and 46
minutes, after which the message will not be delivered.

Note: No matter how many retries there are for a message, the message ID will not be changed.

Configuration method

Configure retries after a message consumption failure

In clustering consumption mode, a message retry is expected after the message consumption failure,
which needs to be configured in the implementation of the message listener interface (three methods
available):

Return Action.ReconsumeLater (recommended).
Return null.
Throw an exception.

Sample code

Disable retries after a message consumption failure

In clustering consumption mode, no message retry is expected after a message consumption failure.
The possible exception thrown by the consumption logic needs to be captured and
Action.CommitMessage is returned. After that, the message will not be retried.

Sample code

6 4 min 14 30 min

7 5 min 15 1 h

8 6 min 16 2 h

public class MessageListenerImpl implements MessageListener {

@Override
public Action consume(Message message, ConsumeContext context) {
//Method 3: The message process logic throws an exception, and the message will be retried.
doConsumeMessage(message);
//Mode 1: Return Action.ReconsumeLater, and the message will be retried.
return Action.ReconsumeLater;
//Mode 2: Return null, and the message will be retried.
return null;
//Mode 3: Directly throw an exception, and the message will be retried.
throw new RuntimeException("Consumer Message exception");
}
}

Message Queue Advanced Features

2

-

-

-

-

-

Customize the maximum number of retries

To customize the log configuration of the MQ client, you must upgrade the TCP Java SDK to 1.2.2 or
later.

MQ allows you to set the maximum number of retries when the consumer is started. The retry interval
complies with the following policies:

If the maximum number of retries is less than or equal to 16, the retry interval is as described
in the preceding table.
If the maximum number of retries is greater than 16, the interval of the 17th or later retry is 2
hours.

The configuration method is as follows:

Note:

The configuration of the maximum number of message retries applies to all consumer
instances with the same group ID.
If the maximum number of message retries is set for only one of the two consumer instances
with the same group ID, the configuration applies to both consumer instances.
The configuration takes effect by overwriting, that is, the last started consumer instance will
overwrite the configuration of previously started instances.

Obtain the number of retries

Upon receiving the message, the consumer can obtain the number of retries with the following
method:

public class MessageListenerImpl implements MessageListener {

@Override
public Action consume(Message message, ConsumeContext context) {
try {
doConsumeMessage(message);
} catch (Throwable e) {
//Capture all exceptions in the consumption logic, and return Action.CommitMessage;
return Action.CommitMessage;
}
//The message processing is normal, and Action.CommitMessage is directly returned
return Action.CommitMessage;
}
}

Properties properties = new Properties();
//Set the maximum number of message retries for the corresponding group ID to 20
properties.put(PropertyKeyConst.MaxReconsumeTimes,"20");
Consumer consumer =ONSFactory.createConsumer(properties);

Message Queue Advanced Features

3

Message filtering

This topic describes how consumers filter messages on a MQ broker according to tags. For more
information about topics and tags, see Topic and tag best practices.

A tag is a label that classifies messages into different types under a topic. MQ allows consumers to
filter messages according to tags, ensuring that the consumers consume messages of types they are
concerned with.

The following figure shows an example in the e-commerce transaction scenario. The process from
placing an order to receiving the product by the customer will produce a series of messages, such as
order message, payment message, and logistics message. These messages will be sent to the queue
with the topic Trade_Topic and received by different systems, such as the payment system, logistics
system, transaction success rate analysis system, and real-time computing system. Among these
systems, the logistics system only receives the logistics message, and the real-time computing system
receives all the messages related to the transaction (order, payment, and logistics).

Note: To classify messages, you can create multiple topics, or create multiple tags under the same
topic. However, in general, there is no relationship between messages in different topics, and tags are
used to distinguish related messages within the same topic, such as the relationship between the full
set and the subset, and the relationship between the processes in sequence.

Sample code

Sending messages

A tag must be specified for each message before it is sent:

Consumption method - 1

If a consumer needs to subscribe to all types of messages under a topic, the * symbol can be used to

public class MessageListenerImpl implements MessageListener {

@Override
public Action consume(Message message, ConsumeContext context) {
//Obtain the number of retries
System.out.println(message.getReconsumeTimes());
return Action.CommitMessage;
}
}

Message msg = new Message("MQ_TOPIC","TagA","Hello MQ".getBytes());

Message Queue Advanced Features

4

represent the tags:

Consumption method - 2

If a consumer needs to subscribe a certain type of messages under a topic, the tag should be
specified:

Consumption method - 3

If a consumer needs to subscribe to messages of multiple types under a topic, separate tags with
separators (||):

Consumption method - 4 (error example)

If a consumer subscribes to messages of the tags under a topic for multiple times, the tags
subscribed to the previous time prevail:

consumer.subscribe("MQ_TOPIC", "*", new MessageListener() {
public Action consume(Message message, ConsumeContext context) {
System.out.println(message.getMsgID());
return Action.CommitMessage;
}
});

consumer.subscribe("MQ_TOPIC", "TagA", new MessageListener() {
public Action consume(Message message, ConsumeContext context) {
System.out.println(message.getMsgID());
return Action.CommitMessage;
}
});

consumer.subscribe("MQ_TOPIC", "TagA||TagB", new MessageListener() {
public Action consume(Message message, ConsumeContext context) {
System.out.println(message.getMsgID());
return Action.CommitMessage;
}
});

//In the following error code, a consumer can receive only messages with TagB under MQ_TOPIC and cannot
receive messages with TagA:
consumer.subscribe("MQ_TOPIC", "TagA", new MessageListener() {
public Action consume(Message message, ConsumeContext context) {
System.out.println(message.getMsgID());
return Action.CommitMessage;
}
});
consumer.subscribe("MQ_TOPIC", "TagB", new MessageListener() {
public Action consume(Message message, ConsumeContext context) {
System.out.println(message.getMsgID());
return Action.CommitMessage;
}

Message Queue Advanced Features

5

Exactly-Once

This topic describes the concept and typical scenarios of the Exactly-Once delivery semantics of MQ.

Note: For more information about how to send and receive messages through the Exactly-Once
delivery semantics, see Use Exactly-Once delivery semantics.

What is Exactly-Once delivery semantics?

Exactly-Once means that a message sent to a message system is processed only once by the
consumer, even if the producer re-sends the message.

Exactly-Once delivery semantics is an ideal state of message transfer in message systems and stream
computing systems. However, this ideal state is rarely implemented in the industry, because it
depends on the coordination between the message broker, message client, and user consumption
logic. For example, if your consumer client fails after processing a message, the client may process
the message again after a restart, because the consumer offset is not synchronized to the message
broker.

Exactly-Once delivery semantics is controversial in the industry. Many refer to FLP Impossibility theory
or other consistency laws to challenge the validity of Exactly-Once semantics. In fact, in certain
scenarios, the Exactly-Once delivery semantics is not difficult to implement. Its implementation only
seems complex because the essence of the topic is not described accurately.

To make the consumption result of each message take effect only once in your business system,
ensure the consumption idempotence of the same message. The use of Exactly-Once delivery
semantics by MQ ensures that the consumption result of a message (the message processing result
on the consumer) exists and takes effect only once in the database system. This is the most common
business requirement.

Typical scenarios

In an e-commerce system, the upstream real-time computing module releases product price change
messages and asynchronously sends them to the downstream product management module. Then
the downstream product management module changes the product prices. In this case, consumption
idempotence must be ensured for each message. That is, duplicate price change messages take effect
only once, preventing repeated changes of prices.

});

Message Queue Advanced Features

6

Clustering consumption and broadcasting
consumption

This topic introduces concepts of Alibaba MQ clustering consumption and broadcasting
consumption, their scenarios, and precautions for use.

Concepts

Alibaba MQ is a messaging system that is based on message publishing and subscription. Consumers
subscribe to a topic to retrieve and consume messages. As the subscribers are usually distributed
systems that consist of multiple machines deployed in a cluster, Alibaba MQ defines the following
terms:

Cluster: Consumers using the same group ID belong to the same cluster. These consumers have
identical consumption logic (including tag usage) and can be considered logically as one
consumption node.

Clustering consumption: In this model, any message only needs to be processed by any consumer in
the cluster.

Broadcasting consumption: In this model, Alibaba MQ broadcasts each message to all clients
registered in the cluster to ensure that the message is consumed by each machine at least once.

Scenario comparison

Clustering consumption mode:

Message Queue Advanced Features

7

-

-

-

-

-

-

-

-

-

-

Scenarios and usage instructions

Consumer instances are deployed in a cluster and each message needs to be processed only
once.
The consumption progress is maintained on the broker, so the reliability is high.
In clustering consumption mode, each message is delivered to only one machine in the
cluster for processing. If a message needs to be processed by every machine in the cluster,
use the broadcasting consumption mode.
In clustering consumption mode, there is no guarantee that the re-delivery of a failed
message will be routed to the same machine, so no definitive assumptions should be made
when processing messages.

Broadcasting consumption mode:

Scenarios and usage instructions

Ordered messages are not supported in broadcasting consumption mode.
Resetting consumption offsets is not supported in broadcasting consumption mode.
Each message needs to be processed by multiple machines with the same logic.
The consumption progress is maintained at the client. The ratio of repetition is higher than
that of the clustering consumption mode.
In broadcasting consumption mode, Alibaba MQ ensures that each message is consumed by
each client at least once, but does not resend messages that fail to be consumed. Therefore,
the business side needs to pay attention to consumption failures.
In broadcasting consumption mode, the consumption starts from the latest message by
default when the consumer is started everytime, skipping the messages sent to the Alibaba

Message Queue Advanced Features

8

-

-

-

-

-

-

MQ server when the consumer is stopped. Consider thouroughly before using this mode.
In broadcasting consumption mode, each message is processed repeatedly by many clients.
Therefore, the clustering consumption mode is recommended.
Currently, only Java clients support the broadcasting consumption mode.
In broadcasting consumption mode, the broker does not maintain the consumption
progress, so you cannot query message accumulation, set message accumulation alarms, or
query subscription in the Alibaba MQ console.

Use the clustering consumption mode to simulate the broadcasting consumption mode:

If the broadcasting consumption mode is needed for your business, you can create multiple group
IDs to subscribe to the same topic.

Scenarios and usage instructions

Each message needs to be processed by multiple machines and the logic of each machine
can be either the same or different.
The consumption progress is maintained on the broker, and the reliability is higher than that
in the broadcasting consumption mode.
For one group ID, one or more consumer instances can be deployed. When multiple
consumer instances are deployed, the instances form a cluster to work together for message
consumption. Assume that three consumer instances C1, C2, and C3 are deployed for group
ID 1. The three instances share the messages sent from the broker to group ID 1. These
instances must subscribe to the same topics with the same tags.

Message Queue Advanced Features

9

	Advanced Features
	Message retry
	Retries for ordered messages
	Retries for unordered messages
	Number of retries
	Configuration method
	Configure retries after a message consumption failure
	Disable retries after a message consumption failure
	Customize the maximum number of retries
	Obtain the number of retries

	Message filtering
	Sample code

	Exactly-Once
	What is Exactly-Once delivery semantics?
	Typical scenarios

	Clustering consumption and broadcasting consumption
	Concepts
	Scenario comparison

