
Message Queue for Apache
RocketMQ

Access control

Access control

RAM sub-account authorization

MQ allows a cloud account (primary account) to authorize RAM users (sub-accounts) to use the topic
resources of the cloud account. Authorized RAM users can manage resources in the MQ console and
can publish or subscribe to messages by using SDKs.

For the basic concepts of RAM, see Terms of RAM.

For more information about authorization and related terms for user group authorization, see
Authorize RAM users.

System authorization policies

MQ currently provides three default authorization policies.

Custom authorization policies

Policy name Remarks Description

AliyunMQFullAccess Permission for managing MQ

Equivalent to the
permissions of the primary
account, this policy provides
the permission to send and
receive all types of messages
and the permission to
operate all functions in the
MQ console.

AliyunMQPubOnlyAccess Permission for publishing
MQ messages

RAM users with this
permission can use all
resources of the primary
account to publish messages
by using SDKs.

AliyunMQSubOnlyAccess Permission for subscribing to
MQ messages

RAM users with this
permission can use all the
resources of the primary
account to subscribe to
messages by using SDKs.

Message Queue for Apache RocketMQ Access control

1

In most cases, the preceding authorization policies provided by MQ are sufficient to meet the service
requirements. However, if you have authorization requirements with finer granularity, you can create
a custom policy for access control.

MQ resources

The following describes how to name MQ resources and relevant description.

Mapping between MQ resources and actions.

When creating a custom authorization policy, you can select different resources and actions based on
the specific product. The following lists the options for MQ resources and actions.

Examples of common policies

MQ resources
Naming format

Remarks
With namespace Without namespace

Instance acs:mq:*:*:{instanceI
d}

acs:mq:*:*:{instanceI
d}

MQ instances must
have the permission
mq:
OnsInstanceBaseInfo
before they can
authorize topics.

Topic acs:mq:*:*:{instanceI
d}%{topic} acs:mq:*:*:{topic}

Before authorizing a
topic, you must
authorize the
instance of the topic.

Resource Action Description

Instance

mq:OnsInstanceBaseInfo

This permission is used to
query basic information of
instances. You must
authorize the permission
mq:OnsInstanceBaseInfo of
the instance to a RAM user
before you can authorize the
topic permissions to the
user.

mq:OnsIntanceUpdate This permission is used to
update the instance.

mq:OnsIntanceDelete
This permission is used to
delete the instance. Perform
this operation with caution.

Topic

mq:PUB This permission is used to
publish messages.

mq:SUB This permission is used to
subscribe to messages.

Message Queue for Apache RocketMQ Access control

2

-

-

-

Example 1: Authorize the permissions of a topic under an instance

This policy is applicable to instances with namespaces.

This policy is applicable to instances with no namespaces.

Example 2: Authorize all the permissions of an instance

To grant the permissions for operating all the resources in an instance, set the policy as follows.

This policy is only applicable to instances with namespaces.

{
"Version": "1",
"Statement": [
{
"Effect": "Allow",
"Action": [
"mq:PUB", //(Optional) Grant the permission for publishing messages.
"mq:SUB", //(Optional) Grant the permission for subscribing to messages.
"mq:OnsInstanceBaseInfo" //(Required) Query the basic information of the instance.
],
"Resource": [
"acs:mq:*:*:{instanceId}", //(Required) Grant the permission of an instance. Enter the ID of your instance in
{instanceId}.
"acs:mq:*:*:{instanceId}%{topic}", //(Required) Grant the permission of a topic in the instance. Enter the topic name
in {topic}.
......
]
}
]
}

{
"Version": "1",
"Statement": [
{
"Effect": "Allow",
"Action": [
"mq:PUB", //(Optional) Grant the permission for publishing messages.
"mq:SUB", //(Optional) Grant the permission for subscribing to messages.
"mq:OnsInstanceBaseInfo" //(Required) Query the basic information of the instance.
],
"Resource": [
"acs:mq:*:*:{instanceId}", //(Required) Grant the permission of an instance. Enter the ID of your instance in
{instanceId}.
"acs:mq:*:*:{topic}", //(Required) Grant the permission of a topic in the instance. Enter the topic name in {topic}.
......
]
}
]
}

Message Queue for Apache RocketMQ Access control

3

Note: The sample policy is only applicable to instances having no namespaces.

Related documents

For more information about how to create a custom policy, see (Optional) Create a custom policy.

When creating a custom policy, you need to reference to the RAM policy structure and syntax. For
more information, see Policy structure and syntax.

For more information about RAM, see What is RAM.

Temporary access authorization

Security Token Service (STS) is responsible for the temporary access authorization of Alibaba Cloud
accounts (primary account) and RAM users (sub-account).

Comparison Between RAM and STS

The critial issue that both RAM and STS have resolved is how to securely grant access without leaking
AccessKey (AK) of the primary account. Once the AK of the primary account is leaked, there is great
risk that others can operate on all the resources of the primary account and steal important
information. Using RAM and STS greatly improves management security and flexibility.

RAM provides an access control mechanism that is available permanently. This mechanism divides
the primary accounts into many sub-accounts with defferent permissions granted. Even if information
about one of the sub-account is leaked, information about the rest sub-accounts is still secure. For
better maintenance, the RAM sub-accounts are avaiable permanently.

{
"Version": "1",
"Statement": [
{
"Effect": "Allow",
"Action": [
"mq:*"
],
"Resource": [
"acs:mq:*:*:{instanceId}*" //Grant permissions of the instance. Enter the ID of your instance in {instanceId}.
]
}
]
}

Message Queue for Apache RocketMQ Access control

4

Instead of offering permanent access permissions like RAM, STS adopts a temporary solution by
providing temporary AK and SecurityToken (Token). As a result, STS is often more rigorous and time
constraint with less impact even after information leakage.

Cross-account authorization

STS also applies to cross-account authorization. For details, see Cross-account resource access and
authorization.

Temporary access authorization

For the prerequisites for using STS, including creating roles, AK and Token, see Getting started and
AssumeRole.

Use STS in MQ

Note: STS is supported only by Java SDK 1.7.8.Final or above.

To use STS when sending or receiving messages via the API, fill out the properties below with your AK
and Token.

Properties properties = new Properties();
......
// The AccessKeyId of STS
properties.put(PropertyKeyConst.AccessKey,"XXX");
// The AccessKeySecret of STS
properties.put(PropertyKeyConst.SecretKey, "XXX");
// The SecurityToken of STS
properties.put(PropertyKeyConst.SecurityToken, "XXX");
......

Message Queue for Apache RocketMQ Access control

5

	Access control
	RAM sub-account authorization
	System authorization policies
	Custom authorization policies
	MQ resources
	Mapping between MQ resources and actions.
	Examples of common policies

	Related documents

	Temporary access authorization
	Comparison Between RAM and STS
	Cross-account authorization
	Temporary access authorization
	Use STS in MQ

