
ApsaraDB for Redis

Quick Start

Quick Start

Get started with Redis

Purpose of the document

This document describes how to create an ApsaraDB for Redis instance, helping you know the
procedures from purchasing an ApsaraDB for Redis instance to using the instance.

Target reader

Users purchasing an ApsaraDB for Redis instance for the first time.

Users who want to know how to connect an ApsaraDB for Redis instance.

Quick start flowchart

If you use ApsaraDB for Redis for the first time, see Limits and About Redis console first.

Generally, you must follow these steps from instance purchasing to instance use.

ApsaraDB for Redis Quick Start

1

About Redis console

The Redis console is a web application that manages ApsaraDB for Redis instances. On the console,
you can create and manage instances, set networks and passwords, and perform other operations on
the user interface.

Prerequisites

You log on to the Redis console by using your Alibaba Cloud account. If you do not have an Alibaba
Cloud account, click register.

Console overview

Console homepage

The console homepage displays the same information for ApsaraDB for Redis instances of all types.

Log on to the Redis console, and go to the Instance List page, as shown in the following figure. (The
figure here is only used for an example. See the actual interface when using this document.)

On the Instance List page, the following information is displayed: Instance ID, Status, Memory Quota
and Amount Used, Zone, Creation Time, Billing Method, and Network Type.

Note: Memory Quota and Amount Used is offline statistics made by the underlying system
based on the collected information. A delay of about 10 minutes always exists.

Maintenance window

You can modify the O&M period on the Instance Information page. Alibaba Cloud maintains the
instances during the O&M time, which may result in system flash. We recommend that you set the
maintenance window in the idle service hours.

ApsaraDB for Redis Quick Start

2

Performance monitoring

Click Instance ID to go to the Instance Information page. In the left-side navigation pane, choose
Performance Monitoring to view historical performances of your ApsaraDB for Redis instances.
Different metrics are displayed.

Different metrics are displayed after you click Performance Monitoring. Metrics of basic monitoring
groups are described as follows.

Basic metrics Description

Keys
Total number of keys of all backend ApsaraDB
for Redis instances. Data on all backend
nodes of a cluster instance is aggregated.

Expires Total number of keys for which an expiration
time is set.

ExpiredKeys

Number of expired keys.

The value is the sum of all expired keys,
excluding the number of keys for which an
expiration time is set but do not expire
currently. Besides, it indicates the number of
accumulated expired keys, instead of the
number of expired keys in the current time.

Note: In case of master-slave switchover, the
value indicates the number of expired keys in
the new master database.

EvictedKeys

Number of evicted keys.

The value indicates the sum of keys which are
evicted because the memory is used out,
instead of the number of keys evicted in the

ApsaraDB for Redis Quick Start

3

Note: You can click Customize Metrics to monitor the number of accesses to different operating
commands, for example, the number of accesses to the set command per second. For more
information, see Performance Monitoring.

Alarm settings
Click Alarm Settings in the left-side navigation pane, and click the Alarm Settings button to go to the

current second.

Note: In case of master-slave switchover, the
value indicates the number of expired keys in
the new master database.

UsedMemory

Memory in use currently.

When a new instance is created, database
metadata is generated. For master-slave
instances, the generated database metadata
occupies a space of at least 30 MB. For cluster
instances, the generated database metadata
occupies a space of about 30 MB multiplied
by the number of nodes. A space of at least
200 MB is occupied.

InFlow Current traffic per second at the backend
ApsaraDB for Redis ingress. The unit is KB/s.

OutFlow Current traffic per second at the backend
ApsaraDB for Redis egress. The unit is KB/s.

ConnCount Count of current client connections of
ApsaraDB for Redis.

FailedCount

It makes no sense for master-slave instances
because the client is directly connected to the
backend database. For cluster instances, the
parameter indicates the number of failed
operations from Proxy to ApsaraDB for Redis,
including the number of abnormal operations
caused by time-out, disconnection, or other
exceptions.

For some ApsaraDB for Redis of earlier
versions, the value is a historical value. In such
case, no error is reported when FaileCount is
not set. For ApsaraDB for Redis of the new
version, the value indicates the statistical
value in each second. In the future, the value
indicates the statistical value in each second
for ApsaraDB for Redis of later versions.

TotalQps QPS of ApsaraDB for Redis.

CpuUsage CPU usage of the current ApsaraDB for Redis
backend.

ApsaraDB for Redis Quick Start

4

setting page of CloudMonitor.

You can create a metric for ApsaraDB for Redis instances as guided. We recommend that you set a
memory metric for all cluster instances to monitor the memory of sub-nodes of the cluster instances.

System parameters

You can set common parameters of ApsaraDB for Redis on the System Parameters page, for example,
setting an eviction policy and notify-keypsace-events. For more information, see Parameter settings.

Backup and recovery

On the backup and recovery page, you can set a backup and the automatic backup time, and clone
an instance. For more information, see Backup and recovery.

Limits

Item Description

List data type

The number of lists is not restricted. The size
of single element cannot exceed 512 MB. We
recommend that one lists contain no more
than 8192 elements, and the maximum value
length cannot exceed 1 MB.

Set data type

The number of sets is not restricted. The size
of single element cannot exceed 512 MB. We
recommend that one set contain no more
than 8192 elements, and the maximum value
length cannot exceed 1 MB.

SortedSet data type

The number of SortedSets is not restricted.
The size of single element cannot exceed 512
MB. We recommend that one SortedSet
contain no more than 8192 elements, and the
maximum value length cannot exceed 1 MB.

Hash data type
The number of fields is not restricted. The size
of single element cannot exceed 512 MB. We
recommend that one field contain no more

ApsaraDB for Redis Quick Start

5

Supported Redis commands

ApsaraDB for Redis is compatible with Redis 3.0 and supports Redis 3.0 GEO commands. Currently,
some commands are temporarily unavailable and restricted.

Supported command operations

than 8192 elements, and the maximum value
length cannot exceed 1 MB.

Restriction on the database number Each instance supports 256 databases.

Redis commands supported For more information, see Supported Redis
commands.

Monitoring alert

ApsaraDB for Redis does not provide the
capacity alert function. You can configure this
function on CloudMonitor. For more
information, see ApsaraDB for Redis
monitoring.

We recommend that you set alert for the
following metrics: instance fault, instance
master-slave switchover, connection usage,
failed operation count, capacity usage, write
bandwidth usage, and read bandwidth usage.

Expired data deletion policy

- Active expiration: The system periodically
detects and deletes expired keys in the
background.

- Passive expiration: The system deletes
expired keys when users access keys.

Idle connection recovery mechanism
Idle Refis connection is not automatically
recovered by the server, and must be
managed by the user.

Data persistence policy AOF_FSYNC_EVERYSEC is enabled , and fysnc
is performed every second.

Keys String Hash List Set SortedSet

DEL APPEND HDEL BLPOP SADD ZADD

DUMP BITCOUNT HEXISTS BRPOP SCARD ZCARD

EXISTS BITOP HGET BRPOPLPUS
H SDIFF ZCOUNT

ApsaraDB for Redis Quick Start

6

And

EXPIRE BITPOS HGETALL LINDEX SDIFFSTORE ZINCRBY

EXPIREAT DECR HINCRBY LINSERT SINTER ZRANGE

MOVE DECRBY HINCRBYFL
OAT LLEN SINTERSTO

RE
ZRANGEBYS
CORE

PERSIST GET HKEYS LPOP SISMEMBER ZRANK

PEXPIRE GETBIT HLEN LPUSH SMEMBERS ZREM

PEXPTREAT GETRANGE HMGET LPUSHX SMOVE ZREMRANG
EBYRANK

PTTL GETSET HMSET LRANGE SPOP ZREMRANG
EBYSCORE

RANDOMKE
Y INCR HSET LREM SRANDME

MBER ZREVRANGE

RENAME INCRBY HSETNX LSET SREM ZREVRANGE
BYSCORE

RENAMENX INCRBYFLO
AT HVALS LTRIM SUNION ZREVRANK

RESTORE MGET HSCAN RPOP SUNIONST
ORE ZSCORE

SORT MSET RPOPLPUSH SSCAN ZUNIONST
ORE

TTL MSETNX RPUSH ZINTERSTO
RE

TYPE PSETEX RPUSHX ZSCAN

SCAN SET ZRANGEBYL
EX

OBJECT SETBIT ZLEXCOUNT

SETEX ZREMRANG
EBYLEX

SETNX

SETRANGE

STRLEN

HyperLog
Log

Pub/Sub
(publish/s
ubscriptio
n)

Transacti
on

Connecti
on Server Scripting

Geo
(geologic
al
position)

PFADD PSUBSCRI
BE DISCARD AUTH FLUSHAL

L EVAL GEOADD

PFCOUNT PUBLISH EXEC ECHO FLUSHDB EVALSHA GEOHAS

ApsaraDB for Redis Quick Start

7

Commands temporarily unavailable

H

PFMERGE PUBSUB MULTI PING DBSIZE SCRIPT
EXISTS GEOPOS

PUNSUBS
CRIBE

UNWATC
H QUIT TIME SCRIPT

FLUSH GEODIST

SUBSCRIB
E WATCH SELECT INFO SCRIPT

KILL
GEORADI
US

UNSUBSC
RIBE KEYS SCRIPT

LOAD

GEORADI
USBYME
MBER

CLIENT
KILL

CLIENT
LIST

CLIENT
GETNAM
E

CLIENT
SETNAME

CONFIG
GET

MONITO
R

SLOWLO
G

Keys Server

MIGRATE BGREWRITEAOF

BGSAVE

CONFIG REWRITE

CONFIG SET

CONFIG RESETSTAT

COMMAND

COMMAND COUNT

COMMAND GETKEYS

COMMAND INFO

DEBUG OBJECT

ApsaraDB for Redis Quick Start

8

Commands restricted for cluster instances

Self-developed commands for cluster instances

info key: Used to query the slot and DB of a key. The native info command of ApsaraDB for
Redis can contain only one optional section (info [section]). Currently, some commands are
restricted for the cluster instances of ApsaraDB for Redis. Therefore, all keys must be in the
same slot. info key allows you to check whether keys are in the same slot or db.

This command is used as follows:

Note:

In earlier Redis versions, the returned node index may be different from the node index
in the instance topology diagram. This issue has be resolved in the latest Redis version.

DEBUG SEGFAULT

LASTSAVE

ROLE

SAVE

SHUTDOWN

SLAVEOF

SYNC

Keys Strings Lists HyperLogLo
g Transaction Scripting

RENAME MSETNX RPOPLPUSH PFMERGE DISCARD EVAL

RENAMENX PFCOUNT EXEC EVALSHA

SORT MULTI SCRIPT
EXISTS

UNWATCH SCRIPT
FLUSH

WATCH SCRIPT KILL

WATCH SCRIPT
LOAD

 127.0.0.1:6379> info key test_key
slot:15118 node_index:0

ApsaraDB for Redis Quick Start

9

The node in the info key command refers to the physical node of the cluster instance
and is different from the db in the select command.

iinfo: This command is similar to the info command. It is used to run info on a specified
ApsaraDB for Redis node. This command is used as follows:

iinfo db_idx [section]

Note: The value range of db_idx is [0, nodecount), the value of nodecount is obtained
by running info, and the value of section is set in the same way as the Redis standard
optional parameters for the info command.

riinfo: This command is similar to the iinfo command. It can be used only in read/write
splitting mode. idx is added to specify the readonly slave on which the info command is run.
In a read/write splitting cluster, idx is used to specify the readonly slave on which the info
command is run. If idx is used in a non-read/write splitting cluster, an error is returned. This
command is used as follows:

riinfo db_idx ro_slave_idx [section]

Notes:

Restricted commands of cluster instances support only scenarios where keys to be operated
are evenly distributed in a single hash slot and data of multiple hash slots are not merged.
Therefore, you must use the hash tag to make sure that keys to be operated are evenly
distributed in one hash slot.

For example, if key1, aakey, and abkey3 are to be operated, you must save them in {key}1,
aa{key}, and ab{key}3 modes. In this case, restricted commands can take effect when being
called. For more information about how to use the hash tag, see the official documentation
of ApsaraDB for Redis at: http://redis.io/topics/cluster-spec.

For more information about ApsaraDB for Redis commands, see the Official documentation.

Create an instance

ApsaraDB for Redis supports Pay-As-You-Go and Subscription instances. The following describes how

ApsaraDB for Redis Quick Start

10

-

to purchase a Pay-As-You-Go instance. The precedure is similar for Subscription instances.

Prerequisites

Before activating ApsaraDB for Redis, you must have at least one ECS instance. For more information
about how to purchase an ECS instance, see Purchase an ECS instance.

Procedure

Go to ApsaraDB for Redis homepage, and click Buy Now. Or you can log on to the Redis
console and click Create Instance in the upper-right corner.

Choose Region, Zone, Instance Type, Network Type, and Quantity, and set the Logon
Password and Instance Name.

Note:

Through configuration change, a master-slave instance can become a cluster
instance which has functions different to those of the master-slave instance.
For more information, see Commands supported by ApsaraDB for Redis.

For how to select network type, see Set the network type.

ApsaraDB for Redis can be accessed only through the intranet. We
recommend that you configure ApsaraDB for Redis instance and the ECS
instance in the same zone of the same region.

Click Buy Now to go to the Confirm Order page. Read and accept the Terms of Service for
ApsaraDB for Redis, check the order information, and click Pay Now to make the payment.

Select a payment method on the payment page and click the Confirm button. After you
make the payment, a message that reads “Payment Successful” is displayed. After one to
five minutes you can log on to the console to view the instance purchased.

Note: ApsaraDB for Redis is consistent with Redis in terms of product behavior. When a
new instance is created, it generates database metadata which occupies a fraction of
the instance’s storage space. The occupied space is shown on the ApsaraDB for Redis
Console.

For master-slave instances, the generated database metadata occupies a
space of about 32 MB.

ApsaraDB for Redis Quick Start

11

-

-

-

-

-

-

For cluster instances, the generated database metadata occupies a space of
about 32 MB multiplied by the number of nodes.

Connect to Redis

Connect to database with Redis clients

As ApsaraDB for Redis is completely compatible with the native database service, their databases are
connected in similar ways. Any clients compatible with the Redis protocol can access Alibaba Cloud
ApsaraDB for Redis. You can choose any Redis clients based on their application features.

Note: ApsaraDB for Redis only supports access requests from the Alibaba Cloud intranet rather than
those from the Internet. That means only Redis clients installed on ECS instances of the same node
can be connected to ApsaraDB for Redis for data operations.

To use Redis clients, see Clients.

Jedis client
phpredis client
redis-py client
C/C++ client
.net client
node-redis client

Jedis client

The Jedis client can access ApsaraDB for Redis through either of the following methods:

Jedis single-connection

JedisPool connection

Procedure

Click download address to download and install the Jedis client.

ApsaraDB for Redis Quick Start

12

Example of Jedis single-connection

Open the Eclipse client, create a project, and enter the following code segment:

Run the project. If the following result is output on the Eclipse console, you have
successfully connected to ApsaraDB for Redis.

Then you can use your local Jedis client to operate your ApsaraDB for Redis
instance. You can also connect to your ApsaraDB for Redis instance through
JedisPool.

Example of JedisPool connection

Open the Eclipse client, create a project, and configure the pom file as follows:

import redis.clients.jedis.Jedis;

public class jedistest {
public static void main(String[] args) {
try {
String host = "xx.kvstore.aliyuncs.com";//The access URL is displayed on the console.
int port = 6379;
Jedis jedis = new Jedis(host, port);
//Authentication information
jedis.auth("password");//password
String key = "redis";
String value = "aliyun-redis";
//Select a database. (The default value is 0.)
jedis.select(1);
//Set a key.
jedis.set(key, value);
System.out.println("Set Key " + key + " Value: " + value);
//Get the key.
String getvalue = jedis.get(key);
System.out.println("Get Key " + key + " ReturnValue: " + getvalue);
jedis.quit();
jedis.close();
} catch (Exception e) {
e.printStackTrace();
}
}
}

Set Key redis Value aliyun-redis
Get Key redis ReturnValue aliyun-redis

<dependency>
<groupId>redis.clients</groupId>

ApsaraDB for Redis Quick Start

13

Add the following application to the project:

If your Jedis client version is Jedis-2.7.2, enter the following code in the project:

If your Jedis client version is Jedis-2.6 or Jedis-2.5, enter the following code in the

<artifactId>jedis</artifactId>
<version>2.7.2</version>
<type>jar</type>
<scope>compile</scope>
</dependency>

import org.apache.commons.pool2.PooledObject;
import org.apache.commons.pool2.PooledObjectFactory;
import org.apache.commons.pool2.impl.DefaultPooledObject;
import org.apache.commons.pool2.impl.GenericObjectPoolConfig;

import redis.clients.jedis.HostAndPort;
import redis.clients.jedis.Jedis;
import redis.clients.jedis.JedisPool;
import redis.clients.jedis.JedisPoolConfig;

JedisPoolConfig config = new JedisPoolConfig();
//Maximum idle connections, which are evaluated by the application. Do not set it to a value
greater than the maximum connections of an ApsaraDB for Redis instance.
config.setMaxIdle(200);
//Maximum connections, which are evaluated by the application. Do not set it to a value
greater than the maximum connections of an ApsaraDB for Redis instance.
config.setMaxTotal(300);
config.setTestOnBorrow(false);
config.setTestOnReturn(false);

String host = "*.aliyuncs.com";
String password = "password";
JedisPool pool = new JedisPool(config, host, 6379, 3000, password);
Jedis jedis = null;
try {
jedis = pool.getResource();
/// ... do stuff here ... for example
jedis.set("foo", "bar");
String foobar = jedis.get("foo");
jedis.zadd("sose", 0, "car");
jedis.zadd("sose", 0, "bike");
Set<String> sose = jedis.zrange("sose", 0, -1);
} finally {
if (jedis != null) {
jedis.close();
}
}
/// ... when closing your application:
pool.destroy();

ApsaraDB for Redis Quick Start

14

project:

Run the project. If the following result is output on the Eclipse console, you have
successfully connected to ApsaraDB for Redis.

Then you can use your local Jedis client to operate your ApsaraDB for Redis
instance.

phpredis client

Procedure

Click download address to download and install the phpredis client.

JedisPoolConfig config = new JedisPoolConfig();
//Maximum idle connections, which are evaluated by the application. Do not set it to a value
greater than the maximum connections of an ApsaraDB for Redis instance.
config.setMaxIdle(200);
//Maximum connections, which are evaluated by the application. Do not set it to a value
greater than the maximum connections of an ApsaraDB for Redis instance.
config.setMaxTotal(300);
config.setTestOnBorrow(false);
config.setTestOnReturn(false);
String host = "*.aliyuncs.com";
String password = "password";
JedisPool pool = new JedisPool(config, host, 6379, 3000, password);
Jedis jedis = null;
boolean broken = false;
try {
jedis = pool.getResource();
/// ... do stuff here ... for example
jedis.set("foo", "bar");
String foobar = jedis.get("foo");
jedis.zadd("sose", 0, "car");
jedis.zadd("sose", 0, "bike");
Set<String> sose = jedis.zrange("sose", 0, -1);
} catch(Exception e) {
broken = true;
} finally {
if (broken) {
pool.returnBrokenResource(jedis);
} else if (jedis != null) {
pool.returnResource(jedis);
}
}

Set Key redis Value aliyun-redis
Get Key redis ReturnValue aliyun-redis

ApsaraDB for Redis Quick Start

15

3.

In any editor supporting php editing, enter the following code:

Run the preceding code. Then You can use your local phpredis client to access your
ApsaraDB for Redis instance. For more information, see
https://github.com/phpredis/phpredis.

redis-py client

Procedure

Click download address to download and install the redis-py client.

In any editor supporting Python editing, enter the following code. Then you can use a local
redis-py client to connect to and operate the database.

 <?php
/* Replace the following parameter values with the host of the connected instance and the port number. */
$host = "localhost";
$port = 6379;

/* Replace the following parameter values with the instance ID and instance password. */
$user = "test_username";
$pwd = "test_password";
$redis = new Redis();
if ($redis->connect($host, $port) == false) {
die($redis->getLastError());
}

if ($redis->auth($pwd) == false) {
die($redis->getLastError());
}
/* The database can be operated after authentication. For more information, see
https://github.com/phpredis/phpredis. */
if ($redis->set("foo", "bar") == false) {
die($redis->getLastError());
}
$value = $redis->get("foo");
echo $value;
?>

#!/usr/bin/env python
#-*- coding: utf-8 -*-
import redis

#Replace the following parameter values with the host of the connected instance and the port number.
host = 'localhost'
port = 6379

ApsaraDB for Redis Quick Start

16

C/C++ client

Procedure

Download, compile, and install the C client. The code for compiling and installation is as
follows:

Enter the following code in the C/C++ editor:

#Replace the following parameter values with the instance password.
pwd = 'test_password'
r = redis.StrictRedis(host=host, port=port, password=pwd)

#The database can be operated after a connection is created. For more information, see
https://github.com/andymccurdy/redis-py.
r.set('foo', 'bar');
print r.get('foo')

 git clone https://github.com/redis/hiredis.git
cd hiredis
make
sudo make install

 #include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <hiredis.h>
int main(int argc, char **argv) {
unsigned int j;
redisContext *c;
redisReply *reply;
if (argc < 4) {
printf("Usage: example xxx.kvstore.aliyuncs.com 6379 instance_id password\n");
exit(0);
}
const char *hostname = argv[1];
const int port = atoi(argv[2]);
const char *instance_id = argv[3];
const char *password = argv[4];
struct timeval timeout = { 1, 500000 }; // 1.5 seconds
c = redisConnectWithTimeout(hostname, port, timeout);
if (c == NULL || c->err) {
if (c) {
printf("Connection error: %s\n", c->errstr);
redisFree(c);
} else {
printf("Connection error: can't allocate redis context\n");
}
exit(1);
}

ApsaraDB for Redis Quick Start

17

Compile the preceding code.

/* AUTH */
reply = redisCommand(c, "AUTH %s", password);
printf("AUTH: %s\n", reply->str);
freeReplyObject(reply);
/* PING server */
reply = redisCommand(c,"PING");
printf("PING: %s\n", reply->str);
freeReplyObject(reply);
/* Set a key */
reply = redisCommand(c,"SET %s %s", "foo", "hello world");
printf("SET: %s\n", reply->str);
freeReplyObject(reply);
/* Set a key using binary safe API */
reply = redisCommand(c,"SET %b %b", "bar", (size_t) 3, "hello", (size_t) 5);
printf("SET (binary API): %s\n", reply->str);
freeReplyObject(reply);
/* Try a GET and two INCR */
reply = redisCommand(c,"GET foo");
printf("GET foo: %s\n", reply->str);
freeReplyObject(reply);
reply = redisCommand(c,"INCR counter");
printf("INCR counter: %lld\n", reply->integer);
freeReplyObject(reply);
/* again ... */
reply = redisCommand(c,"INCR counter");
printf("INCR counter: %lld\n", reply->integer);
freeReplyObject(reply);
/* Create a list of numbers, from 0 to 9 */
reply = redisCommand(c,"DEL mylist");
freeReplyObject(reply);
for (j = 0; j < 10; j++) {
char buf[64];
snprintf(buf,64,"%d",j);
reply = redisCommand(c,"LPUSH mylist element-%s", buf);
freeReplyObject(reply);
}
/* Let's check what we have inside the list */
reply = redisCommand(c,"LRANGE mylist 0 -1");
if (reply->type == REDIS_REPLY_ARRAY) {
for (j = 0; j < reply->elements; j++) {
printf("%u) %s\n", j, reply->element[j]->str);
}
}
freeReplyObject(reply);
/* Disconnects and frees the context */
redisFree(c);
return 0;
}

 gcc -o example -g example.c -I /usr/local/include/hiredis -lhiredis

ApsaraDB for Redis Quick Start

18

Perform the test run.

So far, the C/C++ client can connect to ApsaraDB for Redis.

.net client

Procedure

Download and use the .net client.

Create a .net project in the .net client.

Add the reference file stored in the library file directory ServiceStack.Redis/lib/tests to the
client.

Enter the following code in the created .net project to connect to ApsaraDB for Redis. For
more information about port use, see https://github.com/ServiceStack/ServiceStack.Redis.

 example xxx.kvstore.aliyuncs.com 6379 instance_id password

 git clone https://github.com/ServiceStack/ServiceStack.Redis

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using ServiceStack.Redis;
namespace ServiceStack.Redis.Tests
{
class Program
{
public static void RedisClientTest()
{
string host = "127.0.0.1";/*IP address of the access host*/
string password = "password";/*Password*/
RedisClient redisClient = new RedisClient(host, 6379, password);
string key = "test-aliyun";
string value = "test-aliyun-value";
redisClient.Set(key, value);
string listKey = "test-aliyun-list";
System.Console.WriteLine("set key " + key + " value " + value);
string getValue = System.Text.Encoding.Default.GetString(redisClient.Get(key));
System.Console.WriteLine("get key " + getValue);
System.Console.Read();

ApsaraDB for Redis Quick Start

19

node-redis client

Procedure

Download and install node-redis.

}
public static void RedisPoolClientTest()
{
string[] testReadWriteHosts = new[] {
"redis://password@127.0.0.1:6379"/*redis://password@access address:port number*/
};
RedisConfig.VerifyMasterConnections = false;//You must set the parameter.
PooledRedisClientManager redisPoolManager = new PooledRedisClientManager(10/*Number of
connection pools*/, 10/*Connection pool timeout time*/, testReadWriteHosts);for (int i = 0; i < 100;
i++){
IRedisClient redisClient = redisPoolManager.GetClient();//Obtain the connection.
RedisNativeClient redisNativeClient = (RedisNativeClient)redisClient;
redisNativeClient.Client = null;//ApsaraDB for Redis does not support client setname. Therefore, you
must set the client object to null.
try
{
string key = "test-aliyun1111";
string value = "test-aliyun-value1111";
redisClient.Set(key, value);
string listKey = "test-aliyun-list";
redisClient.AddItemToList(listKey, value);
System.Console.WriteLine("set key " + key + " value " + value);
string getValue = redisClient.GetValue(key);
System.Console.WriteLine("get key " + getValue);
redisClient.Dispose();//
}catch (Exception e)
{
System.Console.WriteLine(e.Message);
}
}
System.Console.Read();
}static void Main(string[] args)
{
//Single connection mode
RedisClientTest();
//Connection pool mode
RedisPoolClientTest();
}
}
}

 npm install hiredis redis

ApsaraDB for Redis Quick Start

20

Enter and run the following code in the node-redis client to connect to ApsaraDB for Redis.

Use ApsaraDB for Redis.

Connect to database through Redis-cli

ApsaraDB for Redis only supports access from Alibaba Cloud intranet. It does not support Internet
accesses. That is, only clients of ApsaraDB for Redis installed on ECSs of the same node can be
connected to ApsaraDB for Redis for data operations.

Note: Redis-cli is the native command line interface for Redis. You can first download and install
Redis on ECS before using Redis-cli. For the Redis installation commands, refer to the official
doucment here.

You can run the following redis-cli command to connect to ApsaraDB for Redis:

Connect to a database through the Internet

 var redis = require("redis"),
client = redis.createClient({detect_buffers: true});
client.auth("password", redis.print)

 // Write data.
client.set("key", "OK");
// Obtain data and a string is returned.
client.get("key", function (err, reply) {
console.log(reply.toString()); // print `OK`
});
// If a buffer is transmitted, a buffer is returned.
client.get(new Buffer("key"), function (err, reply) {
console.log(reply.toString()); // print `<Buffer 4f 4b>`
});
client.quit();

redis-cli -h instance connection address -a Password

ApsaraDB for Redis Quick Start

21

Prerequisites

To access an ApsaraDB for Redis instance from a local PC to operate data, configure the port
forwarding on ECS. However, the following prerequisites must be met:

If the ApsaraDB for Redis instance is in a VPC, ECS and the ApsaraDB for Redis instance must
be in the same VPC.

If the ApsaraDB for Redis instance is in a classic network, ECS and the ApsaraDB for Redis
instance must be in the same node (region).

If an IP address whitelist is configured for the ApsaraDB for Redis instance, the ECS Intranet
address must be added to the whitelist.

ECS Windows

Currently, ApsaraDB for Redis is accessible through ECS Intranet. To locally access ApsaraDB for Redis
through a public network, perform port mapping using netsh on the ECS Windows server.

Log on to the ECS Windows server and run the following command in CMD:

To view all port forwarding rules on the server, run netsh interface portproxy show all.

Perform a verification test locally after configuration is complete.

Run redis-cli locally to connect to the ECS Windows server. For example, if the IP
address of the ECS Windows server is 1.1.1.1, you can telnet to 1.1.1.1 6379.

 netsh interface portproxy add v4tov4 listenaddress=ECS public IP address listenport=6379
connectaddress=connection address of ApsaraDB for Redis connectport=6379

ApsaraDB for Redis Quick Start

22

3.

After the ECS Windows server is connected, enter the password to connect to
ApsaraDB for Redis: auth Redis connection password.

Write data and perform query and verification.

After performing the preceding steps, you can use a local PC or server to connect
to port 6379 of the ECS Windows server through a public network and access
ApsaraDB for Redis.

Note: As portproxy is provided by Microsoft rather than open source
software, read the netsh documentation on portproxy or consult Microsoft
engineers if you have any problems in the configuration or usage process.
Alternatively, use another scheme, for example, use portmap to configure
proxy mappings.

After finishing related operations, you can run netsh interface portproxy delete v4tov4
listenaddress=ECS public IP address listenport=6379 to delete the public network
forwarding rule.

ECS Linux

Currently, ApsaraDB for Redis is accessible through ECS Intranet. To locally access ApsaraDB for Redis
through a public network, install rinetd on the ECS Linux server to perform forwarding.

Install rinetd on the ECS Linux server.

Note: The rinetd installation package obtained from the download URL may be
unavailable. You can find and download the rinetd installation package from other
sources.

Open the configuration file rinetd.conf.

Add the following content to the configuration file:

 wget http://www.boutell.com/rinetd/http/rinetd.tar.gz&&tar -xvf rinetd.tar.gz&&cd rinetd
sed -i 's/65536/65535/g' rinetd.c (Modify the port range.)
mkdir /usr/man&&make&&make install

 vi /etc/rinetd.conf

ApsaraDB for Redis Quick Start

23

Note: You can run cat /etc/rinetd.conf to check whether the configuration file is
correctly modified.

Run the following command to start rinetd.

Notes:

You can run echo rinetd >>/etc/rc.local to set auto startup for rinetd.

If a binding error is reported, run pkill rinetd to terminate the process and run
rinetd to start the rinetd process.

After rinetd is started normally, run netstat -anp | grep 6379 to check whether
the service works properly.

Perform a verification test locally.

You can run redis-cli locally to connect to the ECS Linux server for logon
verification. For example, if the IP address of the server with rinetd installed is
1.1.1.1, run redis-cli -h 1.1.1.1 -a ApsaraDB for Redis instance ID:ApsaraDB for
Redis password. Alternatively, telnet to the ECS Linux server and perform the
operation verification. For example, if the IP address of the ECS Linux server is
1.1.1.1, you can telnet to 1.1.1.1 6379.

After the ECS Linux server is connected, enter the password to connect to
ApsaraDB for Redis: auth Redis connection password.

Write data and perform query and verification.

 0.0.0.0 6379 Connection address of port 6379 of ApsaraDB for Redis
logfile /var/log/rinetd.log

 rinetd

ApsaraDB for Redis Quick Start

24

After performing the preceding steps, you can use a local PC or server to connect to port 6379 of the
ECS Linux server through a public network and access ApsaraDB for Redis.

Note: You can use the preceding scheme to test and use rinetd. As rinetd is open source
software, read its official documentation or contact rinetd engineers for help if you have any
problems in use.

ApsaraDB for Redis Quick Start

25

	Quick Start
	Get started with Redis
	Purpose of the document
	Target reader
	Quick start flowchart

	About Redis console
	Prerequisites
	Console overview
	Console homepage
	Maintenance window

	Performance monitoring
	Alarm settings
	System parameters
	Backup and recovery

	Limits
	Supported Redis commands
	Supported command operations
	Commands temporarily unavailable
	Commands restricted for cluster instances
	Self-developed commands for cluster instances

	Create an instance
	Prerequisites
	Procedure
	Note:

	Connect to Redis
	Connect to database with Redis clients
	Jedis client
	Procedure

	phpredis client
	Procedure

	redis-py client
	Procedure

	C/C++ client
	Procedure

	.net client
	Procedure

	node-redis client
	Procedure

	Connect to database through Redis-cli
	Connect to a database through the Internet
	Prerequisites
	ECS Windows
	ECS Linux

