
Table Store

Quick Start

Quick Start

From SQL to NoSQL

Comparison between SQL and NoSQL

NoSQL is a term used to describe the highly-scalable, high-performance non-relational databases.
NoSQL databases provide schemafree data models, so that applications do not require a predefined
table structure. These databases are suitable for businesses that are diversified. Also, their support for
ultra-large data volumes and high concurrency makes NoSQL databases suitable for a wide range of
applications.

Comparison of SQL and NoSQL databases

Relational database NoSQL database

Data model

Relational models normalize
data, strictly defining tables,
columns, indexes, the
relations between tables, and
other database elements.
This means that all data in a
data table has the same
structure.

NoSQL databases generally
do not strictly define the
table structure. Usually,
partition keys and key values
are used to retrieve values,
column sets, or semi-
structured data.

ACID

Conventional relational
databases support a group
of attributes defined by ACID
(Atomicity, Consistency,
Isolation and Durability).
Atomicity means that a
transaction either succeeds
or fails completely.
Consistency means that
database transactions cannot
undermine the integrity of
related data and the
consistency of the business
logic. Isolation requires that
concurrent transactions be
executed separately, so they

In order to achieve a more
flexible horizontally-scalable
data model, NoSQL
databases generally forgo
some of the ACID attributes
of conventional relational
databases. With these
features, NoSQL databases
can be used to overcome the
problems of performance
bottlenecks, scalability,
operational complexity, and
constantly increasing
management and support
costs. This makes NoSQL
databases superior to

Table Store Quick Start

1

Why should I use Table Store?

Table Store is a type of NoSQL database. It provides massive NoSQL data storage capabilities,
supports schemafree data models, and provides single-row transactions. The server automatically
performs partitioning and load balancing for data. It can be easily scaled up when individual tables
are increased from 1 gigabyte to 1 terabyte, and even to 1 petabyte, or when concurrent access
requests surge from 0 to 1 million. The server writes terabytes and petabytes of data within one
millisecond. The read performance depends on the size of the results set, rather than the overall table
size.

Therefore, in OLTP (OnLine Transaction Processing) scenarios, Table Store is better suited for web
applications, for example, social networks, games, media sharing, IoT, and log monitoring.

To learn more about the Table Store data model, see Data Model Concepts.

do not interfere with each
other. Durability means that,
once a transaction is
submitted, its modifications
will be permanently saved in
the database. They will not
be lost even if the server
goes down.

conventional relational
databases when facing the
challenges of massive data
volumes and high
concurrency.

Performance

Database performance is
generally determined by the
underlying storage, dataset
size, query optimization,
index and table structure.

Write performance is
generally limited by the
underlying storage, while
read performance is limited
by the size of the results set.

Scaling

For vertical scaling, the
simplest method is to deploy
better hardware with
increased CPU speed and
greater disk space. The use
of related tables across
distributed systems requires
an increase in usage costs
and technical complexity.

Horizontal scaling can be
achieved using distributed
clusters of low-cost
hardware. Therefore, the
throughput and data scale
can be increased without
increasing the latency.

APIs

Data storage and retrieval
requests are sent using
queries that comply with
structured query language
(SQL). These queries are
parsed and executed by the
relational database system.

Application developers can
use NoSQL database Open
APIs to conveniently store
and retrieve data. Using
partition keys and key values,
applications can query key
value pairs, column sets, and
semi-structured data.

Table Store Quick Start

2

Database access

Different from conventional relational databases, the client accesses Table Store over HTTP.

The figure below shows the interaction between a client and a relational database and that between a
client and Table Store.

The client accesses Table Store through a Restful API in an HTTP packet. The Table Store server
verifies the signature in the packet. For more details, refer to Using Table Store APIs. If you use the
SDK provided by Alibaba Cloud, you can call the SDK APIs to perform data operations as long as you
have the provided Table Store endpoint, instance and access key.

Table Store accesses data from a client. The client must be initialized as follows:

To initialize the client, you must enter the following parameters:

endPoint: The URL used to access the Table Store instance.

accessKeyId: The AccessKeyId used to access Table Store.

accessKeySecret: The AccessKeySecret used to access Table Store.

instanceName: The instance name used to access Table Store.

For more information, refer to Access control.

 final String endPoint = "";
final String accessKeyId = "";
final String accessKeySecret = "";
final String instanceName = "";
SyncClient client = new SyncClient(endPoint, accessKeyId, accessKeySecret, instanceName);

Table Store Quick Start

3

Create a table

A table is the basic data structure in both RDS and Table Store. When creating an RDS table, you
must define the entire data structure. In contrast, you only need to define the primary keys when
creating a Table Store table.

SQL

In the example below, we will use the CREATE TABLE statement to create a table.

This table’s primary keys include user_id and time_stamp. When creating a data table, you must
strictly define all primary key and attribute columns. If needed, you can use the ALTER TABLE
statement to modify these definitions.

Table Store

Here, we will use Table Store to create a data table and set the following parameters:

CREATE TABLE UserHistory (
user_id VARCHAR(20) NOT NULL,
time_stamp INT NOT NULL,
item_id VARCHAR(50),
behavior_type VARCHAR(10),
behavior_amount DOUBLE,
behavior_count INT,
content VARCHAR(100),
PRIMARY KEY(user_id, time_stamp)
);

 public static final String TABLE_NAME = "UserHistory";

TableMeta tableMeta = new TableMeta(TABLE_NAME);
tableMeta.addPrimaryKeyColumn(new PrimaryKeySchema("user_id", PrimaryKeyType.STRING));
tableMeta.addPrimaryKeyColumn(new PrimaryKeySchema("time_stamp", PrimaryKeyType.INTEGER));

// The data expiration time in seconds; -1 indicates data do not expire. To set the expiration time to 1 year, use 365
* 24 * 3600
int timeToLive = -1;

// The max number of versions to save. If it is set to 3, each column will only save the latest three versions
int maxVersions = 3;

TableOptions tableOptions = new TableOptions(timeToLive, maxVersions);
CreateTableRequest request = new CreateTableRequest(tableMeta, tableOptions);

// Set the reserved read/write throughput. If not set, the reserved throughput is set to 0 by default
request.setReservedThroughput(new ReservedThroughput(new CapacityUnit(1, 1)));

Table Store Quick Start

4

This table’s primary keys include user_id and time_stamp. You must provide the following
parameters:

TABLE_NAME: The name of the table.

PrimaryKeySchema: The names and types of primary keys.

timeToLive: The expiration time of data in the data table.

maxVersion: The maximum number of versions retained by each attribute column.

ReservedThroughtput: The data table’s reserved read/write throughput. Reserved
throughput cannot be set for container-type instances.

Write data

SQL

In RDS, a table is a two-dimensional data structure composed of rows and columns. You can use the
INSERT statement to add rows to a table, as shown below:

Table Store

In Table Store, you can use the PutRow API to insert a row of data, as shown below:

client.createTable(request);

INSERT INTO UserHistory (
user_id, time_stamp, item_id, behavior_type,
behavior_amount, behavior_count, content)
VALUES(
'10100', 1479265526, 'cell_phone', 'share', 4.9, 78,
'The phone is quit good!'
);

 // Set primary keys
PrimaryKeyBuilder primaryKeyBuilder = PrimaryKeyBuilder.createPrimaryKeyBuilder();
primaryKeyBuilder.addPrimaryKeyColumn("user_id", PrimaryKeyValue.fromString("10100"));
primaryKeyBuilder.addPrimaryKeyColumn("time_stamp", PrimaryKeyValue.fromLong(1479265526));

Table Store Quick Start

5

Notes in using the PutRow API:

Except for TABLE_NAME and primaryKey, attribute columns and types can be defined during
data writing.

Attribute columns of the same names in multiple rows of data do not have to be of the same
types.

Big data SQL databases are transaction-oriented. When an INSERT statement is issued, the
data modifications will be made permanently only after the COMMIT statement is received.
In Table Store, when the HTTP 200 (OK) status code is returned, this means the data written
by PutRow have been made permanently in all copies.

You can use the BatchWriteRow API to insert multiple records, significantly improving the
data writing speed.

Query data

SQL

You can use the SQL SELECT statement to query primary key columns, non-primary key columns, or
any specified columns. The WHERE clause confirms the rows to return, as shown in the example
below:

PrimaryKey primaryKey = primaryKeyBuilder.build();

// Set the attribute column value
RowPutChange rowPutChange = new RowPutChange(TABLE_NAME, primaryKey);
rowPutChange.addColumn(new Column("item_id", ColumnValue.fromString("cell_phone")));
rowPutChange.addColumn(new Column("behavior_type", ColumnValue.fromString("share")));
rowPutChange.addColumn(new Column("behavior_amount", ColumnValue.fromDouble(4.9)));
rowPutChange.addColumn(new Column("behavior_count", ColumnValue.fromLong(78)));
rowPutChange.addColumn(new Column("content", ColumnValue.fromString("The phone is quit good!")));

// Insert this row of data
client.putRow(new PutRowRequest(rowPutChange));

// Query one row based on a primary key
SELECT * FROM UserHistory
WHERE user_id = '10100' AND time_stamp = 1479265526;

// Query all data for a specified user_id

Table Store Quick Start

6

Table Store

In Table Store, the data query API can be used to retrieve data in a similar way. For single row queries,
the GetRow and GetRange APIs provide a fast and efficient way to access the physical location of
stored data. In this case the query performance is only affected by the size of the resulting dataset,
rather than the total volume of data in the table.

By providing complete primary key information, you can use the GetRow API to quickly
query the specified row of data, as shown below:

You can use the GetRange API to query all data of a specified user_id, as shown below:

SELECT * FROM UserHistory
WHERE user_id = '10100';

// Query all records of a specified user_id in a specified time period
SELECT * FROM UserHistory
WHERE user_id = '10100' AND time_stamp > 1478660726 AND time_stamp < 1479265526;

// Query all favorite records for a specified user_id
SELECT * FROM UserHistory
WHERE user_id = '10100' AND behavior_type = 'collect';

 // SELECT * FROM UserHistory WHERE user_id = '10100' AND time_stamp = 1479265526;
// Set primary key information
PrimaryKeyBuilder primaryKeyBuilder = PrimaryKeyBuilder.createPrimaryKeyBuilder();
primaryKeyBuilder.addPrimaryKeyColumn('user_id', PrimaryKeyValue.fromString("10100"));
primaryKeyBuilder.addPrimaryKeyColumn('time_stamp', PrimaryKeyValue.fromLong(1479265526));
PrimaryKey primaryKey = primaryKeyBuilder.build();

// Read a row
SingleRowQueryCriteria criteria = new SingleRowQueryCriteria(TABLE_NAME, primaryKey);
// Set the latest version to be read
criteria.setMaxVersions(1);
GetRowResponse getRowResponse = client.getRow(new GetRowRequest(criteria));

 // Equivalent to SELECT * FROM UserHistory WHERE user_id = '10100'
RangeRowQueryCriteria rangeRowQueryCriteria = new RangeRowQueryCriteria(TABLE_NAME);
// Set StartPrimaryKey
PrimaryKeyBuilder primaryKeyBuilder = PrimaryKeyBuilder.createPrimaryKeyBuilder();
primaryKeyBuilder.addPrimaryKeyColumn("user_id", PrimaryKeyValue.fromString("10100"));
primaryKeyBuilder.addPrimaryKeyColumn("time_stamp", PrimaryKeyValue.INF_MIN);
rangeRowQueryCriteria.setInclusiveStartPrimaryKey(primaryKeyBuilder.build());

// Set EndPrimaryKey
primaryKeyBuilder = PrimaryKeyBuilder.createPrimaryKeyBuilder();
primaryKeyBuilder.addPrimaryKeyColumn("user_id", PrimaryKeyValue.fromString("10100"));
primaryKeyBuilder.addPrimaryKeyColumn("time_stamp", PrimaryKeyValue.INF_MAX);
rangeRowQueryCriteria.setExclusiveEndPrimaryKey(primaryKeyBuilder.build());

Table Store Quick Start

7

Note:

When using the GetRange API, you must specify the start point for all primary keys,
but the ranges of each primary key are not connected by the AND operator. Also,
when sorting rows from the first to the last primary key, priority is given to the
primary key added first. When this primary key is in the GetRange operation’s
start-end primary key range, data from the corresponding row will be read. For
example, if the range for two primary keys is (‘a’,5)-(‘c’,10), data with the
primary key (‘b’,4) will be read because 'a' < 'b' < 'c'.

The INF_MIN and INF_MAX are specialized types for the GetRange operation, which
specify the minimum and maximum values respectively.

GetRange supports the limit and direction parameters, which control the number of
rows in the results set and the order in which rows are read.

To prevent network delays, the GetRange API implements a limit on the returned
results set. It also judges the next_start_primary_key returned in the response. If this
is blank, it indicates all results have been returned; otherwise, the API continues
reading results.

GetRange supports the Filter function.

Table Store supports the Multiple Data Versions function. When using the GetRow
and GetRange APIs, you can specify the range of historical attribute column data
versions to read.

You can use the GetRange API to query all data from a specified time period, as shown
below:

// Set the latest version to be read
rangeRowQueryCriteria.setMaxVersions(1);

// Read all attribute columns by default
GetRangeResponse getRangeResponse = client.getRange(new
GetRangeRequest(rangeRowQueryCriteria));

 // SELECT * FROM UserHistory WHERE user_id = '10100' AND time_stamp >= 1478660726 AND
time_stamp < 1479265526;
RangeRowQueryCriteria rangeRowQueryCriteria = new RangeRowQueryCriteria(TABLE_NAME);
// Set StartPrimaryKey
PrimaryKeyBuilder primaryKeyBuilder = PrimaryKeyBuilder.createPrimaryKeyBuilder();

Table Store Quick Start

8

This query is equivalent to:

To perform condition checks on attribute columns, you can use the Filter Function. For
example, to query all favorite records for a specified user_id:

primaryKeyBuilder.addPrimaryKeyColumn("user_id", PrimaryKeyValue.fromString("10100"));
primaryKeyBuilder.addPrimaryKeyColumn("time_stamp", PrimaryKeyValue.fromLong(1478660726));
rangeRowQueryCriteria.setInclusiveStartPrimaryKey(primaryKeyBuilder.build());

// Set EndPrimaryKey
primaryKeyBuilder = PrimaryKeyBuilder.createPrimaryKeyBuilder();
primaryKeyBuilder.addPrimaryKeyColumn("user_id", PrimaryKeyValue.fromString("10100"));
primaryKeyBuilder.addPrimaryKeyColumn("time_stamp", PrimaryKeyValue.fromLong(1479265526));
rangeRowQueryCriteria.setExclusiveEndPrimaryKey(primaryKeyBuilder.build());

// Set the latest version to be read
rangeRowQueryCriteria.setMaxVersions(1);

// Read all attribute columns by default
GetRangeResponse getRangeResponse = client.getRange(new
GetRangeRequest(rangeRowQueryCriteria));

SELECT * FROM UserHistory
WHERE user_id = '10100' AND time_stamp > 1478660726 AND time_stamp < 1479265526;

 // SELECT * FROM UserHistory WHERE user_id = '10100' AND behavior_type = 'collect';
RangeRowQueryCriteria rangeRowQueryCriteria = new RangeRowQueryCriteria(TABLE_NAME);
// Set StartPrimaryKey
PrimaryKeyBuilder primaryKeyBuilder = PrimaryKeyBuilder.createPrimaryKeyBuilder();
primaryKeyBuilder.addPrimaryKeyColumn("user_id", PrimaryKeyValue.fromString("10100"));
primaryKeyBuilder.addPrimaryKeyColumn("time_stamp", PrimaryKeyValue.INF_MIN);
rangeRowQueryCriteria.setInclusiveStartPrimaryKey(primaryKeyBuilder.build());

// Set EndPrimaryKey
primaryKeyBuilder = PrimaryKeyBuilder.createPrimaryKeyBuilder();
primaryKeyBuilder.addPrimaryKeyColumn("user_id", PrimaryKeyValue.fromString("10100"));
primaryKeyBuilder.addPrimaryKeyColumn("time_stamp", PrimaryKeyValue.INF_MAX);
rangeRowQueryCriteria.setExclusiveEndPrimaryKey(primaryKeyBuilder.build());

// Set the attribute column filter condition: behavior_type = 'collect'
SingleColumnValueFilter filter = new SingleColumnValueFilter("behavior_type",
SingleColumnValueFilter.CompareOperator.EQUAL, ColumnValue.fromString("collect"));
// Table Store is a schemafree model, so some rows do not have the attribute column behavior_type
// Set to false, indicating that, if this row does not have the attribute column behavior_type, it does not
satisfy the conditions
filter.setPassIfMissing(false);
rangeRowQueryCriteria.setFilter(filter);

// Set the latest version to be read
rangeRowQueryCriteria.setMaxVersions(1);

// Read all attribute columns by default

Table Store Quick Start

9

This query is equivalent to:

You can also achieve this using the following method:

This operation scans the entire table and finds records that meet the conditions
user_id='10100' AND behavior_type='collect'. However, as this is a full table scan, it is much
less efficient than a query based on a specified primary key range.

Note:

Filters support combinations of up to 10 conditions and can be used in the GetRow,
BatchGetRow, and GetRange APIs.

Filters are applied to GetRange data at the server side, so they do not reduce the
number of disk I/O operations. However, filters effectively reduce traffic transmitted
over the network.

GetRangeResponse getRangeResponse = client.getRange(new
GetRangeRequest(rangeRowQueryCriteria));

SELECT * FROM UserHistory
WHERE user_id = '10100' AND behavior_type = 'collect';

 // SELECT * FROM UserHistory WHERE user_id = '10100' AND behavior_type = 'collect';
RangeRowQueryCriteria rangeRowQueryCriteria = new RangeRowQueryCriteria(TABLE_NAME);
// Set StartPrimaryKey
PrimaryKeyBuilder primaryKeyBuilder = PrimaryKeyBuilder.createPrimaryKeyBuilder();
primaryKeyBuilder.addPrimaryKeyColumn("user_id", PrimaryKeyValue.INF_MIN);
primaryKeyBuilder.addPrimaryKeyColumn("time_stamp", PrimaryKeyValue.INF_MIN);
rangeRowQueryCriteria.setInclusiveStartPrimaryKey(primaryKeyBuilder.build());

// Set EndPrimaryKey
primaryKeyBuilder = PrimaryKeyBuilder.createPrimaryKeyBuilder();
primaryKeyBuilder.addPrimaryKeyColumn("user_id", PrimaryKeyValue.INF_MAX);
primaryKeyBuilder.addPrimaryKeyColumn("time_stamp", PrimaryKeyValue.INF_MAX);
rangeRowQueryCriteria.setExclusiveEndPrimaryKey(primaryKeyBuilder.build());

// Set the data filer conditions: user_id='10100' and behavior_type = 'collect'
SingleColumnValueFilter filter1 = new SingleColumnValueFilter("user_id",
SingleColumnValueFilter.CompareOperator.EQUAL, ColumnValue.fromString("10100"));
SingleColumnValueFilter filter2 = new SingleColumnValueFilter("behavior_type",
SingleColumnValueFilter.CompareOperator.EQUAL, ColumnValue.fromString("collect"));
CompositeColumnValueFilter filter = new
CompositeColumnValueFilter(CompositeColumnValueFilter.LogicOperator.AND);
filter.addFilter(filter1);
filter.addFilter(filter2);
rangeRowQueryCriteria.setFilter(filter);

Table Store Quick Start

10

A good primary key design significantly improves the efficiency of range queries.

Update data

SQL

In RDS, you can use the UPDATE statement to modify one or more rows in a table, as shown below:

Table Store

In Table Store, you can use the UpdateRow API to update one row of data, as shown below:

Note:

Using UpdateRow, you must specify the table name TABLE_NAME and all primary keys
primaryKey. Also, the column to be updated may or may not already exist.

UpdateRow will only modify the columns to be modified in a single row. PutRow can be used

UPDATE UserHistory
SET behavior_type = 'collect'
WHERE user_id = '10100' AND time_stamp = 1479265526 AND behavior_count > 4.0;

 // Set primary keys
PrimaryKeyBuilder primaryKeyBuilder = PrimaryKeyBuilder.createPrimaryKeyBuilder();
primaryKeyBuilder.addPrimaryKeyColumn("user_id", PrimaryKeyValue.fromString("10100"));
primaryKeyBuilder.addPrimaryKeyColumn("time_stamp", PrimaryKeyValue.fromLong(1479265526));
PrimaryKey primaryKey = primaryKeyBuilder.build();

// Set the update conditions. Here, we expect the row to already exist and will only update the row if the
behavior_count value is greater than 4.0
Condition condition = new Condition(RowExistenceExpectation.EXPECT_EXIST);
condition.setColumnCondition(new SingleColumnValueCondition("behavior_count",
SingleColumnValueCondition.CompareOperator.GREATER_THAN, ColumnValue.fromDouble(4.0)));
rowUpdateChange.setCondition(condition);

// Set the attribute column value
RowUpdateChange rowUpdateChange = new RowUpdateChange(TABLE_NAME, primaryKey);
rowUpdateChange.put(new Column("behavior_type", ColumnValue.fromSting("collect")));

// Insert this row of data
client.updateRow(new UpdateRowRequest(rowUpdateChange));

Table Store Quick Start

11

to overwrite all data in an existing row.

For the update operation, you can set two types of check conditions: Row Existence Check
and Condition Checks.

In SQL, the UPDATE statement will update all records that satisfy the WHERE condition. Table
Store’s UpdateRow API will only update the one row of data with the specified primary key.
The condition check function will only check the primary key and attribute columns of this
row.

You can use the BatchWriteRow API to update multiple records, significantly improving the
data writing speed.

Delete data

SQL

In RDS, you can use the DELETE statement to delete one or more rows of data from a table, as shown
below:

Table Store

In Table Store, you can use the DeleteRow API to delete one row of data at a time, as shown below:

Note:

DELETE FROM UserHistory
WHERE user_id = '10100' and time_stamp = 1479265526;

 // Set primary keys
PrimaryKeyBuilder primaryKeyBuilder = PrimaryKeyBuilder.createPrimaryKeyBuilder();
primaryKeyBuilder.addPrimaryKeyColumn("user_id", PrimaryKeyValue.fromString("10100"));
primaryKeyBuilder.addPrimaryKeyColumn("time_stamp", PrimaryKeyValue.fromLong(1479265526));
PrimaryKey primaryKey = primaryKeyBuilder.build();

RowDeleteChange rowDeleteChange = new RowDeleteChange(TABLE_NAME, primaryKey);

// Delete this row of data
client.deleteRow(new DeleteRowRequest(rowDeleteChange));

Table Store Quick Start

12

Using DeleteRow, you must specify the table name TABLE_NAME and all primary keys
primaryKey. Also, you can only delete one row of data.

Just like UpdateRow, DeleteRow supports Condition Checks.

In SQL, the DELETE statement will delete all records that satisfy the WHERE condition. Table
Store’s DeleteRow API will only delete the one row of data with the specified primary key.
The condition check function will only check the primary key and attribute columns of this
row.

You can use the BatchDeleteRow API to delete multiple records, significantly improving the
data deletion speed.

Delete a table

SQL

In RDS, you can use the DROP TABLE statement to delete data tables that are no longer needed, as
shown below:

Table Store

In Table Store, you can use the DeleteTable API to delete a data table at a time, as shown below:

Note: Once a table is deleted, it cannot be recovered.

Operations of Table Store

Table Store supports the following three types of operations.

DROP TABLE UserHistory;

 DeleteTableRequest request = new DeleteTableRequest(TABLE_NAME);
client.deleteTable(request);

Table Store Quick Start

13

Table operations

ListTable: List all tables in the current instance.

CreateTable: Create a table.

DeleteTable: Delete a table.

DescribeTable: Get the attribute information of a table.

UpdateTable: Update the configuration of the reserved read/write throughput of a table.

For the detailed information, refer to Tables of Table Store.

Data operations

The data operations of Table Store could be classified into the following three types:

Single-row operations:

GetRow: Read the data of a single row.

PutRow: Insert a new row. If the row already exists, the existed row will be deleted
first and the inserted row will be written as a new row.

UpdateRow: Update a row. The operation can add and delete the Attribute columns
in the row, or update the value of the Attribute columns that already exists. If such
row does not exist, the operation will add a new row.

DeleteRow: Delete a row.

Batch operations:

BatchGetRow: Batch operation of multiple GetRow operations, which will read
several rows of data from one or more tables.

BatchWriteRow: Batch operation of multiple PutRow, UpdateRow and DeleteRow
operations, which will insert, update and delete several rows of data from one or

Table Store Quick Start

14

●

more tables.

Read range:

GetRange: Read data within a continuous range of the primary key columns in the
table.

Writing operations

The writing operations of Table Store have the following features:

Atomicity

The results of PutRow, UpdateRow and DeleteRow operations guarantee atomicity, as those
operations shall either succeed or fail without any intermediate state.

Strong consistency

When a data writing operation receives the success response, all copies of the data in the
distributed file system have been already updated. Any reading operation will then fetch the
latest data of the written row.

Note

Table Store provides BatchWriteRow operation to batch process the write operations of several single
rows. The operation can contain all types of the single operation, including PutRow, UpdateRow and
DeleteRow. BatchWriteRow operation does not guarantee atomicity as a whole, meanwhile each
single writing operation in it guarantees atomicity. Therefore, the response of one batch writing
operation may contain several success or failure responses for each single writing operation.

For more information, refer to Data operations of Table Store.

Table Store activation procedure

Preparation

Check that you have activated an Alibaba Cloud account and logged on with the account (to
activate an account, click here).

Table Store Quick Start

15

Read the Table Store pricing carefully.

Note: Billing based on the reserved read/write throughput starts immediately after a table is
created if the value of reserved read/write throughput is not 0.

Operation procedure

Log on to the Table Store console of Alibaba Cloud or the official website of Table Store.

Click Purchase now.

Check Accept Service Terms and click Activate now.

Use the Table Store console

Table Store console overview

The Table Store (formerly called OTS) console has a graphical user interface (GUI) allowing you to
perform the following operations:

Create, update and release instances.

Create, update and delete tables.

View and monitor table data.

Instance management

Create an instance

Table Store Quick Start

16

Log on to the Table Store console (the Instance List page).

Select a region.

Note: When you select a region, the instance specifications supported in this region are
shown on the page.

Click Create Instance in the top-right corner.

Fill in the required information and select the instance specification.

Note:

Follow the instance naming conventions.

Up to 10 instances can be created under a single Alibaba Cloud account. The
instance name must be globally unique.

The instance specification can not be modified after the instance is created. On
how to select the instance specification, refer to Product Introduction-Region and
instance.

Click Confirm and wait for several seconds. If the newly created instance does not appear in
the instance list, click Refresh to refresh the Instance List page.

Manage an instance

Log on to the Table Store console (the Instance List page).

Select the instance to be managed and click its name or the Manage button in the Action
column to go to the Instance Detail page. You can do the following management:

The Instance Detail page shows the information about the instance, such as
instance access URL, VPC list and table list.

You can change the instance network type, bind VPC and create tables.

Release an instance

Table Store Quick Start

17

Log on to the Table Store console (the Instance List page).

Select the instance to be managed and click Release in the Action column.

Note: You must delete all the tables in the instance first before you release this instance.

Click Release in the confirmation dialog box.

Table management

Create a table

Log on to the Table Store console (the Instance List page).

Locate the target instance and click its name or Manage in the Action column to go to the
Instance Detail page.

Click Create Table.

Note: Up to 64 tables can be created in an instance.

Fill in the required information and pay attention to the following issues:

The table name must be unique at the instance level.

The tables in the high-performance instance (currently does not support
MaxVersions) and capacity instance have different attributes information.

If the table is created in a high-performance instance, you must specify
the reserved read throughput and write throughput.

Note: Billing based on the reserved throughput starts immediately after
the table is created. The reserved throughput can be set to 0 CU.
Configuring the reserved read/write throughput does not affect the
table’s read/write performance and service capability.

If the table is created in a capacity instance, you must specify TTL

Table Store Quick Start

18

(minimum: 86400s or –1), MaxVersions and MaxTimeDeviation. For
details, refer to the data model description in Product Introduction -
Concepts explanation.

Set the table’s Primary Key columns (Columns 1 – 4). The key type can be Integer or
String. Once set, the configuration and order of the Primary Keys cannot be changed. Click
Add a table Primary Key to add the Primary Keys.

Click Confirm.

The page returns to the Instance Detail page automatically. After the table is successfully
created, it is displayed in the table list. You can click Refresh to refresh the table list.

Update a table

The Table Store console allows you to modify the reserved read/write throughput of a table created
in a high-performance instance, and to modify the TTL, MaxVersions and MaxTimeDeviation of a
table created in a capacity instance.

Modify the reserved read/write throughput of a table created in a high-performance instance

Log on to the Table Store console (the Instance List page).

Locate the target instance and click its name or Manage in the Action column to go to the
Instance Detail page.

Locate the table to be updated in the table list, and click adjustTableAttr in the Action
column.

Fill in the new Reserved read throughputs and Reserved write throughputs according to
relevant rules.

Click Confirm and return to the Instance Detail page. The new reserved read/write
throughputs take effect immediately.

Modify the TTL, MaxVersions and MaxTimeDeviation of a table created in a capacity instance

Log on to the Table Store console (the Instance List page).

Locate the target instance and click its name or Manage in the Action column to go to the

Table Store Quick Start

19

Instance Detail page.

Locate the table to be updated in the table list and click adjustLifeCycle in the Action
column.

Fill in the new TTL, MaxVersion and MaxTimeDeviation according to relevant rules.

Click Confirm and return to the Instance Detail page. The new TTL, MaxVersions and
MaxTimeDeviation take effect immediately.

Delete a table

Log on to the Table Store console (the Instance List page).

Locate the target instance and click its name or Manage in the Action column to go to the
Instance Detail page.

Locate the table to be deleted in the table list and click Delete in the Action column.

Click Delete and the table will be deleted permanently.

Note：Data within the table can not be retrieved after the table is deleted.

Table information and monitoring indicators

Basic information

You can view the basic information and actual usage of your tables on the table management page
(table list). For example:

The table name

The reserved read/write throughput

The last adjusting time

Primary Keys (sorted in the order specified during table creation)

Table Store Quick Start

20

Monitoring indicators

You can view the monitoring indicators of a table, such as the source data size, QPS, the read/write
throughputs and the average response latency.

Source data size: It indicates the size of data that you save to Table Store and is measured in
MB. The size calculated by Table Store may be slightly larger because it includes incremental
data. The incremental data includes all column names and values that are saved along with
each row of data to Table Store.

Note: The shorter the name of a Primary Key column or Attribute column is, the smaller the
expansion ratio is.

Monitoring latency: 3 hours.

Collection granularity at metric points: 5 minutes.

QPS: The server QPS (unit: PV/s) can be reflected by various operating curves.

Monitoring latency: 10 minutes.

Collection granularity at metric points: 30 seconds.

Read/Write throughputs: It includes the actual read throughput and the actual write
throughput, which can be reflected by various operating curves. The throughput is measured
in CU.

Monitoring latency: 30 seconds.

Collection granularity at metric points: 30 seconds.

Average response latency: It indicates the latency (unit: ms) of returning results from the
server.

Monitoring latency: 30 seconds.

Collection granularity at metric points: 30 seconds.

Operation procedure

Log on to the Table Store console (the Instance List page).

Table Store Quick Start

21

Note: Before a subaccount is used to log on to the Table Store console to view the
monitoring indicators, you need to use the primary account to log on to RAM - Users
management console to authorize the permission of Alibaba Cloud Monitor Read Only
Access to the subaccount. If the permission is not authorized, console logon with the
subaccount fails. For the detailed steps, refer to Authorization Management - Use cases.

Locate the target instance and click its name or Manage in the Action column to go to the
Instance Detail page.

Locate the table to be viewed in the table list and click Manage in the Action column to go
to the Detail page, where you can view the basic information of the table.

Click Monitoring indicators in the left navigation bar, and then click the corresponding sub-
menu to view the table’s source data size, QPS, the read/write throughputs and the
average response latency.

VPC user guide

Virtual Private Cloud (VPC) is an isolated network environment built on Alibaba Cloud, allowing you
to take full control of your virtual network. For example, you can select a private IP address range,
divide network segment, configure routing table and gateway, and so on. It also allows you to
connect VPC to a traditional data center through the leased lines VPN to build a custom network
environment, thereby achieving the smooth cloud migration.

Preparations

Create a VPC

When you create a VPC, select a suitable region and ensure that your VPC and the Table
Store instance are located in the same region. For more information, refer to Create a VPC.

Create an ECS instance in the VPC

After the VPC is successfully created, create an ECS instance in the VPC. For more
information, refer to Create an ECS instance.

VPC operation guide
After you create a VPC and a VPC ECS instance, log on to the Table Store console to create an

Table Store Quick Start

22

instance and bind the instance. The steps are as follows:

Log on to the Table Store console.

Select the region where the created VPC is located, and then click Create Instance.

Fill in the required information and click Confirm. The page returns to the Instance List
page automatically.

Select the instance created just now and click its name or the Manage button to its right in
the Action column to go to the Instance Detail page.

Click Bind VPC to go to the instance and VPC binding page.

Fill in required information and click Confirm.

When the instance and VPC are bound successfully, the page returns to the Instance Detail
page automatically. You can find the information of the bound VPC in the VPC list. You can
also click the link in the VPC ID column to go to the VPC instance list page, where you can
view the Table Store instance bound to the VPC and the VPC information list.

Then you can use the bound instance to access Table Store from the ECS instance in the
VPC. The endpoint for access can be the VPC IP address or VPC access address, but a
domain name is recommended.

To delete the binding relationship between the Table Store instance and VPC, select the
VPC and click Unbind to its right in the VPC list.

After that, the preceding address pair cannot be used to access Table Store from the ECS
instance in the VPC. If you need to access Table Store again, rebind the Table Store instance
to the VPC.

Change the network type of an instance

Table Store defines three network types for instances. You can change the netework type of an
instance according to the following steps.

Log on to the Table Store console.

Select the region where the created VPC is located, and then click Create Instance.

Table Store Quick Start

23

Fill in the required information and click Confirm. The page returns to the Instance List
page automatically.

Select the instance to be managed and click its name or the Manage button in the Action
column to go to the Instance Detail page.

Click the Change network button next to Instance network type.

Select a network and click Confirm.

Table Store Quick Start

24

	Quick Start
	From SQL to NoSQL
	Comparison between SQL and NoSQL
	Comparison of SQL and NoSQL databases
	Why should I use Table Store?

	Database access
	Create a table
	SQL
	Table Store

	Write data
	SQL
	Table Store

	Query data
	SQL
	Table Store

	Update data
	SQL
	Table Store

	Delete data
	SQL
	Table Store

	Delete a table
	SQL
	Table Store

	Operations of Table Store
	Table operations
	Data operations
	Writing operations
	Note

	Table Store activation procedure
	Preparation
	Operation procedure

	Use the Table Store console
	Table Store console overview
	Instance management
	Create an instance
	Manage an instance
	Release an instance

	Table management
	Create a table
	Update a table
	Delete a table
	Table information and monitoring indicators
	Basic information
	Monitoring indicators
	Operation procedure

	VPC user guide
	Preparations
	VPC operation guide
	Change the network type of an instance

