
Table Store

Developer Guide



 

 
Developer Guide
 
  
Access control
 
Table Store uses AccessKey and Instance to ensure its access security.
  
Instance access
 
When accessing the table data of Table Store, the instance to which the table belongs must first be
confirmed. After subscribing to the Table Store service, instances are the logical containers for
resource management. Through the Table Store console of Alibaba Cloud, users can create, manage,
delete and perform other operations on Table Store instances. After creating an instance, users
manage the Table Store’s tables in the instance. Here, the Instance Name must be unique within an
Alibaba Cloud region. Instances with the same name can exist among different Alibaba Cloud regions.
The instance name is used as the endpoint prefix:
 

 
Public network address: http://instanceName.region.ots.aliyuncs.com
 
 
Alibaba Cloud private network address: http://instanceName.region.ots-internal.aliyuncs.com
 
 

For example, the access domain names for an instance named myInstance in the China East 1
(hangzhou) region are:
 

 
Public network: http://myInstance.cn-hangzhou.ots.aliyuncs.com
 
 
Private network: http://myInstance.cn-hangzhou.ots-internal.aliyuncs.com
 
  

AccessKey
 
Table Store authenticates and authorizes requests based on AccessKeys. Therefore, each Table Store
request must carry the correct AccessKey information.
 
Each Alibaba Cloud account can create up to 5 AccessKeys. Users can manage their AccessKeys in the
Alibaba Cloud User Center. An AccessKey is composed of an AccessKeyID and an AccessKeySecret.

Table Store Developer Guide

1



The AccessKeyID is used to identify the AccessKey and the AccessKeySecret is used to encrypt the
Table Store request. The AccessKeySecret is an important credential used to authenticate the
request’s identity. Therefore, users must ensure the confidentiality and security of the
AccessKeySecret. The AccessKeys of an Alibaba Cloud account can be used to access all instances of
this account.
 
AccessKeys have two states: Active and Inactive. Only AccessKeys in the Active status can be used to
access Table Store. Users can change the Active/Inactive states of their AccessKeys in the Alibaba
Cloud User Center. After an AccessKey’s state is changed, the change will take effect after 1 minute.
 
 
 
Table Store tables
 
When creating a Table Store table, you must specify the table name, Primary Key and the reserved
read/write throughput. In a traditional database, a table has a predefined schema such as the table
name, Primary Key, list of its column names and their data types. All rows stored in the table must
have the same set of columns. In contrast, Table Store is schema-less NoSQL database, and only
requires that a table has a Primary Key, but does not require any definition of other column names
and data types in advance. This section mainly introduces the concepts and use of the Table Store
tables.
  
Table name
 
The table name of Table Store table must comply with the following constraints:
 

 
Composed of English letters (a-z) or (A-Z), numbers (0-9) and underscores (_).
 
 
The first character must be an English letter (a-z), (A-Z) or underscore (_).
 
 
Case sensitive.
 
 
The length must be between 1 to 255 characters.
 
 
The table name must be unique in a single instance, but the same table name can be used in
different instances.
 
  

Primary Key
 
When creating a Table Store table, you must specify the table’s Primary Key. A Primary Key contains
at least one, and up to four Primary Key columns. Each Primary Key column has a name and a type.

Table Store Developer Guide

2



Table Store has some restrictions on the names and types of the Primary Key columns. For details,
refer to the Primary Key section in Table Store Data Model.
 
Table Store indexes data based on the Primary Key. The Primary Key uniquely identifies each row in
the table, so that no two rows can have the same key. The rows are sorted in ascending order by their
Primary Key.
  
Configure the reserved read/write throughput
 
To ensure the consistent and low-latency performance of Table Store, applications can specify the
reserved read/write throughput when creating a table. If the value of the reserved read/write
throughput is not 0, Table Store will reserve the necessary resources to meet the provisioned
throughput needs. At the same time, bills are generated based on the reserved read/write
throughput. Applications can dynamically raise and lower the reserved read/write throughput based
on your own business needs. The reserved read/write throughput is set in quantities of read capacity
units and write capacity units.
 
You can update the tables’ reserved read/write throughput through the UpdateTable operation. The
rules for updating the reserved read/write throughput are as follows:
 

 
There is a required time interval of at least 2 minutes between two updates for the same
table. For example, if you update a table’s reserved read/write throughput at 12:43 AM, you
must then wait until after 12:45 AM to update it for a second time. The required 2-minute
time interval between updates is applied at the table level. Between 12:43 AM and 12:45 AM,
you can update the reserved read/write throughput for other tables.
 
 
There is no frequency limitation to adjust the reserved read/write throughput in a calendar
day (00:00:00 to 00:00:00 of the second day in UTC time; 08:00:00 to 08:00:00 of the second
day in Beijing time). But the adjustment interval must be more than 2 minutes. Adjusting a
table’s reserved read/write throughput is defined as adjusting either the read capacity unit
or write capacity unit setting. Each such operation is considered as updating the table.
 
 
The reserved read/write throughput adjustments will take effect within 1 minute.
 
 

During the access to a table, the consumed read/write throughput that exceeds the value of the
reserved read/write throughput will be generated to the additional read/write throughput and billed
based on the price unit of the additional read/write throughput.
 
At the early stage, your applications may not have a high throughput. In this case, you can set a low
reserved read/write throughput to save cost. As your businesses grow, you may need to raise the
tables’ reserved read/write throughput to satisfy your business needs. If you want to quickly import
a large volume of data right after creating a table, you can set a high reserved write throughput so
that the data can be imported quickly. After the data import is completed, you can lower the reserved

Table Store Developer Guide

3



read/write throughput.
  
The data size restrictions of Partition Key
 
Table Store partitions the table data according to Partition Key ranges. Rows with the same Partition
Key will be placed in the same partition. To prevent the large indivisible partitions, it is recommended
that the total data size for all rows under a single partition key should not exceed 1 GB.
  
Table load time
 
Table Store table will be ready within 1 minute after creation. During the load time, all the read/write
data operations for the table will fail. Applications should wait for the table to be loaded before
performing any data operations.
  
Best practices
 
Table operations
  
Use Table Store SDK for table operations
 
Use Table Store Java SDK for table operations
 
Use Table Store Python SDK for table operations
 
 
 
Data operations
 
In Table Store, tables are composed of rows. Each row includes Primary Key and Attributes. This
chapter will introduce the data operations of Table Store.
  
Row of Table Store
 
Row is the basic unit that composes the tables of Table Store. They are composed of a Primary Key
and Attributes. A Primary Key is required and all rows in the same table must have the same Primary
Key column names and types. Attributes are not mandatory and each row may have different
Attributes. For more information, refer to Table Store data model.
 
There are three types of Table Store data operations:
 

 
Single row operations

Table Store Developer Guide

4



●

GetRow — Read a single row from the table.
 
 
PutRow — Insert a row into the table. If the row already exists, the existing row will
be deleted before the new row is written.
 
 
UpdateRow — Update a row. Applications can add or delete the Attribute columns
of an existing row or update the value of an existing Attribute column. If this row
does not exist, this operation adds a new row.
 
 
DeleteRow — Delete a row.
 

 
Batch operations
 

 
BatchGetRow — Batch read the data of multiple rows in one request.
 
 
BatchWriteRow — Batch insert, update or delete multiple rows in one request.
 

 
Range read
 

GetRange — Read the data of the table within a certain range.
  

Single row operations
  
Single row write operations
 
Table Store has three single row write operations: PutRow, UpdateRow and DeleteRow. The following
are the descriptions and considerations of these operations:
 

 
PutRow — Write a new row. If this row already exists, the existing row will be deleted before
the new row is written.
 
 
UpdateRow — Update a row’s data. Based on the request content, Table Store will add new
columns or modify/delete the specified column values for this row. If this row does not exist,
a new row will be inserted. However, an UpdateRow request onto an inexistent row with only
deletion instructions will not insert a new row.
 
 
DeleteRow — Delete a row. If the row to be deleted does not exist, nothing will happen.
 
 

By setting the condition field in the request, the application can specify whether a row existence
check is performed before executing the write operation. There are three condition checking options:

Table Store Developer Guide

5



IGNORE — The row existence checking is not performed.
 
 
EXPECT_EXIST — The row is expected to exist. The operation succeeds only if the row exists.
Otherwise, the operation fails.
 
 
EXPECT_NOT_EXIST — The row is not expected to exist. The operation succeeds only if the
row does not exist. Otherwise, the operation fails.
 
 

The operation DeleteRow or UpdateRow will fail if the condition checking is EXPECT_NOT_EXIST,
because it is meaningless to delete or update the non-existing rows. You can use PutRow operation
to update a non-existing row if the condition checking is EXPECT_NOT_EXIST.
 
Applications will receive the number of the consumed capacity units for successful operations. If the
operation fails, such as the parameter check fails, the row’s data size is too large, or the existence
check fails, an error code will be returned to the application.
 
The rules for calculating the number of write capacity units (CU) consumed in each operation are
defined as follows:
 

 
PutRow — The sum of the data size of Primary Key of the modified row and the data size of
Attribute column is divided by 4 KB and rounded up. If the row existence check condition is
not IGNORE, a number of read CUs will be consumed which is equivalent to the value
rounded up after dividing the data size of the Primary Key of this row by 4 KB. If an
operation does not meet the row existence check condition specified by the application, the
operation fails and consumes 1 write CU and 1 read CU. For details, refer to API Reference -
PutRow.
 
 
UpdateRow — The sum of the data size of Primary Key of the modified row and the data size
of attribute column is divided by 4 KB and rounded up. If UpdateRow contains an Attribute
column which shall be deleted, only the column name is calculated into the data size of this
Attribute column. If the row existence check condition is not IGNORE, a number of read CUs
will be consumed which is equivalent to the value rounded up after dividing the data size of
the Primary Key of this row by 4 KB. If an operation does not meet the row existence check
condition specified by the application, the operation fails and consumes 1 write CU and 1
read CU. For details, refer to API Reference - UpdateRow.
 
 
DeleteRow — The data size of the Primary Key of the deleted row is divided by 4 KB and
rounded up. If the row existence check condition is not IGNORE, a number of read CUs will
be consumed which is equivalent to the value rounded up after dividing the data size of the
Primary Key of this row by 4 KB. If an operation does not meet the row existence check
condition specified by the application, the operation fails and consumes 1 write capacity
unit. For details, refer to API Reference - DeleteRow.
 

Table Store Developer Guide

6



A certain number of read CUs will be also consumed by write operations based on the specified
condition.
 
Examples:
 
The following examples illustrate how the number of write CUs is calculated for single row write
operations.
 
Example 1: Use the PutRow operation to write a row.
 

The consumption of the read/write CUs for the PutRow operation is described as follows:
 

 
When the existence check condition is set to EXPECT_EXIST: The number of write CUs
consumed is the value rounded up after dividing 4,322 bytes by 4 KB, and the number of
read CUs is the value rounded up after dividing 10 bytes (data size of the Primary Key of the
row) by 4 KB. Therefore, the PutRow operation consumes 2 write CUs and 1 read CU.
 
 
When the existence check condition is set to IGNORE: The number of write CUs consumed is
the value rounded up after dividing 4,322 bytes by 4 KB. No read CU is consumed. Therefore,
the PutRow operation consumes 1 write CU and 0 read CU.
 
 
When the existence check condition is set to EXPECT_NOT_EXIST: The existence check
condition of the specified row fails. The PutRow operation consumes 1 write CU and 1 read
CU.
 
 

**Example 2: Use the UpdateRow operation to write a new row.
 

//PutRow operation
//row_size=len('pk')+len('value1')+len('value2')+8Byte+1300Byte+3000Byte=4322Byte
{
primary_keys:{'pk':1},
attributes:{'value1':String(1300Byte), 'value2':String(3000Byte)}
}

//Original row
//row_size=len('pk')+len('value2')+8Byte+900Byte=916Byte
//row_primarykey_size=len('pk')+8Byte=10Byte
{
primary_keys:{'pk':1},
attributes:{'value2':String(900Byte)}
}

//UpdateRow operation
//Length of attribute column deleted will be calculated for row size
//row_size=len('pk')+len('value1')+len('value2')+8Byte+900Byte=922Byte
{
primary_keys:{'pk':1},
attributes:{'value1':String(900Byte), 'value2':Delete}

Table Store Developer Guide

7



The consumption of read/write CUs for the UpdateRow operation is described as follows:
 

 
When the existence check condition is set to IGNORE: The number of write CUs consumed is
the value rounded up after dividing 922 bytes by 4 KB. No read CU is consumed. Therefore,
the UpdateRow operation consumes 1 write CU and 0 read CU.
 
 
When the existence check condition is set to EXPECT_EXIST: The existence check condition of
the specified row fails. The UpdateRow operation consumes 1 write CU and 1 read CU.
 
 

Example 3: Use the UpdateRow operation to update an existing row.
 

The consumption of read/write CUs for the UpdateRow operation is described as follows:
 

 
When the existence check condition is set to EXPECT_EXIST: The number of write CUs
consumed is the value rounded up after dividing 4,322 bytes by 4 KB, and the number of
read CUs is the value rounded up after dividing 10 bytes (data size of the Primary Key of the
row) by 4 KB. Therefore, the UpdateRow operation consumes 2 write CUs and 1 read CU.
 
 
When the existence check condition is set to IGNORE: The number of write CUs consumed is
the value rounded up after dividing 4,322 bytes by 4 KB. No read CU is consumed. Therefore,
the UpdateRow operation consumes 1 write CU and 0 read CU.
 
 

Example 4: Use the DeleteRow operation to delete a non-existent row.
 

}

//The original row does not exist
//row_size=0

//UpdateRow operation
//row_size=len('pk')+len('value1')+len('value2')+8Byte+1300Byte+3000Byte=4322Byte
{
primary_keys:{'pk':1},
attributes:{'value1':String(1300Byte), 'value2':String(3000Byte)}
}
//Original row
//row_size=len('pk')+len('value1')+8Byte+900Byte=916Byte
//row_primarykey_size=len('pk')+8Byte=10Byte
{
primary_keys:{'pk':1},
attributes:{'value1':String(900Byte)}
}

//The original row does not exist
//row_size=0

Table Store Developer Guide

8



The data size both before and after modification is 0. Whether the DeleteRow operation succeeds or
fails, 1 write CU at least is consumed. Therefore, this DeleteRow operation consumes 1 write CU.
 
The consumption of read/write CUs for the DeleteRow operation is described as follows:
 

 
When the existence check condition is set to IGNORE: The number of write CUs consumed is
the value rounded up after dividing 10 bytes (data size of the Primary Key of the row) by 4
KB, and the number of read CUs is the value rounded up after dividing 10 bytes by 4 KB.
Therefore, the DeleteRow operation consumes 1 write CU and 1 read CU.
 
 
When the existence check condition is set to EXPECT_EXIST: The number of write CUs
consumed is the value rounded up after dividing 10 bytes (data size of the Primary Key of
the row) by 4 KB. No read CU is consumed. Therefore, the DeleteRow operation consumes 1
write CU and 0 read CU.
 
 

For more information, refer to the PutRow, UpdateRow and DeleteRow chapters in the API Reference.
  
Single row read operations
 
There is only one single row read operation: GetRow.
 
Applications provide the complete Primary Key and the names of all columns to be returned. The
column names can be either Primary Key or Attribute columns. Users may not specify any column
names to return, in which case all data of the row data will be returned.
 
Table Store calculates the consumed read CUs by adding the data size of the Primary Key of the read
row and the data size of the read Attribute column. The data size is divided by 4KB and rounded up
as the number of read CUs consumed in this read operation. If the specified row does not exist, 1
read CU is consumed. Single row read operations do not consume write CUs.
 
Example:
 
This example illustrates how the number of read capacity units consumed by a GetRow operation is
calculated:
 

//DeleteRow operation
//row_size=0
//row_primarykey_size=len('pk')+8Byte=10Byte
{
primary_keys:{'pk':1},
}

//GetRow operation
//row_size=len('pk')+len('value1')+len('value2')+8Byte+1200Byte+3100Byte=4322Byte
{
primary_keys:{'pk':1},

Table Store Developer Guide

9



The number of consumed read capacity units is rounded up after dividing 1218 Bytes by 4KB. This
GetRow operation consumes 1 read CU.
 
For more information, refer to the GetRow chapter in the API Reference.
  
Multi-Row operations
 
Table Store provides two multi-row operations: BatchWriteRow and BatchGetRow.
 
BatchWriteRow operations are used to insert, modify or delete multiple rows from one or more
tables. BatchWriteRow operations can be considered as a batch of multiple PutRow, UpdateRow and
DeleteRow operations. The sub-operations in a single BatchWriteRow are executed independently.
Table Store will return the execution results for each sub-operation to the application separately. It
may be the case that parts of the request succeed while other parts fail. Even if an error is not
returned for the overall request, the application still must check the return results for each sub-
operation to determine the correct status. The write CUs consumed by each BatchWriteRow sub-
operation are calculated independently.
 
BatchGetRow is used to read multiple rows from one or more tables. In BatchGetRow, each sub-
operation is executed independently. Table Store will return the execution results for each sub-
operation to the application separately. It may be the case that parts of the request succeed while
other parts fail. Even if an error is not returned for the overall request, the application still must check
the return results for each sub-operation to determine the correct statuses. The read capacity units
consumed by each BatchGetRow sub-operation are calculated independently.
 
For more information, refer to the BatchWriteRow and BatchGetRow chapters in the API Reference.
  
Range read operations
 
Table Store provides the range read operation GetRange. This operation returns data in the specified
range of Primary Key to applications.
 
The rows in Table Store tables are sorted in the ascending order of Primary Keys. Each GetRange
operation specifies a left-closed-right-open range, and returns data from rows with Primary Keys in
this range. End points of ranges are composed of either effective Primary Keys or the virtual points:
INF_MIN and INF_MAX. The number of columns for the virtual point must be the same as for the
Primary Key. Here, INF_MIN represents an infinitely small value, so any values of other types are

attributes:{'value1':String(1200Byte), 'value2':String(3100Byte)}
}

//GetRow operation
//Reading data size=len('pk')+len('value1')+8Byte+1200Byte=1216Byte
{
primary_keys:{'pk':1},
columns_to_get:{'value1'}
}

Table Store Developer Guide

10



strictly greater than it. INF_MAX represents an infinitely large value, so any values of other types are
strictly smaller than it.
 
GetRange operations must specify the columns to get by their names. The request column name can
contain multiple column names. If a row has a Primary Key in the read range but does not contain
other column specified for return, the results returned by the request will not contain data from this
row. If columns to get are not specified, the entire rows will be returned.
 
GetRange operations must specify the read direction which can be either forward or backward. If a
table has two Primary Key columns A and B and A<B : When [A, B) is read in the forward direction,
rows with Primary Key greater than or equal to A and less than B will be returned in the order A to B.
When [B,A) is read in the backward direction, rows greater than A and less than or equal to B are
retuned in the order B to A.
 
GetRange operations can specify the maximal number of returned rows. Table Store will end the
operation as soon as the maximal number of rows is returned according to the forward or backward
direction, even if there are remaining rows in the specified ranges.
 
In the following situations, GetRange operations may stop execution and return data to the
application:
 

 
The total size of row data to return reaches 4 MB.
 
 
The number of rows to return is equal to 5000.
 
 
The number of returned rows is equal to the maximal number of rows specified in requests
to be returned.
 
 
In such premature-return cases, responses returned by the GetRange request will contain the
Primary Key for the next row of unread data. Applications can use this value as the starting
point for a subsequent GetRange operation. If the Primary Key for the next unread row is
null, this indicates all data in the read range has been returned.
 
 

Table Store accumulates the total data size of Primary Key and the Attribute column read for all rows
from the read range start point to the next row of unread data. The data size is then divided by 4 KB
and rounded up to find the number of the consumed read CUs. For example, if the read range
contains 10 rows and the Primary Key and the actual data size of the Attribute column read for each
row is 330 Bytes, the number of consumed read CU is 1 (divide the total read data size 3.3 KB by 4 KB
and rounded up to 1).
 
Examples:
 
The following examples illustrate how the number of read CUs is calculated for the GetRange
operations.
 
In these examples, the table contents are as follows. PK1 and PK2 are the table’s Primary Key

Table Store Developer Guide

11



columns, and their types are String and Integer respectively. A and B are the table’s attribute
columns.
 

Example 1: Read Data in a specified range.
 

Example 2: Use INF_MIN and INF_MAX to read all data in a table.
 

PK1 PK2 Attr1 Attr2

‘A’ 2 ‘Hell’ ‘Bell’

‘A’ 5 ‘Hello’ Non-exist

‘A’ 6 Non-exist ‘Blood’

‘B’ 10 ‘Apple’ Non-exist

‘C’ 1 Non-exist Non-exist

‘C’ 9 ‘Alpha’ Non-exist

//Request
table_name: "table_name"
direction: FORWARD
inclusive_start_primary_key: ("PK1", STRING, "A"), ("PK2", INTEGER, 2)
exclusive_end_primary_key: ("PK1", STRING, "C"), ("PK2", INTEGER, 1)

//Response
cosumed_read_capacity_unit: 1
rows: {
{
primary_key_columns:("PK1", STRING, "A"), ("PK2", INTEGER, 2)
attribute_columns:("Attr1", STRING, "Hell"), ("Attr2", STRING, "Bell")
},
{
primary_key_columns:("PK1", STRING, "A"), ("PK2", INTEGER, 5)
attribute_columns:("Attr1", STRING, "Hello")
},
{
primary_key_columns:("PK1", STRING, "A"), ("PK2", INTEGER, 6)
attribute_columns:("Attr2", STRING, "Blood")
}，
{
primary_key_columns:("PK1", STRING, "B"), ("PK2", INTEGER, 10)
attribute_columns:("Attr1", STRING, "Apple")
}
}

//Request
table_name: "table_name"
direction: FORWARD
inclusive_start_primary_key: ("PK1", INF_MIN)
exclusive_end_primary_key: ("PK1", INF_MAX)

Table Store Developer Guide

12



Example 3: Use INF_MIN and INF_MAX in certain primary key columns.
 

Example 4: Backward reading.

//Response
cosumed_read_capacity_unit: 1
rows: {
{
primary_key_columns:("PK1", STRING, "A"), ("PK2", INTEGER, 2)
attribute_columns:("Attr1", STRING, "Hell"), ("Attr2", STRING, "Bell")
},
{
primary_key_columns:("PK1", STRING, "A"), ("PK2", INTEGER, 5)
attribute_columns:("Attr1", STRING, "Hello")
},
{
primary_key_columns:("PK1", STRING, "A"), ("PK2", INTEGER, 6)
attribute_columns:("Attr2", STRING, "Blood")
}，
{
primary_key_columns:("PK1", STRING, "B"), ("PK2", INTEGER, 10)
attribute_columns:("Attr1", STRING, "Apple")
}
{
primary_key_columns:("PK1", STRING, "C"), ("PK2", INTEGER, 1)
}
{
primary_key_columns:("PK1", STRING, "C"), ("PK2", INTEGER, 9)
attribute_columns:("Attr1", STRING, "Alpha")
}
}

//Request
table_name: "table_name"
direction: FORWARD
inclusive_start_primary_key: ("PK1", STRING, "A"), ("PK2", INF_MIN)
exclusive_end_primary_key: ("PK1", STRING, "A"), ("PK2", INF_MAX)

//Response
cosumed_read_capacity_unit: 1
rows: {
{
primary_key_columns:("PK1", STRING, "A"), ("PK2", INTEGER, 2)
attribute_columns:("Attr1", STRING, "Hell"), ("Attr2", STRING, "Bell")
},
{
primary_key_columns:("PK1", STRING, "A"), ("PK2", INTEGER, 5)
attribute_columns:("Attr1", STRING, "Hello")
},
{
primary_key_columns:("PK1", STRING, "A"), ("PK2", INTEGER, 6)
attribute_columns:("Attr2", STRING, "Blood")
}
}

Table Store Developer Guide

13



Example 5: Specify a column name not including a PK.
 

Example 6: Specify a column name including a PK.
 

//Request
table_name: "table_name"
direction: BACKWARD
inclusive_start_primary_key: ("PK1", STRING, "C"), ("PK2", INTEGER, 1)
exclusive_end_primary_key: ("PK1", STRING, "A"), ("PK2", INTEGER, 5)

//Response
cosumed_read_capacity_unit: 1
rows: {
{
primary_key_columns:("PK1", STRING, "C"), ("PK2", INTEGER, 1)
},
{
primary_key_columns:("PK1", STRING, "B"), ("PK2", INTEGER, 10)
attribute_columns:("Attr1", STRING, "Apple")
},
{
primary_key_columns:("PK1", STRING, "A"), ("PK2", INTEGER, 6)
attribute_columns:("Attr2", STRING, "Blood")
}
}

//Request
table_name: "table_name"
direction: FORWARD
inclusive_start_primary_key: ("PK1", STRING, "C"), ("PK2", INF_MIN)
exclusive_end_primary_key: ("PK1", STRING, "C"), ("PK2", INF_MAX)
columns_to_get: "Attr1"

//Response
cosumed_read_capacity_unit: 1
rows: {
{
attribute_columns: {"Attr1", STRING, "Alpha"}
}
}

//Request
table_name: "table_name"
direction: FORWARD
inclusive_start_primary_key: ("PK1", STRING, "C"), ("PK2", INF_MIN)
exclusive_end_primary_key: ("PK1", STRING, "C"), ("PK2", INF_MAX)
columns_to_get: "Attr1", "PK1"

//Response
cosumed_read_capacity_unit: 1
rows: {
{
primary_key_columns:("PK1", STRING, "C")

Table Store Developer Guide

14



Example 7: Use limit and breakpoints.
 

Example 8: Use the GetRange operation to calculate the consumed read CUs.
 
GetRange is performed on the following table. PK1 is the table’s Primary Key column and Attr1 and
Attr2 are the Attribute columns.
 

}
{
primary_key_columns:("PK1", STRING, "C")
attribute_columns:("Attr1", STRING, "Alpha")
}
}

//Request 1
table_name: "table_name"
direction: FORWARD
inclusive_start_primary_key: ("PK1", STRING, "A"), ("PK2", INF_MIN)
exclusive_end_primary_key: ("PK1", STRING, "A"), ("PK2", INF_MAX)
limit: 2

//Response 1
cosumed_read_capacity_unit: 1
rows: {
{
primary_key_columns:("PK1", STRING, "A"), ("PK2", INTEGER, 2)
attribute_columns:("Attr1", STRING, "Hell"), ("Attr2", STRING, "Bell")
},
{
primary_key_columns:("PK1", STRING, "A"), ("PK2", INTEGER, 5)
attribute_columns:("Attr1", STRING, "Hello")
}
}
next_start_primary_key:("PK1", STRING, "A"), ("PK2", INTEGER, 6)

//Request 2
table_name: "table_name"
direction: FORWARD
inclusive_start_primary_key: ("PK1", STRING, "A"), ("PK2", INTEGER, 6)
exclusive_end_primary_key: ("PK1", STRING, "A"), ("PK2", INF_MAX)
limit: 2

//Response 2
cosumed_read_capacity_unit: 1
rows: {
{
primary_key_columns:("PK1", STRING, "A"), ("PK2", INTEGER, 6)
attribute_columns:("Attr2", STRING, "Blood")
}
}

PK1 Attr1 Attr2

1 Non-existent String(1000Byte)

2 8 String(1000Byte)

Table Store Developer Guide

15



For this GetRange request:
 

 
Data size of the first row: len (‘PK1’) + 8 Bytes = 11 Bytes
 
 
Data size of the second row: len (‘PK1’) + 8 Bytes + len (‘Attr1’) + 8 Bytes = 24 Bytes
 
 
Data size of the third row: len (‘PK1’) + 8 Bytes + len (‘Attr1’) + 1000 Bytes = 1016
Bytes
 
 

The number of the consumed read CUs is the value rounded up after dividing 1051 Bytes (11 Bytes +
24 Bytes + 1016 Bytes) by 4KB. So this GetRange operation consumes 1 read CU.
 
For more information, refer to the GetRange chapter in the API Reference.
  
Best practices
 
Data operations
  
Table Store SDK for data operation

3 String(1000Byte) Non-existent

4 String(1000Byte) String(1000Byte)

//Request
table_name: "table2_name"
direction: FORWARD
inclusive_start_primary_key: ("PK1", INTEGER, 1)
exclusive_end_primary_key: ("PK1", INTEGER, 4)
columns_to_get: "PK1", "Attr1"

//Response
cosumed_read_capacity_unit: 1
rows: {
{
primary_key_columns:("PK1", INTEGER, 1)
},
{
primary_key_columns:("PK1", INTEGER, 2),
attribute_columns:("Attr1", INTEGER, 8)
},
{
primary_key_columns:("PK1", INTEGER, 3),
attribute_columns:("Attr1", STRING, String(1000Byte))
},
}

Table Store Developer Guide

16



TableStore Java SDK for data operation
 
TableStore Python SDK for data operation
 
 
 
Table Store API
 
Applications can use the Table Store SDK officially released by Alibaba Cloud to access Table Store.
They can also use the POST method to send HTTP requests to access Table Store.
 
This chapter will introduce the HTTP request structure and data format, and explain how to structure
HTTP requests and parse their return results. Finally, it will explain the error status codes returned by
Table Store requests. Developers using Java or Python can use the official Java and Python SDKs. If
you need to use a language other than Java or Python to access Table Store, you can use HTTP
messages to interact with Table Store based on the content in this chapter, or independently compile
the SDK by yourself.
  
Current API version
 
API version: 2014-08-08
  
HTTP messages
 
Table Store accepts HTTP requests from applications, processes them according to the relevant logic
and uses HTTP messages to return results data after processing. Data in the HTTP requests and
responses are organized using ProtocolBuffer protocol format. For more information on
ProtocolBuffer protocol, refer to Table Store ProtocolBuffer Message Definitions. In the following
parts, we will introduce the specific formats of the HTTP request headers and bodies as well as
responses.
  
HTTP request
  
HTTP request URL
 
The URLs used to access Table Store are structured in the manner below:
 

 
instance — The instance name. Instances are created by users. The information for instances
of a cloud account can be viewed on the Table Store console. Not case sensitive.

Internet access URL: http://<instance>.<region>.ots.aliyuncs.com/<operation>

Intranet access URL: http://<instance>.<region>.ots-internal.aliyuncs.com/<operation>

Table Store Developer Guide

17



region — The Alibaba Cloud service node. The Table Store service is deployed across
different Alibaba Cloud service nodes located at multiple regions. When creating an instance,
you must specify an Alibaba Cloud region. You can view the Alibaba Cloud region names
which the instances belong to in the Table Store console. Not case sensitive.
 
 
operation — The Table Store operation name. All Table Store operations are listed in the API
Reference chapter. Case sensitive.
 
 

The following URL is the destination URL for a ListTable request targeting an instance named
myInstance at China East 1 (hangzhou) region.
 

 
HTTP request header
 
Table Store requires that the HTTP request headers contain the following information:
 

 
x-ots-date — The request issue time. The date uses the rfc822 standard and UTC time.
Format: “%a, %d %b %Y %H:%M:%S GMT”.
 
 
x-ots-apiversion — The API version number. Version numbers are date strings. This
document uses the API version number 2014-08-08.
 
 
x-ots-accesskeyid — The user’s AccessKeyID.
 
 
x-ots-instancename — The instance name.
 
 
x-ots-contentmd5 — The MD5 for the HTTP body, encoded by base64.
 
 
x-ots-signature — The request signature. The signature calculation method is as follows:
 

 
Descriptions of the functions used in the above pseudo-code:
 

 
HmacSha1 — Hmac-Sha1 encryption algorithm. During Table Store request

http://myInstance.cn-hangzhou.ots.aliyuncs.com/ListTable

  Signature = base64(HmacSha1(AccessKeySecret, StringToSign));

StringToSign = CanonicalURI + '\n' + HTTPRequestMethod + '\n\n' + CanonicalHeaders

CanonicalHeaders = LowerCase (HeaderName1) + ':' + Trim(HeaderValue1) + '\n' + ... + LowerCase
(HeaderNameN) + ':' + Trim(HeaderValueN) + '\n'

Table Store Developer Guide

18



signature calculation, use StringToSign as the message and AccessKeySecret as the
secret key.
 
 
base64 — Base64 encoding algorithm.
 
 
LowerCase — Convert all letters in the string to lowercase.
 
 
Trim — Remove spaces at the front and end of the string.
 

 
CanonicalURI — The path section in the HTTP URL is given in the example below, with the
CanonicalURI set as /ListTable.
 

 
HTTPRequestMethod — HTTP request methods (such as GET, POST or PUT). the Table Store
HTTP API only supports the POST method. Note that POST must be written in uppercase.
 
 
CanonicalHeaders — CanonicalHeaders are Table Store HTTP header strings (not include the
x-ots-signature header) structured according to the following rules:
 

 
It must contain and only contain the Table Store standard headers that begin with
‘x-ots-‘.
 
 
All the header item names must be in lowercase and the values must use the Trim
operation to remove the spaces.
 
 
The header items are ordered in ascending lexicographic order by name.
 
 
The header items’ names and values must be separated by ‘:’.
 
 
A newline character ‘\n’ must be used to separate headers.
 

 
Table Store will verify the following HTTP requests:
 

 
The consistency of the x-ots-contentmd5 header value with the MD5 calculated for the data
contained in the HTTP body.
 
 
The signature in the request header is correct.
 
 

http://myInstance.cn-hangzhou.ots.aliyuncs.com/ListTable

Table Store Developer Guide

19



The time in x-ots-date differs by less than 15 minutes from the server time.
 
 

If the verification request fails, Table Store will return an authentication error.
  
HTTP request body
 
Table Store requires that the HTTP request Body is a string serialized by the ProtocolBuffer message
defined by Table Store. The body length should be less than 2 MB.
 
For Table Store requests’ ProtocolBuffer message definitions, refer to Table Store ProtocolBuffer
message definitions.
  
HTTP response
  
HTTP response header
 
Table Store will return the HTTP response with the following headers items:
 

 
x-ots-date — The request issue time. The date uses the rfc822 standard and UTC time.
Format: “%a, %d %b %Y %H:%M:%S GMT”.
 
 
x-ots-requestid — The request ID of this request.
 
 
x-ots-contenttype — The response content type. Fixed as “protocol buffer” string.
 
 
x-ots-contentmd5 — An MD5 value calculated based on the response content and encoded
by base64.
 
 
Authorization — The response signature. The response will contain a signature only if the
request signature has passed the Table Store verification. The signature calculation method
is as follows:
 

 
Descriptions of the functions used in the above pseudo-code :
  
The functions are the same as those used in the request above.
 
 

Authorization = 'OTS ' + AccessKeyID + ':' + base64 (HmacSha1(AccessKeySecret, stringToSign))

StringToSign = CanonicalHeaders + CanonicalURI

CanonicalHeaders = LowerCase (HeaderName1) + ':' + Trim(HeaderValue1) + '\n' + ... + LowerCase
(HeaderNameN) + ':' + Trim(HeaderValueN) + '\n'

Table Store Developer Guide

20



CanonicalURI — The path section in the HTTP URL is given in the following example, with the
CanonicalURI set as /ListTable.
 

 
CanonicalHeaders — The Table Store HTTP header strings (not including the x-ots-signature
header) structured according to the following rules:
 

 
It must contain and only contain the Table Store standard headers that begin with
‘x-ots-‘.
 
 
All the header item names must be in lowercase and the values must use the Trim
operation to remove the spaces.
 
 
The header items are ordered in the ascending lexicographic order by name.
 
 
The header items’ names and values must be separated by ‘:’.
 
 
A newline character must be used to separate headers.
 

 
The client should verify the Table Store response as follows:
 

 
Verify that the signature in the response header is correct.
 
 
Verify that the time in x-ots-date differs by less than 15 minutes from the client’s time
(positive or negative).
 
 
Verify the consistency of the x-ots-contentmd5 header value with the MD5 calculated for the
response data.
 
 

If the verification response fails, users should reject the response data in code as this response may
not come from the Table Store service.
  
HTTP response content
 
Table Store requires that the HTTP response content is a string that has been serialized by the
ProtocolBuffer message defined by Table Store. The length of Body cannot exceed 2 MB. Each Table
Store request message corresponds to one Table Store response message. After the application
deserializes the response content, it can read the Table Store operation results.
  

http://myInstance.cn-hangzhou.ots.aliyuncs.com/ListTable

Table Store Developer Guide

21



Signature examples
 
Two request and response signature verification examples are provided below. Following the
implementation of a signature algorithm, users can use the following examples to test if the
algorithm was implemented correctly.
  
Request signature examples
 
Assume that the user’s AccessKeyID is ‘29j2NtzlUr8hjP8b’ and the AccessKeySecret is
‘8AKqXmNBkl85QK70cAOuH4bBd3gS0J’.
 

Thus, the user’s request signature result will be as follows<!— Zhao Feng, please confirm this is
correct during review—>
 

 
Response signature examples
 
Assume that the user’s AccessKeyID is ‘29j2NtzlUr8hjP8b’ and the AccessKeySecret is
‘AKqXmNBkl85QK70cAOuH4bBd3gS0J’.
 

Thus, the Table Store response signature result will be as follows:
 

POST /ListTable HTTP/1.0
x-ots-date: Tue, 12 Aug 2014 10:23:03 GMT
x-ots-apiversion:2014-08-08
x-ots-accesskeyid: 29j2NtzlUr8hjP8b
x-ots-contentmd5: 1B2M2Y8AsgTpgAmY7PhCfg==
x-ots-instancename: naketest

stringToSign = '/ListTable\nPOST\n\nx-ots-accesskeyid:29j2NtzlUr8hjP8b\nx-ots-apiversion:2014-08-08\nx-ots-
contentmd5:1B2M2Y8AsgTpgAmY7PhCfg==\nx-ots-date:Tue, 12 Aug 2014 10:23:03 GMT\nx-ots-
instancename:naketest\n'

signature = base64(HmacSha1('8AKqXmNBkl85QK70cAOuH4bBd3gS0J', stringToSign))
= '4xap392B7EBpN+RmlHgNowjoG1w='

/ListTable
x-ots-contentmd5: 1B2M2Y8AsgTpgAmY7PhCfg==
x-ots-requestid: 0005006c-0e81-db74-4a34-ce0a5df229a1
x-ots-contenttype: protocol buffer
x-ots-date:Tue, 12 Aug 2014 10:23:03 GMT

stringToSign = 'x-ots-contentmd5:1B2M2Y8AsgTpgAmY7PhCfg==\nx-ots-contenttype:protocol buffer\nx-ots-
date:Tue, 12 Aug 2014 10:23:03 GMT\nx-ots-requestid:0005006c-0e81-db74-4a34-ce0a5df229a1\n/ListTable'

authorization = 'OTS ' + AccessKeyID + ':' + base64(HmacSha1('8AKqXmNBkl85QK70cAOuH4bBd3gS0J',
stringToSign))

Table Store Developer Guide

22



 
 
Error messages
 
This section lists the error types, description messages and HTTP status codes for all possible errors in
Table Store API.
 
The table below lists all the possible error messages returned by Table Store. Some errors may be
resolved by retrying the operation. These error messages have a value of Yes in the Retry column.
Other messages have No.
  
Permission verification errors
 

HTTPStatus ErrorCode ErrorMsg Description Retry

403 OTSAuthFailed
The
AccessKeyID
does not exist.

The
AccessKeyID
does not exist.

No

403 OTSAuthFailed
The
AccessKeyID is
disabled.

The
AccessKeyID is
disabled.

No

403 OTSAuthFailed The user does
not exist.

This user does
not exist. No

403 OTSAuthFailed The instance is
not found.

This instance
does not exist. No

403 OTSAuthFailed

The user has no
privilege to
access the
instance.

You do not
have
permission to
access this
instance.

No

403 OTSAuthFailed The instance is
not running.

This instance is
not in the
Running status.

No

403 OTSAuthFailed

The user has no
privilege to
access the
instance.

You do not
have
permission to
access this
instance.

No

403 OTSAuthFailed Signature
mismatch.

The signature
does not
match.

No

403 OTSAuthFailed

Mismatch
between
system time
and x-ots-date:
{ Date }.

The server time
that differs
from the x-ots-
date time in
the header is
more than the

No

Table Store Developer Guide

23



 
HTTP message errors
 

 
API errors
 

allowed range.

HTTPStatus ErrorCode ErrorMsg Description Retry

413 OTSRequestBo
dyTooLarge

The size of
POST data is
too large.

The data
volume sent in
the user’s
POST request is
too large.

No

408 OTSRequestTi
meout

Request
timeout.

The client took
too long to
complete the
request.

No

405 OTSMethodNot
Allowed

OTSMethodNot
AllowedOnly
POST method
for requests is
supported.

Only supports
POST requests. No

403 OTSAuthFailed

Mismatch
between MD5
value of
request body
and x-ots-
contentmd5 in
header.

The MD5
calculated
based on the
data in the
request body is
not the same
as the x-ots-
contentmd5
value in the
request header.

No

400 OTSParameterI
nvalid

Missing header:
‘{HeaderNam
e}‘.

The request
lacks a required
header.

No

400 OTSParameterI
nvalid

Invalid date
format: {Date}.

The date
format is
invalid.

No

400 OTSParameterI
nvalid

Unsupported
operation:
{Operation}.

The operation
name in the
request URL is
invalid .

No

HTTPStatus ErrorCode ErrorMsg Description Retry

500 OTSInternalSer
verError

Internal server
error. Internal error Yes

403 OTSQuotaExha Too frequent The Yes

Table Store Developer Guide

24



usted table
operations.

CreateTable,
ListTable,
DescribeTable
and
DeleteTable
operations
have been
executed too
frequently.

403 OTSQuotaExha
usted

Number of
tables
exceeded the
quota.

The number of
tables exceeds
the quota.

No

400 OTSParameterI
nvalid

The name of
Primary Key
must be
unique.

The names of
the Primary Key
columns in the
table to be
created are not
unique.

No

400 OTSParameterI
nvalid

Failed to parse
the ProtoBuf
message.

Deserialization
of the PB data
in the request
body failed.

No

400 OTSParameterI
nvalid

Both read and
write capacity
unit are
required to
create table.

During the
table creation,
you must
specify the
ReservedThrou
ghput.

No

400 OTSParameterI
nvalid

Neither read
nor write
capacity unit is
set.

During the
table update,
you must set a
reserved read
or write
throughput
value.

No

400 OTSParameterI
nvalid

Invalid instance
name:
‘{InstanceNa
me}‘.

The instance
name is invalid. No

400 OTSParameterI
nvalid

Invalid table
name:
‘{TableName}
‘.

The table name
is invalid. No

400 OTSParameterI
nvalid

The value of
read capacity
unit must be in
range:
[{LowerLimit},
{UpperLimit}].

The reserved
read througput
value must be
in the specified
range.

No

400 OTSParameterI The value of The reserved No

Table Store Developer Guide

25



nvalid

write capacity
unit must be in
range:
[{LowerLimit},
{UpperLimit}].

write througput
value must be
in the specified
range.

400 OTSParameterI
nvalid

Invalid column
name:
‘{ColumnNam
e}‘.

A column name
is invalid. No

400 OTSParameterI
nvalid

{ColumnType\is
an invalid type
for the Primary
Key.

The Primary
Key column
type is invalid.

No

400 OTSParameterI
nvalid

{ColumnType\is
an invalid type
for the Primary
Key in
GetRange.

In the
GetRange
request, the
Primary Key
column type is
invalid.

No

400 OTSParameterI
nvalid

{ColumnType\is
an invalid type
for the
attribute
column.

The attribute
column type is
invalid.

No

400 OTSParameterI
nvalid

The number of
Primary Key
columns must
be in range: [1,
{Limit}].

The number of
Primary Key
columns
cannot be 0 or
exceed the
limit.

No

400 OTSParameterI
nvalid

Value of
column
‘{ColumnNam
e}‘ must be
UTF8 encoding.

The value of
this column
must use UTF8
encoding.

No

400 OTSParameterI
nvalid

The length of
attribute
column:
‘{ColumnNam
e}‘ exceeded
the
MaxLength:{Ma
xSize\with
CurrentLength:{
CellSize}.

The name of
the attribute
column
exceeds the
maximum
name length
limit.

No

400 OTSParameterI
nvalid

No row
specified in the
request of
BatchGetRow.

In the
BatchGetRow
request, no
rows were
specified.

No

400 OTSParameterI Duplicated The No

Table Store Developer Guide

26



nvalid
table name:
‘{TableName}
‘.

BatchGetRow
or
BatchWriteRow
operation
contains tables
of the same
name.

400 OTSParameterI
nvalid

No row
specified in
table:
‘{TableName}
‘.

In the
BatchGetRow
operation, no
rows were
specified for a
table.

No

400 OTSParameterI
nvalid

Duplicated
Primary
Key:’{PKName
}‘ of getting
row
#{RowIndex\in
table
‘{TableName}
‘.

In the
BatchGetRow
operation,
some rows in
some tables
contain the
Primary Key
columns of the
same name.

No

400 OTSParameterI
nvalid

Duplicated
column name
with Primary
Key column:
‘{PKName}‘
while putting
row
#{RowIndex\in
table:
‘{TableName}
‘.

In the
BatchWriteRow
operation, the
PutRow
operations for
certain tables
have rows that
have an
attribute
column with
the same name
as a Primary
Key column.

No

400 OTSParameterI
nvalid

Duplicated
column name
with Primary
Key column:
‘{PKName}‘
while updating
row
#{RowIndex\in
table:
‘{TableName}
‘.

In the
BatchWriteRow
operation, the
UpdateRow
operations for
certain tables
have rows that
have an
attribute
column with
the same name
as a Primary
Key column.

No

400 OTSParameterI
nvalid

“Duplicated
column name:
‘{ColumnNam
e}‘ while
putting row
#{Index\in
table:

In the
BatchWriteRow
operation, the
PutRow
operations for
certain tables
have rows that

No

Table Store Developer Guide

27



‘{TableName}
‘.”

contain
duplicate
Attribute
columns.

400 OTSParameterI
nvalid

“Duplicated
column name:
‘{ColumnNam
e}‘ while
updating row
#{Index\in
table:
‘{TableName}
’.”

In the
BatchWriteRow
operation, the
UpdateRow
operations for
certain tables
have rows that
contain
duplicate
Attribute
columns.

No

400 OTSParameterI
nvalid

No attribute
column
specified to
update row
#{RowIndex\in
table
‘{TableName}
‘.

In the
BatchWriteRow
operation,
when updating
certain rows in
certain tables,
no attribute
columns were
specified.

No

400 OTSParameterI
nvalid

Invalid
condition:
{RowExistence\
while updating
row
#{RowIndex\in
table :
‘{TableName}
‘.

In the
BatchWriteRow
operation,
when updating
certain rows in
certain tables,
the
RowExistence
conditions
were invalid.

No

400 OTSParameterI
nvalid

Duplicated
Primary Key
name:
‘{PKName}‘.

Duplicate
Primary Key. No

400 OTSParameterI
nvalid

Invalid
condition:
{RowExistence\
while deleting
row.

During the
delete row
operation, the
RowExistence
condition was
invalid.

No

400 OTSParameterI
nvalid

The limit must
be greater than
0.

The limit
parameter
must be
greater than 0.

No

400 OTSParameterI
nvalid

Duplicated
attribute
column name
with Primary
Key column:

Some lines to
be written
contain an
Attribute
column with

No

Table Store Developer Guide

28



‘{ColumnNam
e}‘ while
putting row.

the same name
as a Primary
Key column.

400 OTSParameterI
nvalid

“Duplicated
column name:
‘{ColumnNam
e}‘ while
putting row.”

Some lines to
be written
contain
duplicate
attribute
columns.

No

400 OTSParameterI
nvalid

Duplicated
attribute
column name
with Primary
Key column:
‘{ColumnNam
e}‘ while
updating row.

Some lines to
be updated
contain an
attribute
column with
the same name
as a Primary
Key column.

No

400 OTSParameterI
nvalid

No column
specified while
updating row.

During the
update row
operation, no
column to be
updated was
specified.

No

400 OTSParameterI
nvalid

Duplicated
column name:
‘{ColumnNam
e}‘ while
updating row.

During the
update row
operation,
some rows
contained
duplicate
attribute
columns.

No

400 OTSParameterI
nvalid

Invalid
condition:
{RowExistence\
while updating
row.

During the
update row
operation, the
RowExistence
conditions
were invalid.

No

400 OTSParameterI
nvalid

Optional field
‘v_string’
must be set as
ColumnType is
STRING.

When
assigning
values, the
incoming
column values
(optional
parameter)
must maintain
consistency
with the
column data
type defined by
the parameter.
They must all
be String type.

No

400 OTSParameterI Optional field When No

Table Store Developer Guide

29



nvalid

‘v_int’ must
be set as
ColumnType is
INTEGER.

assigning
values, the
incoming
column values
(optional
parameter)
must maintain
consistency
with the
column data
type defined by
the parameter.
They must all
be Integer type.

400 OTSParameterI
nvalid

Optional field
‘v_bool’
must be set as
ColumnType is
BOOLEAN.

When
assigning
values, the
incoming
column values
(optional
parameter)
must maintain
consistency
with the
column data
type defined by
the parameter.
They must all
be Boolean
type.

No

400 OTSParameterI
nvalid

Optional field
‘v_double’
must be set as
ColumnType is
DOUBLE.

When
assigning
values, the
incoming
column values
(optional
parameter)
must maintain
consistency
with the
column data
type defined by
the parameter.
They must all
be Double
type.

No

400 OTSParameterI
nvalid

Optional field
‘v_binary’
must be set as
ColumnType is
BINARY.

When
assigning
values, the
incoming
column values
(optional
parameter)
must maintain
consistency
with the

No

Table Store Developer Guide

30



 
Table Store storage exceptions
 

column data
type defined by
the parameter.
They must all
be Binary type.

HTTPStatus ErrorCode ErrorMsg Description Retry

503 OTSServerBusy Server is busy.
The OTS
internal server
is busy.

Yes

503 OTSPartitionUn
available

The partition is
not available.

An internal
server
exception has
caused some
table partitions
to be
unavailable.

Yes

503 OTSTimeout Operation
timeout.

Internal OTS
operation
timeout.

Yes

503 OTSServerUnav
ailable

Server is not
available.

An internal OTS
server is
unavailable.

Yes

409 OTSRowOperat
ionConflict

Data is being
modified by
the other
request.

Conflict due to
multiple
concurrent
requests trying
to write the
same row.

Yes

409 OTSObjectAlre
adyExist

Requested
table already
exists.

The table to be
created by the
request already
exists.

No

404 OTSObjectNotE
xist

Requested
table does not
exist.

The requested
table does not
exist.

No

404 OTSTableNotR
eady

The table is not
ready.

The newly
created tables
are not
immediately
available.

Yes

403

OTSTooFreque
ntReserved
ThroughputAdj
ustment

Capacity unit
adjustment is
too frequent.

The reserved
read/write
throughput has
been adjusted
too frequently.

Yes

Table Store Developer Guide

31



  
Restricted items
 

403 OTSNotEnough
CapacityUnit

Remaining
capacity unit is
not enough.

The remaining
reserved
read/write
throughput is
insufficient.

No

403 OTSConditionC
heckFail

Condition
check failed.

Pre-query
condition check
failed.

No

400 OTSOutOfRowS
izeLimit

The total data
size of columns
in one row
exceeded the
limit.

The total data
size of all
columns in the
row exceeds
the limit.

No

400 OTSOutOfColu
mnCountLimit

The number of
columns in one
row exceeded
the limit.

The total
number of
columns of this
row exceeds
the limit.

No

400 OTSInvalidPK
Primary Key
schema
mismatch.

Primary Key
mismatch. No

Restricted Item Restriction Description

The number of instances
saved under an Alibaba
Cloud user account

Up to 10
If you need to raise the limit,
please contact customer
service.

The number of tables in an
instance Up to 64

If you need to raise the limit,
please contact customer
service.

Instance name length 3-16 bytes

Character set: [a-zA-Z0-9]
and hyphens(-). The first
character must be a letter
and the last character cannot
be a hyphen(-).

Table name length 1-255 bytes
Character set: [a-zA-Z0-9_].
The first character must be a
letter or (_).

Column name length 1-255 bytes
Character set: [a-zA-Z0-9_].
The first character must be a
letter or (_).

Number of columns in a
Primary Key 1-4 At least 1 and no more than

4.

Table Store Developer Guide

32



Size of String type Primary
Key column values Up to 1KB

A single Primary Key
column’s String type
column value is limited to 1
KB.

Size of String type attribute
key column values Up to 2MB

A single attribute column’s
String type column value is
limited to 2 MB.

Size of Binary type Primary
Key column values Up to 1KB

A single Primary Key
column’s Binary type
column value is limited to 1
KB.

Size of Binary type attribute
key column values Up to 2MB

A single attribute column’s
Binary type column value is
limited to 2 MB.

Number of attribute columns
in a single row Unlimited A single row can contain the

infinite attribute columns.

Data size of a single row Unlimited

The total size of all column
names and column value
data for a single row is
unlimited.

Reserved read/write
throughput for a single table 1-5000

If you need to raise the limit,
please contact customer
service.

Number of columns in a read
request’s columns_to_get
parameter

0-128 Read request.

Number of UpdateTable
operations for a single table

Raise: Unlimited; Lower:
Unlimited

A calendar day is from
00:00:00 to 00:00:00 of the
next day in UTC time, or
08:00:00 to 08:00:00 of the
next day in Beijing time.

UpdateTable frequency for a
single table Once every 2 minutes

The reserved read/write
throughput for a single table
can be adjusted no more
than once every 2 minutes.

The number of rows read by
one BatchGetRow request Up to 100 N/A

The number of rows written
by one BatchWriteRow
request

Up to 200 N/A

Data size of one
BatchWriteRow request Up to 4MB N/A

Data returned by one
GetRange operation 5000 rows or 4MB

The data returned by a single
operation cannot exceed
5000 rows or 4 MB. If there is
more data, the excessive
data will be truncated.

The data size of an HTTP Up to 5MB N/A

Table Store Developer Guide

33



Request Body

Table Store Developer Guide

34


	Developer Guide
	Access control
	Instance access
	AccessKey

	Table Store tables
	Table name
	Primary Key
	Configure the reserved read/write throughput
	The data size restrictions of Partition Key
	Table load time
	Best practices
	Use Table Store SDK for table operations

	Data operations
	Row of Table Store
	Single row operations
	Single row write operations
	Single row read operations

	Multi-Row operations
	Range read operations
	Best practices
	Table Store SDK for data operation

	Table Store API
	Current API version
	HTTP messages
	HTTP request
	HTTP request URL
	HTTP request header
	HTTP request body

	HTTP response
	HTTP response header
	HTTP response content

	Signature examples
	Request signature examples
	Response signature examples



	Error messages
	Permission verification errors
	HTTP message errors
	API errors
	Table Store storage exceptions

	Restricted items

