
Table Store

Best Practices

Best Practices

This section details recommendations for optimizing your use of Table Store.

A well-designed Primary Key

Table Store dynamically divides table data into partitions according to Partition Keys, and each
partition is served by one server node. A Partition Key is the smallest partition unit. The data under a
Partition Key cannot be split. In this case, applications must balance data distribution and access
distribution across partitions to leverage Table Store’s capability.

Table Store sorts the rows in a table by the Primary Key. A well-designed Primary Key can better
balance data distribution across partitions, making full use of the Table Store’s high scalability.

When selecting a Partition Key, the following must be noted:

Data of all rows in a single Partition Key must not exceed 1 GB. While 1 GB is not the actual
limitation, this is recommended to avoid a hot spot.

Data in different Partition Keys of the same table are logically independent.

The access pressure must not be concentrated on a small range of consecutive Partition
Keys.

Example

Assume you have a table that stores students’ transaction records conducted using student ID
cards. In this scenario:

Each student card corresponds to one CardID.

Each seller corresponds to one SellerID.

Each purchase terminal corresponds to a DeviceID, which is globally unique.

For each purchase generated by a purchase terminal, one OrderNumber is recorded. An

Table Store Best Practices

1

OrderNumber generated by a purchase terminal is unique to the terminal, but is not globally
unique.

For example, different purchase terminals may generate two separate purchase records using the
same OrderNumber. Each OrderNumber generated by the same purchase terminal has a different
time stamp. New purchase records have larger sequential OrderNumbers than the previous purchase
records. Every purchase record is written into the table in real time.

To optimize the use of Table Store, CardID or DeviceID are recommended as the table’s Primary
Key:

Using CardID is strongly recommended as, generally, the number of purchase records for
each card, each day, is similar, thereby the access pressure for each Partition Key is balanced.
This allows for a good utilization of the reserved read/write throughput.

Using DeviceID is recommended as, even though the number of purchase records for each
seller per day varies, the number of purchase records generated by each purchase terminal
per day can be estimated. This estimation is calculated based on a cashier’s operating
speed, which determines the number of purchase records that can be generated by their
purchase terminal per day. Therefore, DeviceID is suitable as the table’s Partition Key to
guarantee a balanced distribution of access pressure.

The SellerID and OrderNumber are not recommended. The SellerID is not recommended as it
indicates the limited number of sellers available, and therefore, does not help to balance access
pressure for each Partition Key in scenarios in which a small number of sellers generate the majority
of purchase records. The OrderNumber is not recommended due to the sequential increase of
purchase orders generated at the same time, resulting in grouped orders in the same time period.
This restricts the effectiveness of the read/write throughput.

Note: If OrderNumber must be the Partition Key, you can hash it and use the hash value as the
OrderNumber prefixes. This guarantees an even distribution of the data and access distribution
pressure.

Spliced Partition Keys

For optimized Table Store use, we recommend that the data volume of a single partition does not
exceed 1 GB. If the total data volume for all rows in a single table partition exceeds 1 GB, you can
splice multiple original Primary Key columns into a Partition Key when designing the table.

Example

As in the preceding student card purchase record example, assume the Primary Key columns are
[DeviceID, SellerID, CardID, OrderNumber]. DeviceID is the Partition Key for this table and the total

Table Store Best Practices

2

data volume from all rows of a single DeviceID may exceed 1 GB. In this case, splice DeviceID,
SellerID, and CardID as the table’s first Primary Key column (Partition Key).

The original table is shown as follows:

After splicing DeviceID, SellerID, and CardID to create the Partition Key, the new table is shown as
follows:

In the original table, the two rows for DeviceID = 54 belong to two purchase records in the same
Partition Key 54. In the new table, these two purchase records have different Partition Keys. By
splicing multiple Primary Key columns to form a Partition Key, you can reduce the total data volume
for each Partition Key in the table.

However, splicing the Primary Key columns to form a table poses some drawbacks. DeviceID is an
integer-type Primary Key column. In the original table, the purchase records of DeviceID = 54 are
listed before those of DeviceID = 167. After splicing the first three Primary Key columns into a string-
type Primary Key column, the purchase records of DeviceID = 54 are listed after those of DeviceID =
167. If the application needs to read all purchase records from the DeviceID range [15, 100), the
preceding table is not optimal.

In response to this situation, you can add 0s in front of the DeviceIDs. The number of 0s to add is
determined by the maximum number of digits for DeviceIDs. If the DeviceID range is [0, 999999], you
can add 0s so that all DeviceIDs have 6 digits, and then splice. The resulting table is as follows:

DeviceID SellerID CardID OrderNumber attrs

16 ‘a100’ 66661 200001 …

54 ‘a100’ 6777 200003 …

54 ‘a1001’ 6777 200004 …

167 ‘a101’ 283408 200002 …

CombineDeviceIDSellerIDCar
dID OrderNumber attrs

‘16:a100:66661’ 200001 …

‘167:a101:283408’ 200002 …

‘54:a1001:6777’ 200004 …

‘54:a100:6777’ 200003 …

CombineDeviceiDSellerIDCar
dID OrderNumber attrs

‘000016:a100:66661’ 200001 …

‘000054:a1001:6777’ 200004 …

‘000054:a100:6777’ 200003 …

‘000167:a101:283408’ 200002 …

Table Store Best Practices

3

However, even after padding 0s in front of the IDs, the table is still not fully optimal. This is because
of the two rows with DeviceID = 54; the row with SellerID = ‘a1001’ is listed after SellerID =
‘a100’. This discrepancy is caused by the connector :, which influences the lexicographic order,
meaning ‘000054:a1001’ is lexicographically less than ‘000054:a100:’, but ‘a1001’ is greater
than ‘a100’. To resolve this issue, choose a character that is less than the ASCII code of all other
available characters. In this table, the SellerID value uses uppercase and lowercase letters and digits.
We recommend that , is the connector, because the ASCII code for , is less than the ASCII code of all
characters available for the SellerID.

Using , and then splicing, produces the following optimized table:

Summary

If the total data size for all rows in a single Partition Key exceeds 1 GB, you can splice multiple Primary
Key columns to form a Partition Key to minimize the data size of an individual Primary Key. When
splicing the Partition Key, the following must be noted:

When choosing the Primary Key columns to splice, be sure that the original rows of the same
Partition Key have different Partition Keys after splicing.

When splicing integer-type Primary Key columns, you can add 0s before the numbers to
make sure the rows’ order remains the same.

When selecting a connector, you must consider its effect on the lexicographical order of the
new Partition Key. The ideal method is to select a connector with an ASCII code that is less
than all other available characters.

Add hash prefixes in Partition Keys

Example

In the Primary Key section, we recommend that OrderNumber is not used as the table’s Partition
Key. Since OrderNumbers increase sequentially, purchase records are always written in the newest
OrderNumber range, meaning older OrderNumber ranges do not experience any written pressure.

CombineDeviceiDSellerIDCar
dID OrderNumber attrs

‘000016,a100,66661’ 200001 …

‘000054,a100,6777’ 200003 …

‘000054,a1001,6777’ 200004 …

‘000167,a101,283408’ 200002 …

Table Store Best Practices

4

This causes an imbalance in access pressure resulting in inefficient use of the reserved read/write
throughput. If a sequentially increasing key value needs to be used as the Partition Key, splice a hash
prefix to the Partition Key. In this way, the OrderNumbers are randomly distributed throughout the
table to better balance the access pressure distribution.

The purchase records table using OrderNumber as the Partition Key is as follows:

As an example, for the OrderNumbers, you can use the md5 algorithm to calculate a prefix (other
hashing algorithms are permitted) and splice it to create the HashOrderNumber. As the hash strings
calculated by the md5 algorithm may be too long, you can take only the first few digits to achieve a
random distribution of records of sequential OrderNumbers. In this example, the first 4 digits are
used to produce the following table:

When subsequently accessing the purchase records, use the same algorithm to calculate the hash
prefix of the OrderNumber to get the HashOrderNumber that corresponds to a purchase record. One
drawback of adding a hash prefix to the Partition Key is that the originally contiguous records are
dispersed. This means that the GetRange operation cannot be used to get a range of logically
consecutive records.

Write data in parallel

When Table Store tables are split into multiple partitions, these partitions are distributed across
multiple Table Store servers. If a batch of data is ordered by the Primary Key to be uploaded to Table

OrderNumber DeviceID SellerID CardID attrs

200001 16 ‘a100’ 66661 …

200002 167 ‘a101’ 283408 …

200003 54 ‘a100’ 6777 …

200004 54 ‘a1001’ 6777 …

200005 66 ‘b304’ 178994 …

HashOrderNum
ber DeviceID SellerID CardID attrs

‘2e38200004
’ 54 ‘a1001’ 6777 …

‘a5a9200003
’ 54 ‘a100’ 6777 …

‘c335200005
’ 66 ‘b304’ 178994 …

‘db6e200002 167 ‘a101’ 283408 …

‘ddba200001
’ 16 ‘a100’ 66661 …

Table Store Best Practices

5

-

-

-

Store, and the data is written in the same order, this may concentrate the written pressure on a
certain partition, while the other partitions remain idle. This operation does not fully utilize the
reserved read/write throughput and may impact the data import speed.

To resolve this issue, use either of the following methods to increase the data import speed:

Disrupt the original data order and then import. Make sure that the written data is evenly
distributed across each Partition Key.

Use multiple worker threads for parallel data import. Split a large data set into multiple
smaller sets. The worker threads then randomly selects a smaller set to import.

Distinguish cold data and hot data

Mismanaged time sensitive data can become an issue. Using the previous example of student
transaction records, some purchase records may have a higher access probability as applications
frequently query the latest record,and process and compile statistics based on the latest records.
However, old purchase records continue to occupy storage space and become cold. Furthermore, if a
large volume of cold data is included in a table (such as CardIDs of students no longer enrolled, yet
retained in the system), the reserved read/write throughput is ineffectively utilized, and results in
unbalanced access pressure across the partitions.

To effectively manage time sensitive data, use different tables to separate cold and hot data, and set
a different reserved read/write throughput for them. For example, purchase records may be divided
into different tables according to month, with a new table being created for each month. The
reserved read/write throughput can then be set for each table as follows:

A high reserved read/write throughput can be set for the table with the latest purchase
records of the current month to satisfy its access needs (that is, new purchase records have a
higher chance of being queried than legacy data).
A low reserved write throughput and a high reserved read throughput can be set for later
tables (of the past few months) in which little or no new data is written, but queries are still
performed.
A low reserved read/write throughput can be set for tables that have exceeded their
maintenance period (such as historical records of a year or longer). These tables can then be
exported to restore in an OSS archive, or deleted.

This section provides recommendations for optimizing Table Store data operations. Notably, it details
how to effectively manage Attribute columns and application request errors.

Split tables among Attribute columns
If a table’s rows have many Attribute columns, but each operation only accesses a portion of these

Table Store Best Practices

6

-

-

columns, you can split the table into multiple tables with the Attribute columns of different access
frequencies placed in different tables. For example, in a merchandise management system with rows
containing the item quantity, item price, and item description:

Item quantities and prices are integer-type values that occupy little storage space, but are
modified frequently.
Item descriptions are string-type values that occupy more storage space, but are not
modified frequently.

Because the majority of operations only require updating the integer-type values of item quantities
and prices, the table can be split into one table containing these two values, and the other table
containing the string-type item descriptions.

Compress text-based Attribute columns

If an Attribute column contains a large amount of text, the Attribute columns can be compressed and
stored as a binary-type in Table Store. This action saves space and reduces the capacity units
consumed by access operations, thereby reduces the Table Store cost.

Store Attribute columns in OSS

Table Store limits the size of a single Attribute column to up to 2 MB. If you want to store a file that
exceeds 2 MB, we recommend you to use Alibaba Cloud Object Storage Service (OSS). OSS is an
open storage service capable of storing large files at lower storage prices, compared with Table Store.

If OSS cannot be used, individual values greater than 2 MB can be split into multiple, smaller rows,
and then stored in Table Store.

Add error retry intervals

If an application’s request fails and returns a “try again” error, we recommend you to wait a
period of time before trying the request again. As a best practice, randomized or exponentially-
increasing backoffs are helpful to avoid an avalanche effect. For more error information, see Table
Store API.

Table Store Best Practices

7

	Best Practices
	A well-designed Primary Key
	Example

	Spliced Partition Keys
	Example
	Summary

	Add hash prefixes in Partition Keys
	Example

	Write data in parallel
	Distinguish cold data and hot data
	Split tables among Attribute columns
	Compress text-based Attribute columns
	Store Attribute columns in OSS
	Add error retry intervals

