
Table Store

Best Practices

Best Practices

Table operations

This article details recommendations for optimizing your use of Alibaba Cloud Table Store.

A well-designed primary key

Table Store dynamically divides table data into partitions according to the partition key, and each
partition is hosted on one server node. The partition key value is the smallest partition unit. The data
on the same partition key value cannot be split. In this case, applications must balance data
distribution and access distribution across partitions to leverage Table Store’s capability.

Table Store sorts the rows in a table by the primary key. A well-designed primary key can better
balance data distribution across partitions, making full use of the Table Store’s high scalability.

When selecting a partition key, note the following:

Data of all rows in one partition key value cannot exceed 10 GB. While 10 GB is not a hard
limitation, but this is recommended to avoid a hotspot.

Data in different partition key value of the same table are logically independent.

Do not concentrate the access load on a small range of consecutive partition key value.

Example

Assume you have a table that stores records of students’ transactions using their student ID cards.
In this scenario:

Each student card corresponds to one CardID.

Each seller corresponds to one SellerID.

Table Store Best Practices

1

Each point-of-sale device corresponds to a DeviceID, which is globally unique.

For each purchase generated by a point-of-sale device, one OrderNumber is recorded. An
OrderNumber generated by a device is unique to the device, but is not globally unique.

For example, different point-of-sale devices may generate two separate purchase records using the
same OrderNumber. Each OrderNumber generated by the same point-of-sale device has a different
time stamp. New purchase records have larger sequential OrderNumbers than the previous purchase
records. Every purchase record is written into the table in real time.

To optimize the use of Table Store, CardID or DeviceID are recommended as the table’s partition
key:

Using CardID is strongly recommended as, generally, the number of purchase records for
each card, each day, is similar, thereby the access pressure for each partition is balanced. This
allows for an efficient utilization of the reserved read/write throughput.

Using DeviceID is recommended as, even though the number of purchase records for each
seller per day varies, the number of purchase records generated by each purchase device per
day can be estimated. This estimation is calculated based on a cashier’s order processing
speed, which determines the number of purchase records that can be generated by their
purchase device per day. Therefore, DeviceID is suitable as the table’s partition key to
guarantee a balanced distribution of access pressure.

Using the SellerID and OrderNumber are not recommended. The SellerID is not recommended
because it indicates the limited number of sellers available, and therefore, does not help to balance
access pressure for each partition in scenarios in which a small number of sellers generate the
majority of purchase records. The OrderNumber is not recommended due to the sequential increase
of purchase orders generated at the same time, resulting in grouped orders in the same time period.
This restricts the effectiveness of the read/write throughput.

Note: If OrderNumber must be the partition key, you can hash it and use the resulting hash
value as the OrderNumber prefixes. This process will allow for even distribution of the data and
reduce distribution pressure.

Spliced partition key

For optimized Table Store use, we recommend that the data volume of a single partition key value
does not exceed 10 GB. If the total data volume for all rows in a single table partition key value
exceeds 10 GB, you can splice multiple original primary key columns into a partition key when
designing the table.

Table Store Best Practices

2

Example

As in the preceding student card purchase record example, assume the primary key columns are
[DeviceID, SellerID, CardID, OrderNumber]. DeviceID is the partition key for this table and the total
data volume from all rows of a single DeviceID may exceed 10 GB. In this case, splice DeviceID,
SellerID, and CardID as the table’s first primary key column (partition key).

The original table is shown as follows.

After splicing DeviceID, SellerID, and CardID to create the partition key, the new table is shown as
follows.

In the original table, the two rows for DeviceID = 54 belong to two purchase records in the same
partition key value of 54. In the newly created table, these two purchase records have different
partition key values. By splicing multiple primary key columns to form a partition key, you can reduce
the total data volume for each partition key value in the table.

Splicing the primary key columns to form a table presents some disadvantages. DeviceID is an
integer-type primary key column. In the original table, the purchase records of DeviceID = 54 are
listed before those of DeviceID = 167. After splicing the first three primary key columns into a string-
type primary key column, the purchase records of DeviceID = 54 are listed after those of DeviceID =
167. If the application needs to read all purchase records from the DeviceID range [15, 100), the
preceding table is not optimal.

To address this situation, you can add zeros in front of the DeviceIDs. The number of zeros to add is
determined by the maximum number of digits for DeviceIDs. If the DeviceID range is [0, 999999], you
can add zeros so that all DeviceIDs have 6 digits, and then splice. The resulting table is as follows:

DeviceID SellerID CardID OrderNumber attrs

16 ‘a100’ 66661 200001 …

54 ‘a100’ 6777 200003 …

54 ‘a1001’ 6777 200004 …

167 ‘a101’ 283408 200002 …

CombineDeviceIDSellerIDCar
dID OrderNumber attrs

‘16:a100:66661’ 200001 …

‘167:a101:283408’ 200002 …

‘54:a1001:6777’ 200004 …

‘54:a100:6777’ 200003 …

CombineDeviceiDSellerIDCar
dID OrderNumber attrs

‘000016:a100:66661’ 200001 …

Table Store Best Practices

3

However, even after padding zeros in front of the IDs, the table is still not fully optimized. This is
because of the two rows with DeviceID = 54; the row with SellerID = ‘a1001’ is listed after SellerID
= ‘a100’. This discrepancy is caused by : as the connector, which influences the lexicographic
order, meaning ‘000054:a1001’ is lexicographically less than ‘000054:a100:’, but ‘a1001’ is
greater than ‘a100’. To resolve this issue, choose a character that is less than the ASCII code of all
other available characters. In this table, the SellerID value uses uppercase and lowercase letters and
digits. We recommend , as the connector, because the ASCII code for , is less than the ASCII code of
all characters available for the SellerID.

Using , and then splicing, produces the following optimized table:

Summary

If the total data size for all rows in a single partition key value exceeds 10 GB, you can splice multiple
primary key columns to form a partition key to minimize the data size of an individual partition key
value. When splicing the partition key, note the following:

When choosing the primary key columns to splice, be sure that the original rows of the same
partition key value have different partition key values after splicing.

When splicing integer-type primary key columns, you can add zeros before the numbers to
make the rows order remain the same.

When selecting a connector, consider its effect on the lexicographical order of the new
partition key. The ideal method is to select a connector with an ASCII code that is less than
all other available characters.

Add hash prefixes in partition key

‘000054:a1001:6777’ 200004 …

‘000054:a100:6777’ 200003 …

‘000167:a101:283408’ 200002 …

CombineDeviceiDSellerIDCar
dID OrderNumber attrs

‘000016,a100,66661’ 200001 …

‘000054,a100,6777’ 200003 …

‘000054,a1001,6777’ 200004 …

‘000167,a101,283408’ 200002 …

Table Store Best Practices

4

Example

In the A well-designed primary key section, we recommend that OrderNumber is not used as the
table’s partition key. Since OrderNumbers increase sequentially, purchase records are always written
in the latest OrderNumber range, meaning earlier OrderNumber ranges do not experience any
written pressure. This causes an imbalance in access pressure resulting in inefficient use of the
reserved read/write throughput. If a sequentially increasing key value needs to be used as the
partition key, splice a hash prefix to the partition key. In this way, the OrderNumbers are randomly
distributed throughout the table to better balance the access pressure.

The purchase records table using OrderNumber as the partition key is as follows.

As an example, for the OrderNumbers, you can use the md5 algorithm to calculate a prefix (other
hashing algorithms are permitted) and splice it to create the HashOrderNumber. As the hash strings
calculated by the md5 algorithm may be too long, you can take only the first few digits to achieve a
random distribution of records of sequential OrderNumbers. In this example, the first 4 digits are
used to produce the following table.

When subsequently accessing the purchase records, use the same algorithm to calculate the hash
prefix of the OrderNumber to get the HashOrderNumber that corresponds to a purchase record. One
disadvantage of adding a hash prefix to the partition key is that the originally contiguous records are
dispersed. This means that the GetRange operation cannot be used to get a range of logically
consecutive records.

OrderNumber DeviceID SellerID CardID attrs

200001 16 ‘a100’ 66661 …

200002 167 ‘a101’ 283408 …

200003 54 ‘a100’ 6777 …

200004 54 ‘a1001’ 6777 …

200005 66 ‘b304’ 178994 …

HashOrderNum
ber DeviceID SellerID CardID attrs

‘2e38200004
’ 54 ‘a1001’ 6777 …

‘a5a9200003
’ 54 ‘a100’ 6777 …

‘c335200005
’ 66 ‘b304’ 178994 …

‘db6e200002 167 ‘a101’ 283408 …

‘ddba200001
’ 16 ‘a100’ 66661 …

Table Store Best Practices

5

Write data in parallel

When Table Store tables are split into multiple partitions, these partitions are distributed across
multiple Table Store servers. If a batch of data is ordered by the primary key to be uploaded to Table
Store, and the data is written in the same order, this may concentrate the written pressure on a
certain partition. This partition may have high pressure, while the other partitions remain idle. This
operation does not fully utilize the reserved read/write throughput and may impact the data import
speed.

To resolve this issue, use either of the following methods to increase the data import speed:

Disrupt the original data order and then import. Make sure that the written data is evenly
distributed across each partition.

Use multiple worker threads for parallel data import. Split a large data set into multiple
smaller sets. The worker threads then randomly selects a smaller set to import.

Distinguish cold data and hot data

Mismanaged time sensitive data can create problems. Using the previous example of student
transaction records, some purchase records may have a higher access probability because
applications frequently query the latest record, and process and compile statistics based on the latest
records. However, old purchase records continue to occupy storage space and become cold. If a large
volume of cold data is included in a table (such as CardIDs of students no longer enrolled, yet
retained in the system), the reserved read/write throughput is ineffectively utilized, and results in
unbalanced access pressure across the partitions.

To effectively manage time sensitive data, use different tables to separate cold and hot data. Set a
different reserved read/write throughput for each of them. For example, purchase records may be
divided into different tables according to month, with a new table being created for each month. The
reserved read/write throughput can then be set for each table as follows:

A high reserved read/write throughput can be set for the table with the latest purchase
records of the current month to satisfy its access needs (new purchase records have a higher
chance of being queried than legacy data).

A low reserved write throughput and a high reserved read throughput can be set for later
tables (of the past few months) in which little or no new data is written, but queries are still
performed.

A low reserved read/write throughput can be set for tables that have exceeded their
maintenance period (such as historical records of a year or longer). These tables can then be

Table Store Best Practices

6

exported to restore in an OSS archive, or deleted.

Data operations

This article provides recommendations for optimizing Table Store data operations. Notably, it details
how to effectively manage the attribute columns and application request errors.

Split tables among attribute columns

If a table’s rows have many attribute columns, but each operation only accesses a portion of these
columns, you can split the table into multiple tables. The attribute columns of different access
frequencies can be placed into different tables.

For example, in a merchandise management system with rows containing the item quantity, item
price, and item description:

Item quantities and prices are integer-type values that consume little storage space, but are
modified frequently.

Item descriptions are string-type values that consume more storage space, but are modified
infrequently.

Because the majority of operations only require updating the integer-type values of item quantities
and prices, the table can be split into two tables, one containing these two values, the other
containing the string-type item descriptions.

Compress text-based attribute columns

If an attribute column contains a large amount of text, the attribute columns can be compressed and
stored as binary-type in Table Store. This process saves space and reduces the capacity units
consumed by access operations, to reduce the cost of Table Store usage.

Store attribute columns in OSS

Table Store limits the size of a single attribute column to 2 MB. If you need to store a file that exceeds
2 MB, we recommend that you use Alibaba Cloud Object Storage Service (OSS). OSS is an alternative
storage service capable of storing large files at lower costs compared to Alibaba Cloud Table Store.

Table Store Best Practices

7

If OSS cannot be used, the attribute column whose value is greater than 2 MB can be split into
multiple, smaller rows, and then stored in Table Store.

Add error retry intervals

If an application’s request fails and returns a try again error, we recommend that you wait a period
of time before trying the request again. As a best practice, randomized or exponentially-increasing
backoffs are helpful to avoid an avalanche effect. For more error information, see Table Store API.

Table Store Best Practices

8

	Best Practices
	Table operations
	A well-designed primary key
	Example

	Spliced partition key
	Example
	Summary

	Add hash prefixes in partition key
	Example

	Write data in parallel
	Distinguish cold data and hot data

	Data operations
	Split tables among attribute columns
	Compress text-based attribute columns
	Store attribute columns in OSS
	Add error retry intervals

