
Object Storage Service

Developer Guide

-

-

-

Developer Guide

The following table lists the documents that will help you fully utilize OSS:

Basic OSS concepts

This section introduces the basic concepts of OSS.

Object

An object (also known as a file) is a discrete unit of data.

An object is composed of:

Metadata, known as Object Meta, which is a key-value pair that expresses the object’s
attributes, such as its last modification time and size, as well as user-defined information.
User data, known as Data.
A unique object name, known as a Key.

Resource Description

Alibaba Cloud OSS Developer Guide
Describes the core concepts, functions, and
operation procedures of OSS, as well as
examples about how to use APIs and SDKs.

Alibaba Cloud OSS Console User Guide Describes all operations supported by the
OSS Console.

Alibaba Cloud OSS Best Practice Describes the application scenarios and
configuration practices of OSS.

Alibaba Cloud OSS API Manual
Describes the RESTful API operations
supported by OSS and provides related
examples.

Alibaba Cloud OSS SDK Manual Describes the SDK development and related
parameters based on major languages.

Alibaba Cloud OSS Image Processing Guide Describes various functions provided by
Image Service.

Alibaba Cloud OSS Migration Tool
The migration tool can synchronize your files
stored locally or in the third-party cloud to
OSS.

Object Storage Service Developer Guide

1

-

-

-

-

-

-

-

-

-

-

-

The size of an object varies with the upload method. Multipart Upload supports objects of up to 48.8
TB. Other upload methods only support objects of up to 5 GB.

An object’s lifecycle starts from when it has been successfully uploaded, and ends when it has been
deleted. During an object’s lifecycle, its information cannot be changed. If you upload an object
with a duplicate name in a bucket, it will overwrite the existing one. Therefore, unlike the file system,
OSS does not allow users to modify only part of an object.

OSS provides the Append Upload function, which allows users to continually append data to the end
of an object.

The name of an object must comply with the following rules:

It must use UTF-8 encoding.
It must be between 1-1023 bytes in length.
It cannot start with a backslash “/“ or forward slash “\”.

NOTE: Object names are case sensitive.

Bucket

A bucket is a virtual division of object storage that, unlike file systems, manages objects in a flat
structure.

Bucket properties are as follows:

All objects must belong to a bucket, and during an object’s lifecycle it remains directly
affiliated with the corresponding bucket.
A user can have multiple buckets, with each bucket able to contain an unlimited number of
objects.
You can set and modify the attributes of a bucket for region and object access control and
object lifecycle management. These attributes apply to all objects in the bucket.
You can create different buckets to perform different management functions.

The name of a bucket must comply with the following rules:

It can only contain lower-case letters, digits, and hyphens (-).
It must start and end with a lower-case letter or number.
It must be between 3-63 bytes in length.
It must be globally unique within the OSS.

Once a bucket name is created, it cannot be changed.

Region
A region represents the physical location of an OSS data center.

Object Storage Service Developer Guide

2

-

-

-

-

-

Users can select regions based on fees, request sources, and other factors according to site
requirements. Generally, the closer the user is in proximity to a region, the faster the access speed will
be. For more details, refer to OSS Regions and Endpoints.

A region is specified when a bucket is created, and cannot be changed. All objects contained in this
bucket are therefore stored in the corresponding data center. Setting different regions for objects in
the same bucket is currently not supported.

Endpoint

An endpoint is the domain name used to access the OSS.

OSS provides external services through HTTP RESTful APIs. Different regions use different endpoints.
For the same region, access through an intranet or through the Internet also uses different endpoints.
For example, regarding the Hangzhou region:

The intranet endpoint is oss-cn-hangzhou-internal.aliyuncs.com
The Internet endpoint is oss-cn-hangzhou.aliyuncs.com

For more details, refer to OSS Regions and Endpoints.

AccessKey

An AccessKey (AK) is composed of an AccessKeyId and AccessKeySecret. The AccessKeyId is a public
key, whereas the AccessKeySecret is a private key and must be kept confidential. These are then
paired together to perform access identity verification.

The OSS verifies the identity of a request sender by using the AccessKeyId/AccessKeySecret
symmetric encryption method. The AccessKeyId identifies a user. With the AccessKeySecret, a user
can encrypt the signature string. The OSS then uses the symmetric encryption method to verify the
AccessKey of the signature string. In OSS, AccessKeys are generated as follows:

Applied for by the bucket owner.
Granted by the bucket owner to an authorized third-party requestor through RAM.
Granted by the bucket owner to an authorized third-party requestor through STS.

For more information about AccessKeys, see RAM.

High consistency

In OSS, object operations are binary, that is, operations must either succeed or fail without an
intermediate status. After a user uploads an object, OSS ensures that it is complete. OSS will not
return a partial success response when uploading objects.

Object operations in OSS are likewise highly consistent. For example, once a user receives an upload

Object Storage Service Developer Guide

3

(PUT) success response, this object can be read immediately, and the data will have already been
written in triplicate. The same concept applies to delete operations. Once a user deletes an object,
this object no longer exists.

This high-consistency feature facilitates user architectural design. The logic of OSS usage is the same
as that of a traditional storage device: modifications are immediately visible and users do not have to
consider final consistency issues.

Comparison between OSS and file system

OSS is a distributed object storage service structure that uses a Key-Value pair format, whereas a file
system uses a tree-type index structure of directories that contain files. In OSS, users retrieve object
content based on unique object names (Keys). In file systems, users retrieve files based on their
location in a directory.

The benefit of OSS is that it supports massive concurrent access volumes, which means large volumes
of unstructured data (such as images, videos, and documents) can be stored and retrieved without
excessive use of resources. The benefit of a file system is that folder operations such as renaming,
moving, and deleting directories (which means renaming, moving, and deleting data) is considerably
easier as data does not need to be copied and replaced.

The limitation of OSS is that saved objects cannot be modified. If an object needs modification, the
entire object must be uploaded again to make the modification take effect. One exception is through
using the append object operation, whereby users call a specific API, which allows a generated object
be of a different type than normally uploaded objects. The limitations of a file system are that system
performance is limited to a single device, and the more files and directories that are created in the
system, the more resources are consumed, and the lengthier user processes become.

Comparisons between OSS and file system concepts are as follows:

OSS File system

Object File

Bucket Main directory

Region N/A

Endpoint N/A

AccessKey N/A

N/A Multilevel directory

GetService Retrieving the list of main directories

GetBucket Retrieving the list of files

PutObject Writing an object

AppendObject Append writing an object

GetObject Reading an object

Object Storage Service Developer Guide

4

OSS Glossary

Storage classes

DeleteObject Deleting an object

N/A Modifying file content

CopyObject (same target and source) Modifying file attributes

CopyObject Copying an object

N/A Renaming an object

Term Definition

Object A discrete unit of data

Bucket A virtual division of object storage

Endpoint The domain name for OSS access

Region A representation of the physical location of an
OSS data center

AccessKey An alias for the AccessKeyId and
AccessKeySecret pair

Put Object Simple upload

Post Object Form upload

Multipart Upload The uploading of an object as several chunks,
then reassembling the chunks

Append Object An upload that attaches to already uploaded
data

Get Object Simple download

Callback Upload callback

Object Meta Metadata of a file that includes the object’s
attributes and user-defined information

Data Object information (typically user-defined
information)

Key Unique object name

ACL (Access Control List) Permissions for buckets or files

Object Storage Service Developer Guide

5

-

-

-

-

-

-

-

-

Introduction to storage classes

OSS provides three storage classes: Standard, Infrequent Access (IA), and Archive, applicable to
various hot and cold data storage scenarios.

The Standard class provides common object storage services. It is suitable for the storage of
audios and videos, pictures, and website static resource frequently accessed via WiFi
hotspots. It supports high-throughput computing scenarios and is suitable for the storage of
computing resources.
The IA class is suitable for data that will be stored for long and infrequently accessed and
applicable to backup of mobile applications, smart devices, and enterprise data. It supports
real-time data access.
The Archive class has the lowest unit price among the three storage classes. It is suitable for
archive data, medical imaging, scientific data, and video materials to be stored for long and
can effectively optimize the long-term storage costs. The restoration of data stored in the
Archive class to the readable status takes one minute.

Standard

The Standard class provides object storage services featuring high reliability, availability, and
performance, and supports frequent data access. The high-throughput and low-latency service
response capability of OSS can effectively support access to hotspot data. The Standard class is the
right choice for social, picture sharing, audio and video applications, large sites, and big data analysis
scenarios.

Key features:

Data reliability up to 99.99999999%
Service availability up to 99.95%
High-throughput and low-latency access performance
HTTPS encryption transmission
Picture processing

IA

The IA class is suitable for data that will be stored for long and infrequently accessed. Its unit price is
lower than that of the Standard class. It is applicable to long-term backup of mobile applications,
smart devices, and enterprise data. Objects of the IA class have the minimum storage duration. Earlier
deletion or overwriting of files with the storage duration of less than 30 days will incur costs. Objects
of the IA class have the minimum storage space. For an object with the size of less than 128 KB, the

Object Storage Service Developer Guide

6

-

-

-

-

-

-

-

-

-

-

-

-

minimum storage space is 128 KB. Data acquisition will incur costs.

Key features:

Data reliability up to 99.99999999%
Service availability up to 99.9%
Real-time access
HTTPS encryption transmission
Picture processing
Minimum storage duration and minimum storage space

Archive

The unit price of the Archive class is the lowest among the three storage class. It is suitable for archive
data that will be stored for long (more that half a year is recommended) and seldom accessed during
storage. The restoration of data to the readable status takes one minute. It is suitable for archive data,
medical imaging, scientific data, and video materials to be stored for long. Objects of the Archive
class have the minimum storage duration. Earlier deletion or overwriting of files with the storage
duration of less than 30 days will incur costs. Objects of the Archive class have the minimum storage
space. For an object with the size of less than 128 KB, the minimum storage space is 128 KB. Data
acquisition will incur costs.

Key features:

Data reliability up to 99.99999999%
Service availability up to 99.9%
It takes one minute to restore stored data from the archived status to the readable status.
HTTPS encryption transmission
Image processing is not supported.
Minimum storage duration and minimum storage space

Comparison of storage classes

Comparison
indicator Standard IA Archive

Data reliability 99.99999999% 99.99999999% 99.99999999%

Designed for
availability 99.95% 99.9% 99.9%

Minimum storage
space of objects

Actual size of
objects 128 KB 128 KB

Minimum storage
duration Not required 30 days 30 days

Data acquisition
costs Not collected

Collected based on
the acquired data
per GB

Collected based on
the acquired data
per GB

Object Storage Service Developer Guide

7

Note: Data in “data acquisition costs” refers to the volume of data read from the underlying
distributed storage system. The volume of data transferred on the public network is included in
billing items of the outbound traffic.

Access and control

Endpoints

Composition rules for domain names

With regards to all network requests for the OSS, except those for the GetService API, the domain
names are third-level domain names for specific buckets. The domain name is composed of the
bucket name and the endpoint: BucketName.Endpoint. Here, Endpoint can vary due to the region
(data center) of the bucket and the intranet/Internet access method.

Endpoint naming rules for an external network

Here, external network refers to the Internet.

Endpoint naming rules for an internal network

Here, internal network refers to Alibaba Cloud’s intranet.

Data access latency Milliseconds Milliseconds

1 minute
Data needs to be
restored first, and
then can be
accessed.

Picture processing Supported Supported Not supported

Region + .aliyuncs.com

Region + -internal + .aliyuncs.com

Object Storage Service Developer Guide

8

-

-

-

-

-

-

OSS regions and endpoints

Refer to Regions and endpoints.

Endpoint settings in the OSS SDK

For each user operation, the OSS SDK has a spliced endpoint. However, users need to set different
endpoints when configuring buckets of different regions.

For example, when using a Java SDK, users need to set the endpoint during class instantiation before
configuring buckets in the following Hangzhou region:

Use intranet endpoints to access OSS in ECS

Intranet addresses can be used for access between an ECS instance and an OSS instance that are in
the same region.

For example, a user has:

An ECS instance located in Beijing
An OSS bucket which is named beijingres and is located in Beijing
An OSS bucket which is named qingdaores and is located in Qingdao
Based on the preceding information:
The user can access resources in beijingres through the intranet address ‘beijingres.oss-cn-
beijing-internal.aliyuncs.com’.
The user cannot access qingdaores through the intranet address qingdaores.oss-cn-qingdao.
They must instead access the OSS through the Internet address qingdaores.oss-cn-
qingdao.aliyuncs.com.

In the preceding sample Java SDK, the Internet address of the bucket is used for OSS access. To
access the OSS through the intranet, you only need to modify the endpoint:

String accessKeyId = "<key>";
String accessKeySecret = "<secret>";
String endpoint = "http://oss-cn-hangzhou.aliyuncs.com";
OSSClient client = new OSSClient(endpoint, accessKeyId, accessKeySecret);

String accessKeyId = "<key>";
String accessKeySecret = "<secret>";
String endpoint = "http://oss-cn-hangzhou-internal.aliyuncs.com";
OSSClient client = new OSSClient(endpoint, accessKeyId, accessKeySecret);

Object Storage Service Developer Guide

9

-

-

-

-

-

-

-

OSS access

OSS access URLs

OSS is an object storage service based on HTTP APIs. For all operations, users need to specify the OSS
resource to access. This resource may be a bucket or an object. During OSS access, the OSS resource
is expressed as a URL that indicates third-level domain name access, which is formatted as follows:

A description of the URL parameters is as follows:

Schema: value of HTTP or HTTPS
Bucket: the user’s OSS storage space
Endpoint: the access domain name for a bucket’s data center
Object: an object uploaded by a user to the OSS

Notes

When the resource is a bucket, the endpoint must be consistent with the region
containing the bucket. For example, if a bucket is created in Hangzhou, the Hangzhou
endpoint must be used. Endpoints for other regions cannot be used.
To access the OSS, ECS instances can use the intranet endpoint for OSS resources in the
same region.
For a list of regions and their endpoints, refer to Regions and endpoints.

If a user uses HTTPS to send a request to the Hangzhou OSS for an object named mytest/oss-test-
object in a bucket named oss-sample, the third-level domain name is as follows:

Users can directly use object URLs in HTML, as shown below:

OSS access security

HTTP requests sent to the OSS are divided into two types depending on whether they include identity
authentication information: Requests with identity verification information, and anonymous requests
without identity verification information. The identity verification information in requests can be

<Schema>://<Bucket>.<Endpoint>/<Object> Third-level domain name access method

https://oss-sample.oss-cn-hangzhou.aliyuncs.com/mytest/oss-test-object

Object Storage Service Developer Guide

10

-

-

1.

2.

3.

-

-

●

●

4.

-

-

5.

1.

2.

3.

-

-

-

-

4.

-

-

●

●

5.

-

structured in two ways:

Authorization is contained in the request header, in the format: OSS + AccessKeyId +
signature string.
OSS AccessKeyId and signature fields are contained in the request URL.

OSS access verification process

Anonymous request access process

The user’s request is sent to the OSS’s HTTP server.
OSS resolves the URL to get the bucket and object.
OSS checks whether ACL is set for the object.

If no, go to Step 4.
If yes, OSS then checks whether the object’s ACL permits anonymous access.

If yes, go to step 5.
If no, the request is rejected and the process ends.

OSS checks whether the bucket’s ACL permits anonymous access.
If no, an error message is returned and the process ends.
If yes, go to step 5.

The request passes permission verification and the object content is returned to the user.

Access process for requests with ID verification information

The user’s request is sent to the OSS’s HTTP server.
The OSS resolves the URL to get the bucket and object.
Based on the request’s OSS AccessKeyId, the OSS retrieves the ID information of the
requestor for authentication.

If the ID information cannot be obtained, an error message is returned and the
process ends.
If the ID information is obtained, but the client is not permitted to access this
resource, an error message is returned and the process ends.
If the ID information is obtained, but the signature calculated based on the
request’s HTTP parameters does not match the sent signature, an error message
is returned and the process ends.
If the authentication succeeds, go to step 4.

OSS checks whether ACL is set for the object.
If no, go to Step 5.
If yes, OSS then checks whether the object’s ACL permits anonymous access.

If yes, go to step 6.
If no, the request is rejected and the process ends.

OSS checks whether the bucket’s ACL permits anonymous access.
If yes, go to step 6.

Object Storage Service Developer Guide

11

-

6.

-

-

-

1.

2.

3.

4.

5.

If no, an error message is returned and the process ends.
The request passes permission verification and the object content is returned to the user.

Methods for OSS access using ID verification information

Console
On the console, the identity verification process is concealed from users. When users access
the OSS through the console, they do not have to concern about the details of this process.
SDKs
The OSS provides SDKs for multiple development languages. A signature algorithm is
implemented in an SDK, where users only need to input the AK information as a parameter.
APIs
If you want to write your own code to package a call to the RESTful API, you need to
implement a signature algorithm to calculate the signature. For details about the signature
algorithm, refer to Adding a signature to the header and Adding a signature to the URL.

Note: For an explanation of AccessKeys, as well as more information on identity authentication
operations, refer to RAM.

Bind custom domain names (CNAME)

Users can bind custom domain names (CNAMEs) to their buckets. This operation must be performed
through the OSS Console, and is available only when a user applies for an ICP license for the bound
domain name and obtains permission from Alibaba Cloud. After the CNAME function is activated, the
OSS will automatically process access requests on that domain name.

CNAME application example

User A has the website abc.com which contains a page with the link
http://img.abc.com/logo.png. The image img.abc.com needs to be migrated to the OSS.
Through the OSS Console, user A submits an application to bind the user-defined domain
name img.abc.com to abc-img, and provides the associated materials for CNAME function
approval.
After Alibaba Cloud approves the application, the OSS background will map img.abc.com
onto abc-img (permission verification will be performed at this time).
User A, using their own domain name server, then adds a CNAME rule, mapping
img.abc.com onto abc-img.oss-cn-hangzhou.aliyuncs.com. This means all access traffic to
the user’s img.abc.com domain name will be forwarded to abc-img.oss-cn-
hangzhou.aliyuncs.com on the OSS.
Once a request for http://img.abc.com/logo.png reaches the OSS, the OSS will locate the

Object Storage Service Developer Guide

12

1.

2.

3.

1.

2.

3.

-

img.abc.com and abc-img mapping and convert the request to an access request for the
abc-img bucket. When a user attempts to access http://img.abc.com/logo.png, after
passing through the OSS, the website accessed is http://abc-img.oss-cn-
hangzhou.aliyuncs.com/logo.png.

CNAME process comparisons

Without bound CNAME:

A request to access http://img.abc.com/logo.png is received.
DNS resolves to the user’s server IP.
Access to logo.png on the user’s server is achieved.

With bound CNAME:

A request to access http://img.abc.com/logo.png is received.
DNS resolves to abc-img.oss-cn-hangzhou.aliyuncs.com.
Access to logo.png in the OSS bucket abc-img is achieved.

Reference

Console: Domain Name Management

Access control

Send an OSS access request

You can access the OSS directly by calling a RESTful API provided by the OSS or using an API-
encapsulated SDK. Each request for access to the OSS requires identity verification or direct
anonymous access based on the current bucket permission and operation.

According to the roles of visitors, the access to OSS resources is divided into owner access
and third-party access. Here, the owner refers to the bucket owner, also known as
“developer”. Third-party users are users who access resources in a bucket.

According to the identity of visitors, the access to OSS resources is divided into anonymous
access and signature-based access. In the OSS, a request that does not contain any
identification information is considered anonymous access. Signature-based access refers to
requests that, according to the rules in the OSS API documentation, contain signature
information in the request header or URL.

Object Storage Service Developer Guide

13

-

-

-

-

-

Types of AccessKeys

Currently, there are three types of AccessKey for OSS access. They are described below:

Alibaba Cloud account AccessKeys

These are the AccessKeys of bucket owners. The AccessKey provided by each Alibaba Cloud account
has full access to its own resources. Each Alibaba Cloud account can simultaneously have 0 to 5 active
or inactive AccessKey pairs (AccessKeyID and AccessKeySecret). You can add or delete AccessKey
pairs on AccessKey console. Each AccessKey pair may be in two states: active and inactive.

Active indicates that the user’s AccessKey is in the active state and can be used for identity
authentication.
Inactive indicates that the user’s AccessKey is in the inactive state and cannot be used for
identity authentication.

The AccessKey of the Alibaba Cloud account should not be directly used unless necessary.

RAM account AccessKeys

Resource Access Management (RAM) is a resource access control service provided by Alibaba Cloud.
RAM account AKs are the access keys granted by RAM. These AKs only allow access to resources in a
bucket according to the rules defined by RAM. RAM helps you to collectively manage your users
(such as employees, systems or applications) and controls which resources your users can access. For
example, you can allow your users to have only the read permission on a bucket.
Subaccounts are subordinate to normal accounts and cannot own any actual resources. All resources
belong to primary accounts.

STS account AccessKeys

The Alibaba Cloud STS (Security Token Service) is a service that provides temporary access
credentials. STS account AKs are the AKs issued by the STS. These AKs only allow access to buckets in
accordance with the rules defined by the STS.

Implementation of identity authentication

Currently, there are three methods of authentication:

AK authentication
RAM authentication
STS authentication

Before sending a request to the OSS as an individual identity, a user needs to generate a signature
string for the request according to the format specified by the OSS and then encrypt the signature

Object Storage Service Developer Guide

14

-

-

-

-

string using the AccessKeySecret to generate a verification code.
After receiving the request, the OSS finds the corresponding AccessKeySecret based on the
AccessKeyID, and obtains the signature string and verification code in the same way. If the obtained
verification code is the same as the provided verification code, the request is assumed valid. If not,
the OSS rejects the request and returns an HTTP 403 error.
Users can directly use the SDKs provided by the OSS with different types of AccessKeys for different
types of identity authentication.

Permission control

OSS provides various permission control mechanisms for access to its stored objects:

Bucket-level permissions
Object-level permissions
Account-level permissions (RAM)
Temporary account permissions (STS)

Bucket-level permissions

Bucket permission types

The OSS provides an Access Control List (ACL) for permission control. The OSS ACL provides bucket-
level access control. Currently, three access permissions are provided for a bucket: public-read-write,
public-read, and private. They are described as follows:

Bucket permission settings and read methods

Function usage reference:

Permission Access Restriction

Public-read-write

Anyone (including anonymous users) can
read, write, and delete the objects in the
bucket. The fees incurred by such operations
shall be borne by the owner of the bucket.
Use this permission with caution.

Public-read

Only the owner of a bucket can write or
delete the objects in the bucket. Anyone
(including anonymous users) can read the
objects in the bucket.

Private

Only the owner of a bucket can read, write,
and delete the objects in the bucket. Others
cannot access the objects in the bucket
without authorization.

Object Storage Service Developer Guide

15

-

-

-

-

-

-

-

API: Put BucketACL
SDK: Java SDK-Set Bucket ACL
Console: Create Bucket Permission Setting
API: Get BucketACL
SDK: Java SDK-Obtain Bucket ACL

Object-level permissions

Object permission types

The OSS ACL also provides object-level permission access control. Currently, four access permissions
are available for an object, including private, public-read, public-read-write and default. You can use
the “x-oss-object-acl” header in the Put Object ACL request to set the access permission. Only the
bucket owner has the permission to perform this operation.

Considerations

If no ACL is configured for an object, the object uses the default ACL, indicating that the
object has the same ACL as the bucket where the object is stored.
If an ACL is configured for an object, the object ACL has higher-level permission than the
bucket ACL. For example, an object with the public-read permission can be accessed by
authenticated users and anonymous users, regardless of the bucket permission.

Object permission settings and read methods

Function usage reference:

Permission Access restriction

public-read-write
Indicates that the object can be read and
written by the public. That is, all users have
the permission to read and write the object.

public-read

Indicates that the object can be read by the
public. Only the owner of the object has the
permission to read and write the object. Other
users only have the permission to read the
object.

private

Indicates that the object is a private resource.
Only the owner of the object has the
permission to read and write the object. Other
users have no permission to operate the
object.

default Indicates that the object inherits the
permission of the bucket.

Object Storage Service Developer Guide

16

-

-

-

-

-

-

API: Put Object ACL
SDK: Java SDK-Set the object ACL in ObjectACL
API: Get Object ACL
SDK: Java SDK-Read the object ACL from ObjectACL

Account-level permissions (RAM)

Application scenarios

If you have purchased cloud resources and multiple users in your organization need to use them,
these users have to share the AccessKey of your Alibaba Cloud account. There are two problems:

If your key is shared by many people, it has a high risk of leakage.
You cannot determine which resources (e.g. buckets) can be accessed by the users.

Solution: Under your Alibaba Cloud account, you can use RAM to create subusers with their own
AccessKeys. In this case, your Alibaba Cloud account will be the primary account and the created
accounts will be subaccounts. Subaccounts can only use their AccessKeys for the operations and
resources authorized by the primary account.

Specific implementation

For details about the RAM, refer to RAM User Guide. The RAM User Guide describes how to grant
permissions, create RAM accounts, and manage group permissions in details.

For details about how to configure the policies required in authorization, refer to the final section
Configuration Rules of this chapter.

Temporary account permissions (STS)

Application scenarios

Users managed by your local identity system, such as your app users, your local corporate account, or
third-party apps, may also directly access OSS resources. They are called federated users. In addition,
users can also be the applications you create that have access to your Alibaba Cloud resources.

With respect to these federated users, short-term access permission management is provided for the
Alibaba Cloud account (or RAM users) through the Security Token Service (STS) of Alibaba Cloud. You
do not need to reveal the long-term key (such as the login password and AccessKey) of your Alibaba
Cloud account (or RAM users), but only need to create a short-term access credential for a federated
user. The access permission and validity of this credential are both up to you. You do not need to
care about permission revocation. The access credential automatically becomes invalid when it
expires.

Object Storage Service Developer Guide

17

STS-based access credentials include the security token (SecurityToken) and the temporary access key
(AccessKeyId and AccessKeySecret). The AccessKey method is the same as the method of using the
AccessKey of the Alibaba Cloud account or RAM user. In addition, each OSS access request must
carry a security token.

Specific implementation

For details about the STS, refer to Role management in the RAM User Guide. The key is to call
AssumeRole of the STS interface to obtain valid access credential. You can also directly use STS SDK
to call the access credential.

For details about how to configure the policies required in authorization, refer to the final section of
this chapter.

RAM and STS application scenario practices

In different application scenarios, how the access identity is verified may vary. The following describes
two methods for access identity verification in typical application scenarios.

A mobile app is used as an example. Assume that you are a mobile app developer. You attempt to
use the Alibaba Cloud OSS to store end user data of the app. You also have to ensure data is isolated
between app users to prevent an app user from obtaining data of other app users.

Mode 1: Using AppServer for data transit and data isolation

As shown in the figure above, you need to develop an AppServer. Only the AppServer can access the
ECS. The ClientApp can read or write data only through the AppServer. The AppServer ensures
isolated access to different user data.

In this method, you can use the key provided by your Alibaba Cloud account or RAM account for
signature verification. In case of any security problem, you are recommended not to directly use the
key of your Alibaba Cloud account (root account) to access the OSS.

Mode 2: Using STS for direct access to OSS

The STS solution is shown below:

Object Storage Service Developer Guide

18

1.

2.

3.

4.

5.

The solution is described in detail as follows:

Log in as the app user. The app user is irrelative to the Alibaba Cloud account but is an end
user of the app. The AppServer allows the app user to log in. For each valid app user, the
AppServer needs to define the minimum access permission for them.
The AppServer requests a security token (SecurityToken) from the STS. Before calling STS,
the AppServer needs to determine the minimum access permission (described in policy
syntax) of app users and the expiration time of the authorization. Then, the AppServer uses
AssumeRole to obtain a security token indicating a role. For details about role management
and usage, refer to Role Management in the RAM User Guide.
The STS returns a valid access credential to the AppServer, where the access credential
includes a security token, a temporary access key (AccessKeyID and AccessKeySecret), and
the expiry time.
The AppServer returns the access credential to the ClientApp. The ClientApp caches this
credential. When the credential becomes invalid, the ClientApp needs to request a new
valid access credential from the AppServer. For example, if the access credential is valid for
one hour, the ClientApp can request the AppServer to update the access credential every 30
minutes.
The ClientApp uses the access credential cached locally to request Alibaba Cloud Service
APIs. The ECS perceives the STS access credential, relies on STS to verify the credential, and
correctly responds to the user request.

RAM and STS authorization policy
configuration

The detailed rules of the use of policies during RAM or STS authorization are as follows.

Example

First, let’s look at the following policy example:

{
"Version": "1",
"Statement": [
{

Object Storage Service Developer Guide

19

This is an authorization policy. You can use this policy to grant permissions for users through RAM or
STS. The policy has a Statement (one policy can have multiple Statements). In the Statement, Action,
Resource, Effect, and Condition are specified.

This policy authorizes your ‘mybucket’ and ‘mybucket/file*’ resources to corresponding users
and supports GetBucketAcl, GetBucket, PutObject, GetObject, and DeleteObject actions. The
Condition indicates that authentication is successful and authorized users can access related
resources only when UserAgent is java-sdk and the source IP address is 192.168.0.1.The Prefix and
Delimiter conditions apply during the GetBucket (ListObjects) action. For details about the two fields,
see OSS API Documentation.

Configuration rules

"Action": [
"oss:GetBucketAcl",
"oss:ListObjects"
],
"Resource": [
"acs:oss:*:1775305056529849:mybucket"
],
"Effect": "Allow",
"Condition": {
"StringEquals": {
"acs:UserAgent": "java-sdk",
"oss:Prefix": "foo"
},
"IpAddress": {
"acs:SourceIp": "192.168.0.1"
}
}
},
{
"Action": [
"oss:PutObject",
"oss:GetObject",
"oss:DeleteObject"
],
"Resource": [
"acs:oss:*:1775305056529849:mybucket/file*"
],
"Effect": "Allow",
"Condition": {
"IpAddress": {
"acs:SourceIp": "192.168.0.1"
}
}
}
]
}

Object Storage Service Developer Guide

20

Version

Policy version is defined. For configuration method in this document, it is set to “1”.

Statement

The Statement describes the authorization meaning. It can contain multiple meanings based on the
business scenario. Each meaning includes a description of the Action, Effect, Resource, and Condition.
The request system will check each statement for a match one by one. All successfully matched
statements will be divided into Allow and Deny based on the difference of Effect settings, and Deny is
given priority. If the matches are all Allow, the request passes authentication. If one of the matches is
Deny or there are no matches, this request is denied to access.

Action

Actions fall into two categories: bucket-level actions and object-level actions. Bucket-level actions
include oss:PutBucketAcl and oss:GetBucketLocation. The action objects are buckets and the action
names correspond to the involved interfaces in a one-to-one manner. Object-level actions include
oss:GetObject, oss:PutObject, oss:DeleteObject, oss:DeleteObject, and oss:AbortMultipartUpload. If
you want to authorize actions for a type of object, you can select one or more of the above actions. In
addition, all action names must be prefixed with “oss:”, as shown in the example above. Action is a
list. There can be multiple Actions. The mapping between Actions and APIs is as follows:

Server-level

Bucket-level

API Action

GetService (ListBuckets) oss:ListBuckets

API Action

PutBucket oss:PutBucket

GetBucket (ListObjects) oss:ListObjects

PutBucketAcl oss:PutBucketAcl

DeleteBucket oss:DeleteBucket

GetBucketLocation oss:GetBucketLocation

GetBucketAcl oss:GetBucketAcl

GetBucketLogging oss:GetBucketLogging

PutBucketLogging oss:PutBucketLogging

DeleteBucketLogging oss:DeleteBucketLogging

GetBucketWebsite oss:GetBucketWebsite

PutBucketWebsite oss:PutBucketWebsite

Object Storage Service Developer Guide

21

Object level

DeleteBucketWebsite oss:DeleteBucketWebsite

GetBucketReferer oss:GetBucketReferer

PutBucketReferer oss:PutBucketReferer

GetBucketLifecycle oss:GetBucketLifecycle

PutBucketLifecycle oss:PutBucketLifecycle

DeleteBucketLifecycle oss:DeleteBucketLifecycle

ListMultipartUploads oss:ListMultipartUploads

PutBucketCors oss:PutBucketCors

GetBucketCors oss:GetBucketCors

DeleteBucketCors oss:DeleteBucketCors

PutBucketReplication oss:PutBucketReplication

GetBucketReplication oss:GetBucketReplication

DeleteBucketReplication oss:DeleteBucketReplication

GetBucketReplicationLocation oss:GetBucketReplicationLocation

GetBucketReplicationProgress oss:GetBucketReplicationProgress

API Action

GetObject oss:GetObject

HeadObject oss:GetObject

PutObject oss:PutObject

PostObject oss:PutObject

InitiateMultipartUpload oss:PutObject

UploadPart oss:PutObject

CompleteMultipart oss:PutObject

DeleteObject oss:DeleteObject

DeleteMultipartObjects oss:DeleteObject

AbortMultipartUpload oss:AbortMultipartUpload

ListParts oss:ListParts

CopyObject oss:GetObject,oss:PutObject

UploadPartCopy oss:GetObject,oss:PutObject

AppendObject oss:PutObject

GetObjectAcl oss:GetObjectAcl

Object Storage Service Developer Guide

22

Resource

Resource stands for a specific resource or resources on the OSS (the wildcard is supported).
Resources are named in the format of “acs:oss:region:bucket_owner:bucket_name/object_name”.
For all bucket-level actions, the final part “/object_name” is not required. You can just render it as
“acs:oss:region:bucket_owner:bucket_name”. Resource is also a list and there can be multiple
Resources. Here, the region field is currently not supported and set as “*”.

Effect

Effect indicates the authorization result of the Statement. Two value options are available: Allow and
Deny. When there are multiple Statement matches, the Deny is given higher priority.

For example, deny the deletion of a certain directory, but allow all operations for other files:

Condition

Condition indicates the conditions for the authorization policy. In the above example, you can set
check conditions for acs:UserAgent and acs:SourceIp. The oss:Delimiter and oss:Prefix fields are used
to restrict resources during the GetBucket action.

The OSS supports the following conditions:

PutObjectAcl oss:PutObjectAcl

{
"Version": "1",
"Statement": [
{
"Effect": "Allow",
"Action": [
"oss:*"
],
"Resource": [
"acs:oss:*:*:bucketname"
]
},
{
"Effect": "Deny",
"Action": [
"oss:DeleteObject"
],
"Resource": [
"acs:oss:*:*:bucketname/index/*",
]
}
]
}

Condition Function Valid value

acs:SourceIp Specifying the IP address
segment

Common IP address,
wildcard (*) supported

Object Storage Service Developer Guide

23

Best practices

RAM and STS User Guide

Regions and endpoints

Regions and endpoints in a classic network

The Internet and intranet endpoints in each region for a classic network are as follows:

acs:UserAgent Specifying the http
useragent header String

acs:CurrentTime Specifying valid access time ISO8601 format

acs:SecureTransport Whether HTTPS is used “true” or “false”

oss:Prefix Used as the prefix for
ListObjects Valid object name

Region
Name

Region
Expression

Internet
Endpoint

Internet
endpoint
supports
HTTPS or
not

Intranet
Endpoint
for ECS
Access

Intranet
endpoint
supports
HTTPS or
not

China East 1
(Hangzhou)

oss-cn-
hangzhou

oss-cn-
hangzhou.al
iyuncs.com

Yes

oss-cn-
hangzhou-
internal.aliy
uncs.com

No

China East 2
(Shanghai)

oss-cn-
shanghai

oss-cn-
shanghai.ali
yuncs.com

Yes

oss-cn-
shanghai-
internal.aliy
uncs.com

No

China North
1 (Qingdao)

oss-cn-
qingdao

oss-cn-
qingdao.aliy
uncs.com

Yes

oss-cn-
qingdao-
internal.aliy
uncs.com

No

China North
2 (Beijing)

oss-cn-
beijing

oss-cn-
beijing.aliyu
ncs.com

Yes

oss-cn-
beijing-
internal.aliy
uncs.com

No

China North
3
(zhangjiako
u)

oss-cn-
zhangjiakou

oss-cn-
zhangjiakou
.aliyuncs.co
m

Yes

oss-cn-
zhangjiakou
-
internal.aliy
uncs.com

No

Object Storage Service Developer Guide

24

-

Note:

Alibaba Cloud recommends that you use third-level domain names, that is, Bucket +
Endpoint format, to share links or bind CNAME domain names. For example, the third-
level domain name for the Shanghai bucket oss-sample would be oss-sample.oss-cn-
shanghai.aliyuncs.com.

China South
1
(Shenzhen)

oss-cn-
shenzhen

oss-cn-
shenzhen.ali
yuncs.com

Yes

oss-cn-
shenzhen-
internal.aliy
uncs.com

No

Hong Kong oss-cn-
hongkong

oss-cn-
hongkong.a
liyuncs.com

Yes

oss-cn-
hongkong-
internal.aliy
uncs.com

No

US West 1
(Silicon
Valley)

oss-us-
west-1

oss-us-
west-
1.aliyuncs.c
om

Yes

oss-us-
west-1-
internal.aliy
uncs.com

No

US East 1
(Virginia)

oss-us-east-
1

oss-us-east-
1.aliyuncs.c
om

Yes

oss-us-east-
1-
internal.aliy
uncs.com

No

Asia Pacific
SE 1
(Singapore)

oss-ap-
southeast-1

oss-ap-
southeast-
1.aliyuncs.c
om

Yes

oss-ap-
southeast-
1-
internal.aliy
uncs.com

No

Asia Pacific
SE 2
(Sydney)

oss-ap-
southeast-2

oss-ap-
southeast-
2.aliyuncs.c
om

Yes

oss-ap-
southeast-
2-
internal.aliy
uncs.com

No

Asia Pacific
NE 1
(Tokyo)

oss-ap-
northeast-1

oss-ap-
northeast-
1.aliyuncs.c
om

Yes

oss-ap-
northeast-
1-
internal.aliy
uncs.com

No

EU Central 1
(Frankfurt)

oss-eu-
central-1

oss-eu-
central-
1.aliyuncs.c
om

Yes

oss-eu-
central-1-
internal.aliy
uncs.com

No

Middle East
1 (Dubai)

oss-me-
east-1

oss-me-
east-
1.aliyuncs.c
om

Yes

oss-me-
east-1-
internal.aliy
uncs.com

No

Object Storage Service Developer Guide

25

For new SDK versions (with the exception of C SDK), use http:// and https:// + Endpoint
as the initialization parameters. Do not use a third-level domain name as the
initialization parameter. For example, http://bucket.oss-cn-shanghai.aliyuncs.com
cannot be used as an initialization parameter for a Shanghai endpoint. Note that
currently the VPC endpoint does not support https.

Earlier SDK versions (for example, C, PHP, and Python SDKs) may directly use endpoints.
For more details, refer to the documentation or code instructions for the SDK version
you are using.

The original address oss.aliyuncs.com is directed to the Internet address of the
Hangzhou node by default.

The original intranet address oss-internal.aliyuncs.com is directed to the intranet
address of the Hangzhou node by default.

Regions and endpoints in a VPC network

To access OSS, ECS of a VPC network can only use the following endpoints:

Region Name Region Expression Endpoint of the VPC
Network

Support HTTPS or
not

China East 1
(Hangzhou) oss-cn-hangzhou

vpc100-oss-cn-
hangzhou.aliyuncs.c
om

No

China East 2
(Shanghai) oss-cn-shanghai

vpc100-oss-cn-
shanghai.aliyuncs.co
m

No

China North 1
(Qingdao) oss-cn-qingdao

vpc100-oss-cn-
qingdao.aliyuncs.co
m

No

China North 2
(Beijing) oss-cn-beijing vpc100-oss-cn-

beijing.aliyuncs.com No

China North 3
(zhangjiakou) oss-cn-zhangjiakou oss-cn-zhangjiakou-

internal.aliyuncs.com No

China South 1
(Shenzhen) oss-cn-shenzhen

vpc100-oss-cn-
shenzhen.aliyuncs.co
m

No

Hong Kong oss-cn-hongkong
vpc100-oss-cn-
hongkong.aliyuncs.c
om

No

US West 1 (Silicon
Valley) oss-us-west-1 vpc100-oss-us-west-

1.aliyuncs.com No

Object Storage Service Developer Guide

26

-

-

-

-

1.

2.

Access OSS

OSS-based app development

Development architecture

There are four components in typical OSS-based app development:

OSS: Provides functions such as upload, download, and upload callback.
Developer’s mobile client (app or webpage application), called the client for short:
Indirectly accesses the OSS though the service provided by the developer.
Application server: The server that interacts with the client. This is also the server for the
developer’s service.
Alibaba Cloud STS: Issues temporary credentials.

Service development process

Temporary credential upload authorization

The client sends a request to the application server asking to upload an object to OSS.
The application server must send a request to the STS server to obtain temporary
credentials.

US East 1 (Virginia) oss-us-east-1 oss-us-east-1-
internal.aliyuncs.com No

Asia Pacific SE 1
(Singapore) oss-ap-southeast-1

vpc100-oss-ap-
southeast-
1.aliyuncs.com

No

Asia Pacific SE 2
(Sydney) oss-ap-southeast-2 oss-ap-southeast-2-

internal.aliyuncs.com No

Asia Pacific NE 1
(Tokyo) oss-ap-northeast-1 oss-ap-northeast-1-

internal.aliyuncs.com No

EU Central 1
(Frankfurt) oss-eu-central-1 oss-eu-central-1-

internal.aliyuncs.com No

Middle East 1
(Dubai) oss-me-east-1 oss-me-east-1-

internal.aliyuncs.com No

Object Storage Service Developer Guide

27

3.

4.

5.

-

-

1.

2.

3.

4.

1.

2.

3.

4.

5.

-

-

The application server replies to the client, returning the temporary credentials.
The client obtains authorization to upload to OSS (the STS AccessKey and token) and calls
the mobile client SDK provided by OSS to upload data.
The client successfully uploads data to the OSS. If callback is not set, the process is
complete. If the callback function is set, the OSS will call the relevant interface.

Here are several key points:

The client does not have to request authorization from the application server for each
upload. After the first authorization, the client will cache the temporary credentials returned
by the STS until they expire.
STS provides powerful access control functions that can restrict client access permission at
the object level. This completely isolates the objects uploaded to the OSS by different clients,
greatly enhancing the security of applications.

For more information, refer to Authorized Third-Party Uploads

Signed URL authorization for uploads and form uploads

The client sends a request to the application server asking to upload an object to OSS.
The application server replies to the client, returning credentials (signed URL or form).
The client obtains authorization to upload to OSS (the signed URL or form) and calls the
mobile client SDK provided by OSS to upload data or directly uploads a form.
The client successfully uploads data to the OSS. If callback is not set, the process is
complete. If the callback function is set, the OSS will call the relevant interface.

For more information, refer to Authorized Third-Party Uploads

Temporary credential download authorization

The process is similar to temporary credential upload authorization:

The client sends a request to the application server for downloading an object from OSS.
The application server must send a request to the STS server to obtain temporary
credentials.
The application server replies to the client, returning the temporary credentials.
The client obtains authorization to download from OSS (the STS AccessKey and token) and
calls the mobile client SDK provided by OSS to download data.
The client successfully downloads an object from OSS.

Here are several key points:

Just as for uploads, the client will cache the temporary credentials to increase access speed.
The STS likewise provides precise object download permission control, which, together with
upload permission control, serves to completely isolate the OSS storage space of each
mobile client.

Object Storage Service Developer Guide

28

1.

2.

3.

4.

-

-

1.

2.

3.

-

Signed URL authorization for downloads

This is similar to signed URL authorization for uploads:

The client sends a request to the application server for downloading an object from OSS.
The application server replies to the client, returning the signed URL.
The client obtains authorization to download from OSS (the signed URL) and calls the
mobile client SDK provided by OSS to download data.
The client successfully downloads an object from OSS.

Special note

The client cannot store the developer’s AccessKey, but may only obtain a signed URL or the
temporary credentials issued by the STS (the STS AccessKey and token) from the application server.

Reference for using the function

SDK: Android SDK File Operations
SDK: iOS SDK File Operations

Quick start

Quick start with the console

Log onto the OSS Console and activate OSS.
Create a bucket.
Upload and download files.

For details, refer to Get started with Alibaba Cloud OSS.

Quick introduction to OSS upload and download

Before getting started with SDKs, refer to the sections about the upload and download functions in
the Developer Guide.

OSS uses RESTful APIs to perform operations and all requests are standard HTTP requests.

OSS provides different file upload methods, such as using a single PUT request to complete
a Simple Upload, using webpage forms for direct uploads, called Form Upload, and
uploading large files with Multipart Upload. For video monitoring and other applications,

Object Storage Service Developer Guide

29

-

1.

2.

3.

-

-

-

-

-

-

-

OSS also provides Append Object.
Likewise, OSS provides multiple download methods: Simple Download and, for larger files,
Resumable Download.

Quick start with SDKs

After activating OSS, retrieve the AccessKeyId and AccessKeySecret from the console.
Download the SDKs for various programming languages.
Based on the descriptions in the SDK documentation, perform uploads, downloads, and
other operations.

For details, see the OSS SDK Reference.

Bucket management

Create a bucket

Users can create a bucket in an existing region. Note that the following conditions apply to bucket
creation:

Each user can create up to 30 buckets.
The name of each bucket must be globally unique; otherwise, the bucket cannot be created.
Each bucket name must comply with the naming rules.
Once a bucket is created, its name and region cannot be modified.

OSS provides an Access Control List (ACL) for permission control. You can configure an ACL when
creating a bucket, and modify the ACL after creating the bucket. If no ACL is configured, the default
value is Private. For more details, refer to Set Bucket ACLs.

Reference

Console: Create a bucket
SDK: Java SDK-Create a bucket-Bucket
API: Put Bucket

Object Storage Service Developer Guide

30

-

-

-

-

-

-

Set bucket read and write permissions (ACL)

Only a bucket owner can, when creating a bucket, set bucket read and write permissions using Access
Control List (ACL). The owner can also modify the ACL for that bucket according to service
requirements. Currently, three access permissions are available for a bucket:

For details, refer to Access Permissions.

Reference

Setting ACLs for a bucket

Console: Access Permissions Configuration
SDK：Java SDK-Set Bucket ACL in Bucket
API: Put BucketACL

Obtaining ACLs for a bucket

Console: After logging in to the console, users can view the ACL in the bucket attributes.
SDK：Java SDK-Obtain Bucket ACL in Bucket
API: Get BucketACL

View the bucket list

You can view a list displaying all the buckets that you have created.

Reference

Permission Access Restriction

public-read-write

Anyone, including anonymous users, can
perform read and write operations on the files
in the bucket. The fees incurred by these
operations will be borne by the owner of the
bucket. Use this permission with caution.

public-read

Only the owner of the bucket can perform
write operations on the files in the bucket,
while others (including anonymous users) can
perform read operations on the files.

private

Only authorized users are allowed to read,
write, and delete files in the bucket. Others
cannot access the files in the bucket without
authorization.

Object Storage Service Developer Guide

31

-

-

-

-

-

-

-

-

-

-

Console: After you log on to the console, users can directly view a list of all created buckets.
API: GetService
SDK：Java SDK-List buckets in Bucket

Additional links

Create a bucket

Obtain bucket region information

The region represents the physical location of the data center. The returned Location field indicates
the region where the bucket is located. For example, if the physical location is East China 1
(Hangzhou), the returned Location field is oss-cn-hangzhou. For more information, refer to Regions
and endpoints.

Reference

Console: After logging in to the console, users can directly view bucket attributes on the
console.
API: Get Bucket Location
SDK: Java SDK-Obtain the Bucket Address in Bucket

Delete a bucket

You can delete buckets you have created. However, buckets must first be emptied of files and file
fragments before deletion can occur. To delete all files in a bucket, it is recommended that you use
Lifecycle Management.

Reference

Console: Delete a bucket
API: Delete Bucket
SDK: Delete Bucket in Java SDK-Bucket

Object Storage Service Developer Guide

32

-

-

●

●

●

Upload files

Simple upload

Simple upload is when a user uploads a single object by using the Put Object method described in
the OSS API. This is applicable to any scenario where a single HTTP request interaction completes an
upload, for example, upload of a small file.

Set object Meta when uploading files

A simple upload can carry object metadata that describes the object, for example, Content-Type and
other standard HTTP headers, as well as user-defined information. For more details, refer to Object
Meta.

Upload restrictions

The maximum object size permitted for each simple upload is 5 GB.
Naming restrictions:

The name must be UTF-8 encoded.
The length must be between 1-1,023 bytes
The name cannot start with a backslash “/“ or forward slash “\”.

Upload large files

Only objects up to 5 GB can be uploaded at any one time using the simple upload process. For
objects larger than 5 GB, refer to Multipart Upload.

Upload security and authorization

To prevent unauthorized third parties from uploading objects to the developer’s bucket, OSS
provides bucket-level and object-level access permission control. For details, refer to Access Control.

In addition to bucket-level and object-level access permissions, OSS also provides account-level
authorization to authorize third-party uploads. For details, see Authorized Third-party Upload for
Upload Security.

Post-upload operations

Object Storage Service Developer Guide

33

-

-

-

-

-

-

-

-

-

-

-

-

-

-

1.

2.

To initiate a callback request to a specified application server in order to perform subsequent
operations, use Upload Callback.
To process uploaded images, use Image processing.

Reference

API: PutObject
SDK: Java SDK-PutObject in Object
Console: Uploading Files

Best practices

RAM and STS User Guide
Web Client Direct Data Transfer and Upload Callback

Additional links

Upload callback
Introduction to mobile development upload scenarios
Download uploaded files
Cloud processing for uploaded Images
Access control for upload security
Authorized third-party upload for upload security
Copy, delete, and manage uploaded files

Form upload

Form upload is when an object is uploaded using the Post Object request in the OSS API. Form
upload bypasses objects being forwarded to the server, and instead uploads objects directly from the
client to OSS, reducing bottlenecks at the server end due to object resizing.

Applicable scenarios

The following example scenarios demonstrate the application of the form upload process in a career
search website environment:

Without using form upload

A website user uploads their object (a resume).
The website server responds to the upload page.

Object Storage Service Developer Guide

34

3.

4.

1.

2.

3.

-

-

●

●

●

1.

-

-

-

-

2.

3.

4.

The resume is uploaded to the server.
The server uploads the resume to OSS.

Using form upload

A website user uploads their resume.
The website server responds to the upload page.
The resume is uploaded to OSS.

Upload restrictions

The maximum object size permitted for each form upload is 5 GB.
Naming restrictions:

The name must be UTF-8 encoded.
The length must be between 1-1,023 bytes
The name cannot start with a backslash “/“ or forward slash “\”.

Upload security and authorization

To prevent unauthorized third parties from uploading objects to the developer’s bucket, OSS
provides bucket- and object-level access permission control. For details, refer to Access Control.

In addition to bucket-level and object-level access permissions, OSS also provides account-level
authorization to authorize third-party uploads. For details, refer to Post Object.

Basic process

Construct a post policy. For more details, refer to Post Policy.
In this policy example:

The expiration time for site user uploads is 2115-01-27T10:56:19Z (in actual usage
this setting is determined based on site requirements).
The maximum upload file size is 104,857,600 bytes.
Python code is used.
The policy is a string in JSON format: policy="{\"expiration\":\"2115-01-
27T10:56:19Z\",\"conditions\":[[\"content-length-range\", 0, 104857600]]}".

Encode the policy string using base64 encoding.
Use the OSS AccessKeySecret to sign the base64 encoded policy.
Construct an HTML page for uploads.

Open the HTML page and select the file to upload. The following is an example output:

 #coding=utf8
import md5
import hashlib

Object Storage Service Developer Guide

35

import base64
import hmac
from optparse import OptionParser

def convert_base64(input):
return base64.b64encode(input)

def get_sign_policy(key, policy):
return base64.b64encode(hmac.new(key, policy, hashlib.sha1).digest())

def get_form(bucket, endpoint, access_key_id, access_key_secret, out):
#1 Construct a Post Policy
policy="{\"expiration\":\"2115-01-27T10:56:19Z\",\"conditions\":[[\"content-length-range\", 0,
1048576]]}"
print("policy: %s" % policy)

#2 Encode the policy string using base64 encoding
base64policy = convert_base64(policy)
print("base64_encode_policy: %s" % base64policy)

#3 Use the OSS AccessKeySecret to sign the base64 encoded policy
signature = get_sign_policy(access_key_secret, base64policy)

#4 Construct an HTML page for uploads
form = '''
<html>
<meta http-equiv=content-type content="text/html; charset=UTF-8">
<head><title>OSS form upload (PostObject)</title></head>
<body>
<form action="http://%s.%s" method="post" enctype="multipart/form-data">
<input type="text" name="OSSAccessKeyId" value="%s">
<input type="text" name="policy" value="%s">
<input type="text" name="Signature" value="%s">
<input type="text" name="key" value="upload/${filename}">
<input type="text" name="success_action_redirect" value="http://oss.aliyun.com">
<input type="text" name="success_action_status" value="201">
<input name="file" type="file" id="file">
<input name="submit" value="Upload" type="submit">
</form>
</body>
</html>
''' % (bucket, endpoint, access_key_id, base64policy, signature)
f = open(out, "wb")
f.write(form)
f.close()
print("form is saved into %s" % out)

if __name__ == '__main__':
parser = OptionParser()
parser.add_option("", "--bucket", dest="bucket", help="specify ")
parser.add_option("", "--endpoint", dest="endpoint", help="specify")
parser.add_option("", "--id", dest="id", help="access_key_id")
parser.add_option("", "--key", dest="key", help="access_key_secret")
parser.add_option("", "--out", dest="out", help="out put form")
(opts, args) = parser.parse_args()
if opts.bucket and opts.endpoint and opts.id and opts.key and opts.out:

Object Storage Service Developer Guide

36

-

-

-

-

-

-

-

-

-

-

-

-

-

Save this code segment as post_object.py and use Python to run it.

Note:

"success_action_redirect" value="http://oss.aliyun.com" indicates the page to navigate
to after a successful upload. This can be replaced as needed.
"success_action_status" value="201" indicates that Status Code 201 is returned after a
successful upload. This can be replaced according to site requirements.
If the generated HTML file is post.html, open post.html and select the file to upload. In
this example, the client navigates to the OSS homepage after a successful upload.

Reference

API: PostObject

Best practices

Web client direct data transfer
Cross-origin resource sharing (CORS)

Reference links

Upload Callback
Introduction to Mobile Development Upload Scenarios
Download uploaded files
Cloud processing for uploaded images
Access control for upload security
Authorized third-party upload for upload security
Copy, delete, and manage uploaded files

get_form(opts.bucket, opts.endpoint, opts.id, opts.key, opts.out)
else:
print "python %s --bucket=your-bucket --endpoint=oss-cn-hangzhou.aliyuncs.com --id=your-access-
key-id --key=your-access-key-secret --out=out-put-form-name" % __file__

 Usage:
python post_object.py --bucket=Your bucket --endpoint=The bucket's OSS domain name --id=Your
AccessKeyId --key=Your AccessKeySecret --out=Output file name

Example:
python post_object.py --bucket=oss-sample --endpoint=oss-cn-hangzhou.aliyuncs.com --id=tphpxp --
key=ZQNJzf4QJRkrH4 --out=post.html

Object Storage Service Developer Guide

37

1.

2.

3.

4.

-

-

Multipart upload

Multipart upload allows objects larger than 5 GB to be split into multiple data blocks (or parts in OSS)
with each data block then uploaded separately. When all data block uploads are complete, an OSS
API is called to combine the parts into the original object.

Applicable scenarios

Multipart upload is recommended for the following scenarios:

Poor network connectivity
If at any point one data block upload fails, a user can re-upload only the failed data block
without requiring all uploads involved to restart.

Resume upload required
An upload in progress can be paused and resumed at any time.

Accelerate an upload
If the file to be uploaded to OSS is very large, multiple parts can be uploaded in parallel to
accelerate the upload.

Stream an upload
Objects of unknown sizes can be uploaded at any time.

The process is as follows:

The object is split into data blocks of equal sizes. Split the file to be uploaded according to
a specified part size.
The multipart upload task is initialized, as indicated by InitiateMultipartUpload.
The data blocks are uploaded either in sequence or parallel, as indicated by UploadPart.
All data blocks are successfully uploaded and combined into the original object, as
indicated by CompleteMultipartUpload.

Note:

Each data block (except the last block) cannot be smaller than 100 KB; otherwise, the
call to the CompleteMultipartUpload will fail.
After splitting the file into parts, the parts are ordered by the partNumbers specified
during the upload. The upload speed does not correlate to the number of data blocks
uploaded (either in sequence or in parallel), as both the user’s network conditions and

Object Storage Service Developer Guide

38

-

-

-

●

●

●

-

-

the device load must be considered.
By default, when the upload is complete, but CompleteMultipartUpload has not been
called, the parts will not be automatically recycled. Therefore, to terminate the upload
and delete the data-occupied storage space, call AbortMultipartUpload. To
automatically recycle uploaded parts, refer to Lifecycle Management.

Concepts

Multipart upload is recommended for scenarios such as mobile device data transfers, large object
uploads, and video streaming, as the lifecycle of uploaded data blocks and objects is permanent.

If the system crashes during a multipart upload, you can resume the upload by using the
ListMultipartUploads and ListParts APIs to retrieve all multipart upload tasks for an object and list the
completed uploads in each task. This allows uploads to be resumed from the last uploaded part. The
same concept apply to pausing and resuming uploads.

Restrictions

Size limit: the object size is determined by data block size. The function supports a maximum
of 10,000 parts, with a minimum data block size of 100 KB (with an exception to the final
data block, which may be smaller) and a maximum data block size of 5 GB.
Naming restrictions:

The name must be UTF-8 encoded.
The length must be between 1-1,023 bytes
The name cannot start with a backslash “/“ or forward slash “\”.

Upload security and authorization

To prevent unauthorized third parties from uploading objects to a developer’s bucket, OSS provides
bucket- and object-level access permission control. For details, refer to Access Control.

In addition to bucket and object-level access permissions, OSS also provides account-level
authorization to authorize third-party uploads. For details, refer to Authorized Third-party Upload for
Upload Security.

Post-upload operations

To initiate a callback request to a specified application server in order to perform subsequent
operations, use Upload Callback.
To process uploaded images, use Cloud Processing for Uploaded Images.

Object Storage Service Developer Guide

39

-

-

-

-

-

-

-

-

-

-

-

-

-

Reference

APIs: MultipartUpload, InitiateMultipartUpload, UploadPart, UploadPartCopy,
CompleteMultipartUpload, AbortMultipartUpload, ListMultipartUploads, ListParts
SDK: Java SDK-Multipart upload in MultipartUpload

Best practices

RAM and STS User Guide
Web Client Direct Data Transfer

Additional links

Upload callback
Introduction to mobile development upload scenarios
Download uploaded files
Cloud processing for uploaded images
Access control for upload security
Authorized third-party upload for upload security
Copy, delete, and manage uploaded files

Append object

Applicable scenarios

The Simple Upload, Form Upload, and Multipart Upload methods create normal-type objects which
have fixed content after the upload is finished. They can only be read, but cannot be modified. If the
object content changes, the user must upload an object of the same name to overwrite the content.
This is a major difference between OSS and file systems.

This feature makes many application scenarios inconvenient, such as video monitoring and live video
broadcast, since video data is constantly produced in real time. Using other upload methods, users
must slice the video stream into small pieces and then upload them as new objects. In actual use,
these methods have obvious defects:

The software architecture is quite complex and users must consider intricate issues such as
file fragments.
Storage space is required for metadata, e.g. the list of generated objects. Thus, each request
must read the metadata to judge if any new object has been generated. This puts a high
level of access pressure on the server. In addition, each client request must be transmitted

Object Storage Service Developer Guide

40

-

-

-

●

●

●

-

twice, causing a certain amount of delay.
If the object parts are small, the delay is quite short. However this will complicate the
management of most objects. If the object parts are large, the data will suffer a substantial
delay.

To simply development and reduce costs in such a scenario, OSS provides the append object method,
which allows users to directly append content to the end of an object. This method is used to operate
on Appendable objects. The objects uploaded by other methods are Normal objects. The data
appended is instantly readable.

With append object, the previous scenario becomes very simple. When video data are produced, they
can be immediately added to the same object through the append object method. The client simply
needs to regularly retrieve the object length and compare it with the previous value. If new readable
data are found, this triggers a read operation to retrieve the newly uploaded data segments. This
method greatly simplifies the architecture and enhances the scalability of applications.

In addition to video scenarios, the append object method can also be used to append log data.

Upload restrictions

Size limit: The maximum object size is 5 GB in this mode.
Naming restrictions

It uses UTF-8 encoding.
The length must be 1-1,023 bytes.
It cannot start with “/“ or “\”.

File type: Only files created through append object can be appended with new data.
Therefore, new data cannot be appended to files created through simple upload, form
upload, or multipart upload.

Upload security and authorization

To prevent unauthorized third parties from uploading objects to the developer’s bucket, OSS
provides bucket- and object-level access permission control. For details, refer to Access Control.
In addition to bucket-level and object-level access permissions, OSS also provides account-level
authorization to authorize third-party uploads. For details, refer to Authorized Third-party Upload for
Upload Security.

Post-upload Operations

To process uploaded images, users can use Cloud Processing for Uploaded Images.
For audio/video file format conversion, users can use Media Transcoding.

Object Storage Service Developer Guide

41

-

-

-

-

-

-

-

Reference for using the function

API: Append Object
SDK: Java SDK-Append Object Example

NOTE: Append object method does not support upload callback.

Best practices

RAM and STS User Guide

Reference links

Downloading Uploaded Files
Cloud Processing for Uploaded Images
Access Control for Upload Security
Authorized Third-party Upload for Upload Security

Authorized third-party upload

Applicable scenarios

In standard client/server system architecture, the server is used for receiving and processing requests
from the client. If OSS is used as a backend storage service, the client sends objects to the application
server to upload, then forward, the objects to the OSS. In this process, the data need to be
transmitted twice. Regarding high access volume scenarios, the server requires high bandwidth
resources to satisfy multiple clients’ simultaneous upload needs, challenging the architecture’s
scalability.

To resolve this issue, OSS provides an authorized third-party upload function. This means each client
can directly upload files to the OSS, bypassing the need for a server. This reduces the cost for
application servers and takes full advantage of the OSS’s ability to process massive data volumes.

Currently, there are two methods in which to grant upload permissions: URL signature and STS.

URL signature

The URL signature method adds an OSS AccessKeyID and Signature fields to the request URL,

Object Storage Service Developer Guide

42

-

-

-

-

-

-

-

-

allowing users to directly use this URL for an upload. Each URL signature has an expiration time to
ensure security. For details, refer to Add a signature to the URL.

Temporary access credentials

Temporary access credentials are granted through the Alibaba Cloud Security Token Service and
provide users with access authorization.

For information on the implementation of temporary access credentials, refer to STS Java SDK.

Best practices

RAM and STS User Guide
Web client direct data transfer and upload callback

Additional links

Upload callback
Introduction to mobile development upload scenarios
Download uploaded files
Cloud processing for uploaded images
Access control for upload security
Form upload

Upload callback

When an upload is complete, OSS can perform a callback to the application server. To perform
callback, users simply need to attach the relevant Callback parameter to the request sent to OSS. APIs
that currently support callback include PutObject, PostObject, and CompleteMultipartUpload.

Note: Currently, upload callback is supported only for Mainland China data centers, and only
simple uploads (PutObject), form uploads (PostObject), and multipart uploads completion
(CompleteMultipartUpload) support upload callback.

Applicable scenarios

A typical upload callback scenario is when authorized third-party users upload files to the OSS, the
clients specify the servers for callback. Then after the upload is complete, the OSS automatically
initiates a callback request to the application server over HTTP. This notifies the application server

Object Storage Service Developer Guide

43

-

-

-

-

-

-

-

-

-

-

that the upload is complete, so it can perform operations such as database modification. Upon
receiving a response from the server, the OSS returns the status to the client.

When the OSS sends a POST callback request to the application server, the POST request’s body
contains parameters that provide certain information. The parameters are divided into two types:

System-defined parameters
This parameter specifies simple information such as bucket name and object name.
User-defined parameters
This parameter specifies information based on the application logic determined when
sending a request, including callback to the OSS, and carries details such as the user ID of
the request initiator. For information on user-defined parameters, refer to Callback.

The application of the upload callback mechanism can decrease the complexity of the client’s logic
and reduce the consumption of network resources. The process is as follows:

Reference

API: Callback

Best practices

Direct upload to OSS from web

Set up data callback for mobile apps

Reference links

Permission management for a mobile app
Introduction to mobile development upload scenarios
Download uploaded files
Cloud processing for uploaded images
Access control for upload security
Authorized third-party upload for upload security
Copy, delete, and manage uploaded files

Object Storage Service Developer Guide

44

-

-

-

-

-

-

-

-

-

Download files

Simple download

A simple download occurs when a user downloads an uploaded file (object). The object download is
accomplished through an HTTP GET request.

When a user accesses a certain object, there are two possibilities:

This object does not have anonymous read permission, but the user has a corresponding
AccessKey, which can be used to sign the GET request and access the object.
This object has anonymous read permission, so all users can directly access the object
through GET requests.

For the rules of generating object URLs, refer to Accessing OSS.

For the access to an object by a user-defined domain name, refer to Accessing OSS with User-defined
Domain Names.

For details about object and bucket access permission control, refer to Access Control.

To authorize a third-party user to download an object from a private bucket, refer to Authorized
Third-party Download.

To use multipart download, refer to Multipart Download.

Reference

API: Get Object
SDK: Java SDK-Object
Console: Get object URL

Best practices

RAM and STS User Guide

Additional links

File Upload Methods
Upload Callback
Mobile Client Development and Download Scenario Introduction

Object Storage Service Developer Guide

45

-

-

-

-

-

-

-

-

-

-

-

-

Cloud Processing for Uploaded Images
Secure Download Access Control
Authorized Third-party Download for Download Security
Copying, Deleting, and Managing Uploaded Files

Multipart download

OSS provides a “start object download from specified point” function. This allows users to spilt
large objects into multiple downloads, which improves speed and reliability of downloads. If a
download is paused or interrupted, it will resume at the point of interruption once restarted.

Similar to a simple upload, the user must have read permission for the object. Multipart downloads
are supported when the Range parameter is set. If the Range parameter is specified in the request
header, the returned message contains the length of the entire file and the range returned in this
response.

For example, Content-Range: bytes 0-9/44 indicates that the length of the entire file is 44, and the
range in the response body is 0–9. If the range requirement is not met, the system transfers the entire
file and does not include Content-Range in the result. The return code is 206.

Reference

API: Get Object

Additional links

File Upload Methods
Upload Callback
Mobile Client Development and Download Scenario Introduction
Cloud Processing for Uploaded Images
Secure Download Access Control
Authorized Third-party Download for Download Security
Copying, Deleting, and Managing Uploaded Files

Authorized third-party download

Use a URL signature, or provide temporary access credentials, to grant third party authorization to
download objects in a private bucket. These methods are recommended as they prevent directly
giving the AccessKey to users requesting download permissions, which can weaken account security.

Object Storage Service Developer Guide

46

-

-

-

-

-

-

1.

URL signature

A developer can add a signature into the URL and forward this URL to a third party to authorize
access. The third-party user can then access this URL using an HTTP GET request to download the
object.

Implementation method

Example URL that includes a signature:

The signature in the URL must include the following three parameters:

OSSAccessKeyId, which is the developer’s AccessKeyId.
Expires, which is the developer’s desired URL expiration time.
Signature, which is the developer’s signature string. For details, refer to API Documentation
- signature section.

NOTE: This link must undergo URL encoding.

Reference

API: Get Object
SDK: Java SDK-Using URL Signature to Authorize Access
Console: Get object URL

NOTE: If the bucket permission is set to private read/write permission, the access URL provided
on the console will contain a signature.

Temporary access credentials

Security Token Service (STS) can be used to provide temporary credentials to third-party users. By
adding a signature in the request header, users can then access the object. This authorization method
is applicable to mobile scenario downloads. For more information on the implementation of
temporary access credentials, refer to STS Java SDK.

Implementation method

Third-party users send a request to the application server to obtain an AccessKeyID,

http://<bucket>.<region>.aliyuncs.com/<object>?OSSAccessKeyId=<user access_key_id>&Expires=<unix
time>&Signature=<signature_string>

Object Storage Service Developer Guide

47

2.

-

-

-

-

-

-

-

-

-

-

AccessKeySecret, and STS Token issued by STS.
Upon receipt, the AccessKeyID, AccessKeySecret, and STS Token are used as a signature to
request the developer’s object resource.

Reference

API: Temporary Access Credentials
Console: Get object URL

Best practices

RAM and STS User Guide

Additional links

File Upload Methods
Upload Callback
Mobile Client Development and Download Scenario Introduction
Cloud Processing for Uploaded Images
Secure Download Access Control
Authorized Third-party Download for Download Security
Copying, Deleting, and Managing Uploaded Files

File management

Object Meta

Object Meta describes the attributes of files uploaded to OSS. These attributes are classified into two
types: HTTP standard attributes (HTTP Headers) and User Meta (custom metadata). File metadata can
be configured when files are uploaded or copied.

HTTP standard attributes

Name Description

Cache-Control Cache action of the web page when the
object is downloaded

Content-Disposition Name of the object when downloaded

Content-Encoding Content encoding format when the object is

Object Storage Service Developer Guide

48

-

-

-

-

-

-

User Meta

This attribute allows you to enrich the description of objects using custom metadata. In OSS, all
parameters prefixed with “x-oss-meta-“ are considered as User Meta, such as x-oss-meta-location.
A single object can have multiple similar parameters, but the total size of all User Meta cannot exceed
8 KB. User Meta information will be returned in the HTTP header during GetObject or HeadObject
operations.

Set object Meta when uploading objects

You can set object Meta when uploading objects.

Reference:

API: Put Object
SDK: Set Object HTTP Headers and User-define Metadata in the Java SDK documentation

You can set object Meta when using multipart uploads.

Reference:

API: InitiateMultipartUpload
SDK: Java SDK-Initializing Multipart Upload

Modify object Meta after uploading objects

To modify the object metadata without modifying the actual data, using the copy object interface is
recommended. In this way, you only need to apply the new metadata in the HTTP header and set the
copy source and destination addresses to the current address of the object.

Reference for using the function:

API: Copying Objects
SDK: Java SDK-Using CopyObjectRequest to Copy Objects

Retrieve object Meta

downloaded

Content-Language Specifies the content language encoding
when the object is downloaded

Expires Expiry time

Content-Length Size of the object

Content-Type File type of the object

Last-Modified Time of last modification

Object Storage Service Developer Guide

49

-

-

-

-

This feature applies when the you need to retrieve object Meta, but not the object data.

Reference for using the function:

API: Head Object
SDK: Java SDK-Only Retrieve Object Metadata

View the object list

You use this feature to view the objects uploaded to your bucket. Up to 1,000 objects in a selected
bucket can be displayed at one time. The following four parameters provide users with extended
capabilities:

Folder simulation

OSS does not support folders, or directory sorting. All elements are stored as objects. Creating a
simulated folder means creating an object with a size of 0 that can then be uploaded and
downloaded. The console will display any object ending with “/“ as a folder.

Users can use a combination of Delimiters and Prefixes to simulate folder functions as follows:

Setting the Prefix as the name of a folder enumerates the files starting with this prefix,
recursively returning all files and subfolders (directories) in this folder. The file names are
shown in Contents.
Setting the Delimiter as “/“ means the returned values will enumerate the files in the folder
and the subfolders (directories) will be returned in the CommonPrefixes section. Recursive

Name Function

Delimiter

Groups object name characters. All objects
whose names are found between the
specified prefix and the first occurrence of the
Delimiter act as a group of elements:
CommonPrefixes.

Marker
Sets up the returned results to begin from the
first entry after the Marker, and is sorted in
alphabetical order.

MaxKeys

Limits the maximum number of objects
returned for one request. If this parameter
specified, the default value is 100. The
MaxKeys value cannot exceed 1,000.

Prefix

Indicates that only the objects whose keys
contain the specified prefix are returned. Note
that keys returned from queries using a prefix
will still contain the prefix.

Object Storage Service Developer Guide

50

files and folders in subfolders will not be displayed.

For example:
In this example, the OSS bucket oss-sample, contains the following objects:

File D
Directory A/File C
Directory A/File D
Directory A/Directory B/File B
Directory A/Directory B/Directory C/File A
Directory A/Directory C/File A
Directory A/Directory D/File B
Directory B/File A

1. List first-level directories and files
Based on the API request conventions, you must set the Prefix to "", and the Delimiter to "/":
The returned results are as follows:
<?xml version="1.0" encoding="UTF-8"?>
<ListBucketResult>
<Name>oss-sample</Name>
<Prefix></Prefix>
<Marker></Marker>
<MaxKeys>1000</MaxKeys>
<Delimiter>/</Delimiter>
<IsTruncated>false</IsTruncated>
<Contents>
<Key>File D</Key>
<LastModified>2015-11-06T10:07:11.000Z</LastModified>
<ETag>"8110930DA5E04B1ED5D84D6CC4DC9080"</ETag>
<Type>Normal</Type>
<Size>3340</Size>
<StorageClass>Standard</StorageClass>
<Owner>
<ID>oss</ID>
<DisplayName>oss</DisplayName>
</Owner>
</Contents>
<CommonPrefixes>
<Prefix>Directory A/</Prefix>
</CommonPrefixes>
<CommonPrefixes>
<Prefix>Directory B/</Prefix>
</CommonPrefixes>
</ListBucketResult>

We can see that:
Contents returns the first-level file: "File D".
CommonPrefixes returns the first-level directories: "Directory A/" and "Directory B/", but the files in these
directories are not shown.

2. List second-level directories and files under Directory A
Based on the API request conventions, you must set the Prefix to "Directory A", and the Delimiter to "/":
The returned results are as follows:

<?xml version="1.0" encoding="UTF-8"?>
<ListBucketResult>

Object Storage Service Developer Guide

51

-

-

Reference

API: Get Bucket
SDK：Java SDK-Listing Files in a Bucket

<Name>oss-sample</Name>
<Prefix>Directory A/</Prefix>
<Marker></Marker>
<MaxKeys>1000</MaxKeys>
<Delimiter>/</Delimiter>
<IsTruncated>false</IsTruncated>
<Contents>
<Key>Directory A/File C</Key>
<LastModified>2015-11-06T09:36:00.000Z</LastModified>
<ETag>"B026324C6904B2A9CB4B88D6D61C81D1"</ETag>
<Type>Normal</Type>
<Size>2</Size>
<StorageClass>Standard</StorageClass>
<Owner>
<ID>oss</ID>
<DisplayName>oss</DisplayName>
</Owner>
</Contents>
<Contents>
<Key>Directory A/File D</Key>
<LastModified>2015-11-06T09:36:00.000Z</LastModified>
<ETag>"B026324C6904B2A9CB4B88D6D61C81D1"</ETag>
<Type>Normal</Type>
<Size>2</Size>
<StorageClass>Standard</StorageClass>
<Owner>
<ID>oss</ID>
<DisplayName>oss</DisplayName>
</Owner>
</Contents>
<CommonPrefixes>
<Prefix>Directory A/Directory B/</Prefix>
</CommonPrefixes>
<CommonPrefixes>
<Prefix>Directory A/Directory C/</Prefix>
</CommonPrefixes>
<CommonPrefixes>
<Prefix>Directory A/Directory D/</Prefix>
</CommonPrefixes>
</ListBucketResult>

We can see that:
Contents returns the second-level files: "Directory A/File C" and "Directory A/File D".
CommonPrefixes returns the second-level directories: "Directory A/Directory B/", "Directory A/Directory C/", and
"Directory A/Directory D/". The file names under these directories are not shown.

Object Storage Service Developer Guide

52

-

-

-

-

-

-

-

Copy an object

In certain situations, you simply need to copy an object to another bucket, without modifying its
content. The standard process is to first download the object, and then upload the object to the new
bucket. However, because data is identical for both objects, network bandwidth is wasted. To
overcome this issue, OSS provides the CopyObject function to copy objects directly within the OSS
without the need to transmit large volumes of data between the user and the OSS.

Additionally, because OSS does not support renaming, it is recommended that the OSS CopyObject
interface is called for renaming an object. This means you can first copy the original data to an object,
apply a new name, and then delete the original file. To only modify an object’s Object Meta (object
metadata), you can also call the CopyObject interface and set the source address and destination
address to the same value. In this way, the OSS will only update the Object Meta. For more details
about Object Meta, refer to Object Meta.

Before copying an object, note the following precautions:

You must have permissions to operate the source object. Otherwise the operation will fail.
Data cannot be copied across regions. For example, an object in a Hangzhou bucket may not
be copied to a Qingdao bucket.
Objects up to 1 GB are supported.
Appended objects cannot be copied.

Reference

API: Copy Object
SDK: Java SDK-Object

Copy large objects

You need to take different steps to copy a large object. The OSS supports the function of copying
large files similar to Multipart upload.

The only difference is that the process UploadPart is replaced by the process UploadPartCopy. The
syntax of UploadPartCopy is similar to that of UploadPart. However, instead of being directly
uploaded from the HTTP request, data is retrieved from the source object.

Reference:

API: UploadPartCopy

Delete an object

Object Storage Service Developer Guide

53

-

-

-

-

-

-

-

-

-

-

-

You can delete objects that have been uploaded to OSS buckets using one of the following methods:

Single deletion, in which only a specified object is deleted.
Batch deletion, in which up to 1,000 objects can be deleted at one time.
Auto deletion, in which large numbers of objects can be deleted according to certain rules.
For example, to regularly delete objects that are created a specified number of days ago, or
to regularly empty the entire bucket, it is recommend that Lifecycle Management is
implemented. Once the rules are specified, OSS will use these rules to recycle expired
objects. This reduces the number of user attempts at deletion requests, and helps streamline
the deletion process.

Reference

API: Delete Object and Delete Multiple Objects
SDK：Java SDK-Delete Files
Console: Delete Files

Manage object lifecycle

The lifecycle of a bucket can be configured to define various rules for the bucket’s objects.
Currently, you can use rules to delete matching objects. Each rule is composed of the following:

Object name prefix
This rule will only apply to objects with a matching prefix.
Operation
The operation you want to perform on the matching objects.
Date or number of days
The operation is executed on objects on the specified date, or across a specified number of
days, after the object’s last modification time.

A rule applies to an object if the object name prefix matches the rule prefix. For example, a bucket
has the following objects:

If the prefix of a rule is logs/, the rule applies to the first three objects that are prefixed with
logs/.
If the prefix of a rule is doc/readme.txt, the rule only applies to the object doc/readme.txt.

logs/program.log.1
logs/program.log.2
logs/program.log.3
doc/readme.txt

Object Storage Service Developer Guide

54

-

-

-

-

●

●

You can also set overdue deletion rules. For example: if the last date of objects that are prefixed with
logs/ is 30 days ago, the objects are deleted according to the specified overdue deletion time.

When an object matches an overdue rule, the OSS will include the x-oss-expiration header in the
response to the Get Object or Head Object requests. The header contains two key-value pairs: expiry-
date indicates the expiration date of the object; rule-id indicates the matched rule ID.

Example

You can set the lifecycle configurations of a bucket through the open interface of the OSS. Lifecycle
configurations are given in XML format. Below is a specific example.

In the above example, all elements are described as follows:

ID: a unique identifier of each rule.
Status: Enabled or Disabled. OSS only supports the Enabled rules.
Prefix: the prefix.
Expiration: the operation expiration date. The sub-elements CreatedBeforeDate and Days
specify the absolute and relative expiry time, respectively.

CreatedBeforeDate indicates that files with a last modification time before 2014-12-
31T00:00:00.000Z will be deleted. Objects modified after this time will not be
deleted.
Days indicates that files that were last modified more than 10 days ago will be
deleted.

In the first rule, the OSS will delete objects that are prefixed with logs/ and were last updated 10 days
ago. The second rule indicates that objects prefixed with doc/ that were last modified before
December 31, 2014 will be deleted, but the rule will not take effect because it is in disabled status.

<LifecycleConfiguration>
<Rule>
<ID>delete logs after 10 days</ID>
<Prefix>logs/</Prefix>
<Status>Enabled</Status>
<Expiration>
<Days>10</Days>
</Expiration>
</Rule>

<Rule>
<ID>delete doc</ID>
<Prefix>doc/</Prefix>
<Status>Disabled</Status>
<Expiration>
<CreatedBeforeDate>2014-12-31T00:00:00.000Z</CreatedBeforeDate>
</Expiration>
</Rule>
</LifecycleConfiguration>

Object Storage Service Developer Guide

55

-

-

-

-

-

-

-

-

Detailed analysis

The naming rules of the prefix are the same as those of the object.
When the prefix is empty, the rule applies to all objects in the bucket.
Each prefix of a rule must be unique. For example, if a bucket has two rules whose prefixes
are logs/ and logs/program, OSS will return an error.
If a rule is set to delete objects on a specific date, the date must be midnight UTC and
comply with the ISO8601 format, for example, 2014-01-01T00:00:00.000Z. In this example,
OSS will delete matched objects after midnight on January 1, 2014.
If, in a rule to delete objects, the number of days is specified, OSS will sum up the last update
time (Last-Modified) as well as the specified number of days, and then round the sum to the
midnight UTC timestamp. For example, if the last update time of an object is 01:00 a.m. on
April 12, 2014 and the number of days specified in the matched rule is 3, the expiry time is
midnight on April 16, 2014.
OSS deletes the objects matched with the rule at the specified time. Note that objects are
usually deleted shortly after the specified time.
The update time of an unmodified object is typically the time of its creation. If an object
undergoes the put operation multiple times, the last update time will then be the time of the
last Put operation. If an object was copied to itself, the last update time is the time at when
the object was last copied.

Reference

API: Put Bucket Lifecycle

Cross-region replication

Bucket Cross-Region Replication automatically and asynchronously copies objects in buckets across
different OSS data centers. It also synchronizes changes to objects in the source bucket and copies
them across to the target bucket, enabling support for cross-region disaster recovery of buckets.

Application scenarios

Scenarios in which enabling Bucket Cross-Region Replication is recommended are as follows:

Compliance requirements
Through cross-region synchronization, data can be copied between OSS data centers at
different locations to satisfy compliance requirements such as specified distances between
objects.

Object Storage Service Developer Guide

56

Latency
In order to minimize object access latency between objects at different geographical points,
a copy of the desired object can be maintained at an OSS data center that is physically closer
to users.

Data backup and disaster recovery
In the event of natural disasters, backup data can be saved to another OSS data center to
maintain data security and availability.

Atypical operations
If you have computing clusters in different OSS data centers, and wish to use them to
analyze the same group of objects, you can maintain copies of the desired objects copies at
the different data centers.

Supported synchronization functions

Currently, cross-region synchronization supports buckets with different names. For two buckets in
different regions, a user can sync the data in the source bucket to the target bucket using the
following features:

Real-time data synchronization
Monitor data addition, deletion, and modification in real time and sync changes to the target
region bucket. For files of 2M or larger, synchronization may take several minutes. This
ensures the ultimate consistency of the data on both sides.

Historical data migration
Synchronize historical data in the source bucket, creating two identical data copies.

Real-time synchronization progress retrieval
Display the latest synchronization time node for real-time data synchronization. For historical
data migration, this feature shows the percentage of data migrated.

Easy configuration
Use the management interfaces on the OSS Console to easily monitor and perform actions
based on site requirements.

Restrictions

Currently, cross-region synchronization is available in Mainland China. Support for other

Object Storage Service Developer Guide

57

-

regions will be announced when available.

The two buckets to be used for data synchronization must belong to different regions. Data
synchronization cannot be performed between buckets in the same region.

Users can simultaneously operate on two buckets in the synchronization status. However,
objects copied from the source bucket may overwrite any objects of the same name in the
target bucket. Use this function with caution.

Because Bucket Replication uses an asynchronous copying method, it may take time for data
to be fully copied to the target bucket. Prepare accordingly to ensure the process can be
completed properly.

Cross-region synchronization applies only when the two buckets to be synced do not enable
data to be synced to or from a third bucket. For example, if synchronization is activated from
Bucket A to Bucket B, the user cannot activate synchronization from Bucket A to Bucket C
before deleting the synchronization configuration between Bucket A and Bucket B.

Reference

Console: Cross-Region Replication

Manage back-to-source settings

Back-to-source settings allow for multiple back-to-source reading methods to be applied, meeting
hot data migration and specific request redirection requirements.

This setting enables the URL of each OSS Get request to be matched, which will then specify a back-
to-source method. A maximum of five rules can be configured. Requests are compared to the rules in
a set sequence, until matched to a valid rule. The specified method can be either mirroring or
redirection.

Mirroring

Mirroring write-back is designed to seamlessly migrate data to OSS. This means any service that is
already running on a user-established site, or on another cloud product, can be migrated to OSS
without interruption to the service.

Object Storage Service Developer Guide

58

1.

2.

3.

-

●

●

●

The process is as follows:

A client requests data of an object.
OSS determines the object does not exist, and forwards the request to the source URL.
The source URL returns the object through the OSS, which goes to the client. OSS
simultaneously writes the object data in order to process future requests.

Example scenario

A detailed scenario is as follows:

An origin site is generating new hot data, and also has legacy cold data stored.

First, a user can use the migration tool ossimport2 to migrate cold data to the OSS. During migration,
the user can configure mirroring write-back and set the origin site’s URL to OSS. Even if some newly
generated data does not migrate when the domain name is switched to the OSS, the user can still
access it through OSS and the files will be saved to OSS after they have been accessed for the first
time.

After switching the domain name for an origin site that no longer produces new data, the site will be
scanned, and all non-migrated data will be imported to the OSS. In this situation, the user may
disable mirroring write-back.

If the configured origin site is an IP address, after the domain name is migrated to the OSS, data can
still be mirrored to the origin site. However, if it is a domain name, no mirroring can be produced
because the domain name is resolved to the OSS or CDN. In this situation, the user can apply for
another domain name to mirror the origin site. This domain name and the in-service domain name
would both be resolved to the same IP address. This allows origin site imaging to continue when the
service domain name is migrated.

Usage rules

OSS only executes mirroring write-back to request an object from the origin site when
GetObject() returns a 404 code.

The URL requested from the origin site is MirrorURL+object and the name of the file written
back to the OSS is object. For example, assume that:

A bucket is named example-bucket.
Mirroring write-back is configured.
The MirrorURL is http://www.example.com/.

Object Storage Service Developer Guide

59

● The file object.jpg does not exist in this bucket.
To download the file, the OSS initiates a Get request to
http://www.example.com/object.jpg, records the result, and returns it to the user.
The file is then available on OSS as object.jpg. This is the same as migrating an
object with the same name to the OSS.
Note that if the MirrorURL carries path information, such as
http://www.example.com/dir1/, the process is the same as the preceding example,
but the OSS back-to-source URL will be http://www.example.com/dir1/object.jpg
although the object written to the OSS will remain as object.jpg. This process is the
same as migrating an object from an origin site directory to the OSS.

The header and querystring information transmitted to the OSS will not be sent to the origin
site.

If the origin site returns data in chunks, the OSS will likewise return data to the user in
chunks.

The OSS will return and save the following header information from the origin site:

An x-oss-tag response header will be added to mirroring write-back files, with the value
“MIRROR” + space + urldecode(back-to-source URL). In the example given above, this
would be x-oss-tag:MIRROR http%3a%2f%2fwww.example-
domain.com%2fdir1%2fimage%2fexampleobject.jpg. After the file is written back to the OSS,
so long as it is not overwritten again, this header will be added each time it is downloaded to
indicate that it is taken from mirroring.

Assuming that the file has already been written to the OSS through mirroring write-back, if
the corresponding file on the origin site is changed, the OSS will not update the file that
exists on the OSS because this file which is already present on the OSS does not meet the
mirroring write-back conditions.

If the file does not exist in the mirroring source, the returned result will be the HTTP status
404, which will be forwarded through the OSS to the user. If the mirroring source returns
another non-200 status code (including file retrieval failure due to network-related causes),
the OSS will return 424 to the user, the error code for ‘MirrorFailed’.

Content-Type
Content-Encoding
Content-Disposition
Cache-Control
Expires
Content-Language
Access-Control-Allow-Origin

Object Storage Service Developer Guide

60

1.

2.

3.

4.

Redirection

The URL redirection function returns a 3xx hop to the user based on user-defined conditions and
corresponding hop configurations. Users can use this hop function to redirect files and provide
various services based on this action.

The process is as follows:

A client requests data of an object.
OSS determines the object does not exist, and returns a redirect location source to the
client.
The client sends the request direct to the redirection location provided by OSS.
The source returns the object directly to the client.

Application scenarios

Migrate data sources to OSS
Users can asynchronously migrate data to the OSS. In this way, requests for un-migrated
data use the URL rewrite method to return a 302 redirect request to the user. The user’s
client will then return the data from the user’s data source based on the location in the 302
redirect request.

Configure page redirect function
If a user wants to hide objects using a certain header prefix, a customized page can be
displayed to visitors.

Object Storage Service Developer Guide

61

-

Configure the redirected page when a 404 or 500 error occurs
If a 404 or 500 error occurs, the user can be redirected to a live page. This ensures that OSS
errors are undetected by a user.

Reference

Console: Back-To-Source Rule Management

Security management

Set access logging

The OSS provides automatic saving of server access logs. A bucket owner can log on to OSS Console
to enable the server access logging feature for all the owner’s buckets. When access logging is
activated for a bucket (Source Bucket), the OSS will generate an object containing all access request
logs of that bucket (by hour) and write the object into the user-designated bucket (Target Bucket)
according to fixed naming rules.

Object naming rules for access logging

In the naming rules, the TargetPrefix is specified by the user; YYYY, mm, DD, HH, MM and SS give the
year, month, day, hour, minutes and seconds of the creation time in Arabic numerals (note the digits);
and UniqueString is the string generated by the OSS system. An example for the name of an object
actually used to store OSS access logs is given below:

In the above example, “MyLog-“ is the Object prefix specified by the user; “oss-example” is the
name of the origin bucket; “2012-09-10-04-00-00” is the Object creation time (Beijing time); and
“0000” is the string generated by the OSS system.

Log file format
(Separated by spaces from left to right):

<TargetPrefix><SourceBucket>-YYYY-mm-DD-HH-MM-SS-UniqueString

MyLog-oss-example-2012-09-10-04-00-00-0000

Name Example Description

Object Storage Service Developer Guide

62

Remote IP 119.140.142.11

IP address from which the
request is initiated (the proxy
or user firewall may block
this field)

Time [02/May/2012:00:00:04
+0800]

Time when the OSS receives
the request

Request-URI “GET /aliyun-logo.png
HTTP/1.1”

User-Requested URI
(including query-string)

HTTP Status 200 HTTP status code returned
by the OSS

SentBytes 5576 Traffic that the user
downloads from the OSS

RequestTime (ms) 71 Time spent in completing
this request (in ms)

Referer http://www.aliyun.com/prod
uct/oss Requested TTP Referer

User-Agent curl/7.15.5 HTTP User-Agent header

HostName oss-example.oss-cn-
hangzhou.aliyuncs.com

Domain name for access
request

Request ID 505B01695037C2AF032593A
4

UUID used to uniquely
identify this request

LoggingFlag true Whether the access logging
function is enabled

Requester AliCloud ID 1657136103983691 AliCloud ID of the requester,
“-“ for anonymous access

Operation GetObject Request type

Bucket oss-example Name of the bucket
requested for access

Key /aliyun-logo.png User-Requested Key

ObjectSize 5576 Object size

Server Cost Time (ms) 17
Time taken by the OSS server
to process this request (in
ms)

Error Code NoSuchBucket Error code returned by the
OSS

Request Length 302 Length of user request (byte)

UserID 1657136103983691 ID of the bucket owner

Delta DataSize 280 Bucket size variation, “-“
for no change

Sync Request -
Whether this is a back-to-
source request from CND,
“-“ for no

Object Storage Service Developer Guide

63

-

-

-

-

-

-

-

-

-

-

Detail analysis

The source bucket and target bucket must belong to the same user.
TargetPrefix indicates the name prefix of the object used for storing access logs. The field
can be left blank.
The source bucket and target bucket can be the same or different buckets. You can save logs
from multiple source buckets to the same target bucket (in this case, it is recommended that
you assign different values to TargetPrefix).
The OSS generates a bucket access log file every hour. However, all requests in the hour may
not be recorded in the log file, but may be recorded in the previous or next log file.
In the naming rules for log files generated by the OSS, “UniqueString” is just a UUID that
the OSS generates for an object to uniquely identify the file.
Each time the OSS generates a bucket access log file, this is considered a PUT operation and
the occupied space is recorded, but the generated traffic is not recorded. After log files are
generated, you can operate these log files as common objects.
The OSS ignores all query-string parameters prefixed by “x-“ but such query-string
parameters are recorded in access logs. If you want to mark a special request from massive
access logs, you can add a query-string parameter prefixed by “x-“ to the URL. For
example:http://oss-example.oss-cn-hangzhou.aliyuncs.com/aliyun-logo.pnghttp://oss-
example.oss-cn-hangzhou.aliyuncs.com/aliyun-logo.png?x-user=admin
When the OSS processes the above two requests, the results are the same. However, you can
search access logs with “x-user=admin” to quickly locate the marked request.
You may see “-“ in any field of OSS logs. It indicates that data is unknown or the field is
invalid for the current request.
Certain fields will be added to the end of OSS log files in the future based on the
requirements. It is recommended that developers take compatibility issues into
consideration when developing log processing tools.

Reference for using the function

Console: Server Access Logging

Anti-leech settings

The OSS collects service fees based on use. To prevent users’ data on OSS from being leeched, OSS
supports anti-leech based on the field referer in the HTTP header. Users can log in to OSS Console or
use APIs to configure a referer white list for a bucket or whether to allow access by requests where
referer is blank. For example, for a bucket named oss-example, set its referer white list to
http://www.aliyun.com. Then, only requests with a referer of http://www.aliyun.com can access the
objects in the bucket.

Object Storage Service Developer Guide

64

-

-

-

-

-

-

-

-

-

-

-

-

Detail analysis

Anti-leech verification will be performed only when users access objects through URL
signatures or anonymously. When the request header contains the “Authorization” field,
anti-leech verification is not performed.
A bucket supports multiple referer fields, which are separated by the comma “,”.
The referer field supports the wildcard “*“ and “?”。
Users can set whether to allow access requests with empty referer fields.
When the white list is empty, the system will not check if the referer field is null (otherwise,
all requests will be rejected).
When the white list is not empty and the rules do not allow null referer fields, only requests
with referers in the white list will be allowed. Other requests (including null referer requests)
will be rejected.
If the white list is not empty and the rules allow empty referer fields, requests with empty
referer and with the referers in the white list will be allowed. Other requests will be rejected.
The three bucket permissions (private, public-read, and public-read-write) will all check the
referer field.

Wildcard details:

Asterisk “”: The asterisk can be used to represent 0 or multiple characters. If you are
looking for an object name prefixed with AEW but have forgotten the remaining part, you
can enter AEW* to search for all types of files starting with AEW, such as AEWT.txt,
AEWU.EXE and AEWI.dll. If you want to narrow down the search scope, you can enter
AEW*.txt to search for all .txt files starting with AEW, such as AEWIP.txt and AEWDF.txt.
Question mark “?”: The question mark can be used to represent one character. If you enter
love?, all types of files starting with love and ending with one character will be displayed,
such as lovey and lovei. If you want to narrow the search scope, you can enter love?.doc to
search for all .doc files starting with love and ending with one character, such as lovey.doc
and loveh.doc.

Reference for using the function

API: Put Bucket Referer
Console: Set Anti-leech

Cross-origin resource sharing

Cross-origin access, or the cross-origin of JavaScript, is a browser restriction set for the sake of
security, namely, the same-origin policy. When Website A tries to use the JavaScript code in its
webpage to access Website B, the attempt will be rejected by the browser because A and B are two

Object Storage Service Developer Guide

65

-

-

-

websites of different origins.

Cross-origin access needs arise frequently in actual usage, such as when OSS is used at the back end
for the user’s website www.a.com.The upload function implemented with JavaScript is provided in
the webpage. However, requests could only be sent to www.a.com in the webpage, and all the
requests sent to other websites are rejected by the browser. Thus the data uploaded by users has to
be relayed to other sites via www.a.com.If cross-origin access is set, users could upload their data
directly to OSS instead of relaying it via www.a.com.

Cross-origin resource sharing (CORS) is the standard across-origin solution provided by HTML5.
Currently, the CORS standard is supported by OSS for cross-origin access. For details about the
specific CORS rules, refer to W3C CORS Norms. In simple terms, CORS indicates the origin of where
the request is originated by using a header containing the origin of the HTTP request. As in the
previous example, the origin header contains www.a.com.After receiving the request, the server will
judge based on certain rules whether the request should be accepted or not. If yes, the server will
attach the Access-Control-Allow-Origin header in the response. The header contains www.a.com,
indicating that cross-origin access is allowed. In case that the server accepts all the cross-origin
requests, just set the Access-Control-Allow-Origin header to *. The browser will determine whether
the cross-origin request is successful or not based on whether the corresponding header has been
returned or not. In case that no corresponding header is attached, the browser will block the request.
In case that the request is not a simple one, the browser will firstly send an OPTIONS request to
obtain the CORS configuration of the server. In case that the server does not support the following
operations, the browser will also block the following requests.

OSS provides the configuration of the CORS rule, accepting or rejecting corresponding cross-origin
requests as needed. The rule is configured at the bucket level. The details are available in
PutBucketCORS.

Key points

Attaching relevant CORS headers and other actions are automatically executed by the
browser, and no additional action is required by the user. Only in the browser environment
could the CORS operations be meaningful.
Whether a CORS request is accepted is completely independent of OSS authentication and
other such measures, i.e. the OSS CORS rule is only used to determine whether to attach the
relevant CORS headers. Whether the request should be blocked should be exclusively
determined by the browser.
When using cross-origin requests, make sure the browser’s cache function is enabled. For
example, the same cross-origin resource have been requested by two webpages running on
the same browser (originated from www.a.com and www.b.com) at the same time
respectively. If the request of www.a.com is received by the server in the first place, the
server will return to the user the resource with the Access-Control-Allow-Origin header
“www.a.com”. When www.b.com initiates its request, the browser will return its previous
cached request to the user. As the header content does not match the CORS request, the

Object Storage Service Developer Guide

66

-

-

-

-

-

-

-

-

-

●

●

subsequent request fails.
Reference for using the function

API: Cross-origin Resource Sharing
SDK: Java SDK-Cross-origin Resource Sharing
Console: Cross-origin Resource Sharing

Server-side encryption

OSS supports server-side encryption of data uploaded by users: When a user uploads data, the OSS
encrypts the received user data and permanently stores the encrypted data. When a user downloads
data, the OSS automatically decrypts the encrypted data, returns the original data to the user, and
declares in the header of the returned HTTP request that the data has been encrypted on the server
side. In other words, there is major big difference between downloading an object encrypted on the
server side and downloading a common object, because the OSS manages the entire codec process
for users.

Currently, the OSS’s server-side encryption is an attribute of objects. When creating an object, a
user only needs to add the HTTP Header “x-oss-server-side-encryption” to the Put Object request
and specify its value as “AES256”. Then, the object can be encrypted on the server side before it is
stored. Currently, server-side encryption is supported by the following operations:

Put Object
Copy Object
Initiate Multipart Upload

Detail analysis

Except the Put Object, Copy Object, and Initiate Multipart Upload requests, if any other
request received by the OSS contains the ‘x-oss-server-side-encryption’ header, the OSS
will directly return HTTP Status Code 400, with the error code in the message body being
InvalidArgument.
Currently, the OSS only supports the AES256 encryption algorithm. If the user specifies
another value for the ‘x-oss-server-side-encryption’ header, the OSS will directly return
HTTP Status Code 400, with the error code in the message body being
‘InvalidEncryptionAlgorithmError’.
For objects stored after server-side encryption, the OSS returns the x-oss-server-side-
encryption header in the API requests below, with its value being the entropy encryption
algorithm:

Put Object
Copy Object

Object Storage Service Developer Guide

67

●

●

●

●

●

-

-

-

-

-

Initiate Multipart Upload
Upload Part
Complete Multipart Upload
Get Object
Head Object

Reference for using the function

API: Append Object
API: Put Object
API: Copy Object
API: Post Object

Static website hosting

On the OSS Console, you can set up your buckets to work in static website hosting mode. If your
selected bucket is located in Hangzhou, after the configuration takes effect, the endpoint of the static
website is as follows:

For users to manage static websites hosted on the OSS more easily, the OSS provides two functions:

Index Document Support

The index document refers to the default index document (such as index.html) that is
returned by the OSS when a user directly accesses the root domain name of the static
website. If static website hosting mode is set for a bucket, you must specify the index
document as an object in that bucket. This setting is mandatory.

Error Document Support

The error document refers to the error page the OSS returns to a user if the HTTP 4XX error
(such as 404 “NOT FOUND”) occurs when the user attempts to access the static website
but fails. If static website hosting mode is set for a bucket, you must specify the error
document as an object in that bucket. This setting is optional.

For example, if a user sets:

The index document support as index.html

http://<Bucket>.oss-cn-hangzhou.aliyuncs.com/

Object Storage Service Developer Guide

68

-

-

-

-

-

The error document support as error.html
The bucket as oss-sample
The endpoint as oss-cn-hangzhou.aliyuncs.com

Then:

When a user accesses http://oss-sample.oss-cn-hangzhou.aliyuncs.com/ and http://oss-
sample.oss-cn-hangzhou.aliyuncs.com/directory/, it is the same as accessing http://oss-
sample.oss-cn-hangzhou.aliyuncs.com/index.html.

When a user accesses http://oss-sample.oss-cn-hangzhou.aliyuncs.com/object, and the
object does not exist, OSS will return http://oss-sample.oss-cn-
hangzhou.aliyuncs.com/error.html.

Detail analysis

Static websites are websites with web pages composed of static - content, including scripts
such as JavaScript executed on the client. OSS does not support content that needs to be
processed by the server, such as PHP, JSP, and APS.NET content.

For access to a bucket-based static website through a user-defined domain name, refer to
Bind custom domain names.

OSS restricts access by bucket domain names, which means user files cannot be directly
viewed in a browser. Users are recommended to use CNAMEs.

After a bucket is set to static website hosting mode, the OSS returns the index page for
anonymous access to the root domain name of the static website, and returns Get Bucket
results for signed access to the root domain name of the static website.

After static website hosting mode is set for a bucket, and the user accesses the root domain
name of a static website or a nonexistent object, the OSS will return a specified object to the
user and bills the return traffic and requests to the bucket owner.

Reference

API: Put Bucket Website
Console: Static Website Hosting

Object Storage Service Developer Guide

69

-

-

-

-

Monitoring service

Monitoring service overview

The OSS monitoring service details metric data, including basic system operation statuses,
performance, and metering. It also provides a custom alarm service to track requests, analyze usage,
collect statistics on business trends, and promptly discover and diagnose system problems.

OSS metric indicators are classified into indicator groups such as basic service indicators,
performance indicators, and metering indicators. For more details, refer to Monitoring indicators
reference.

High real-time performance

Real-time performance monitoring can expose potential peak/valley problems, display actual
fluctuations, and provide insights into the analysis and evaluation of business scenarios. OSS real-
time metric indicators (excluding the metering indicator) enable minute-level collection and
aggregation of metric data with an output delay of less than one minute.

Metering indicator description

The metering indicator uses the following features:

Metering entries are collected, aggregated, and output at the hour-level. However, the
output delay can be up to thirty minutes.
The time of metering refers to the start time of the relevant statistical period.
The metering acquisition cutoff time is the end time of the last metering data statistical
period for the current month. If no metering data is produced during the current month, the
metering data acquisition cutoff time is 00:00 on the first day of the current month.
A maximum amount of metering entries is pushed for presentation. For precise metering
data, go to Billing Management and click Usage Record.

OSS alarm service

You can set up to 1,000 alarm rules.

Alarm rules can be configured for other metric indicators, which can then be added to alarm

Object Storage Service Developer Guide

70

-

-

-

-

-

monitoring. Additionally, multiple alarm rules may be configured for a single metric indicator.

For information about the alarm service, refer to Alarm service overview.
For instructions about how to use the OSS alarm service, refer to Alarm service user guide.
For details about OSS metric indicators, refer to Monitoring indicators reference.

Metric data retention policy

Metric data is retained for 31 days and is automatically cleared upon expiration. To analyze metric
data offline, or download and store historical metric data for longer than 31 days, use the appropriate
tool or input code in order to read the data storage of Cloud Monitor. For details, refer to Metric data
access through the OpenAPI.

The console displays metric data up until the past seven days. To view historical metric data earlier
than seven days, use the Cloud Monitor SDK. For details, refer to Metric data access through the
OpenAPI.

Metric data access through the OpenAPI

The OpenAPI of Cloud Monitor allows you to access OSS metric data. For usage information, refer to:

Cloud Monitor OpenAPI User Manual
Metric item reference

Monitoring, diagnosis, and troubleshooting

The following documentation provides monitoring, diagnosis, and troubleshooting details related to
OSS management:

Real-time service monitoring
Describes how to use the monitoring service to monitor the running status and performance
of OSS.

Tracking and diagnosis
Describes how to use the OSS monitoring service and logging function to diagnose
problems, as well as how to associate relevant information in log files for tracking and
diagnosis.

Troubleshooting
Describes typical problems and corresponding troubleshooting methods.

Object Storage Service Developer Guide

71

Considerations

OSS buckets must be globally unique. If, after deleting a bucket, you create another bucket with the
same name as the deleted bucket, the monitoring and alarm rules set for the deleted bucket will be
applied to the new bucket.

Monitoring service user guide

Cloud Monitor Console

OSS monitoring entry

The OSS monitoring service is available on the Alibaba Cloud Console. You can access the OSS
monitoring service in either of the following ways:

Log on to your Alibaba Cloud account, and then on the homepage navigate to Object
Storage Service in the left-side navigation bar. Open the OSS overview page, and then click
Monitor Panel on the right side, as shown below:

Log on to your Alibaba Cloud account, and then on the homepage navigate to Cloud
Monitor in the left-side navigation bar. Open the Cloud Monitor overview page, and then
click Cloud Service Monitoring > OSS as shown below:

Object Storage Service Developer Guide

72

-

-

-

-

-

-

OSS monitoring page

The OSS monitoring page consists of the following three tabs:

User overview
Bucket list
Alarm rules

The OSS monitoring page does not support automatic refresh. You can click Refresh in the upper-
right corner to display the latest data.

Click Go to OSS Console to log on to the OSS console.

User overview

The User overview page displays the following information:

User monitoring information
Latest month statistics
User-level metric indicators

Object Storage Service Developer Guide

73

-

-

●

●

●

●

-

-

-

-

User monitoring information

This module shows the total number of your buckets and related alarm rules.

The parameters are as follows:

Click the number next to Bucket number to display all the buckets you have created.
Click the number next to Alarm rules amount, In Alarm, Forbidden amount, or Alerted to
display the following information:

Alarm rules amount refers to total number of alarm rules you have set
In Alarm refers to alarms in alarm state
Forbidden amount refers to alarms that are currently disabled
Alerted refers to alarms recently changed to alarm state

Latest month statistics

This module displays information about charged OSS resources that you have used during the period
from 00:00 on the first day of the current month, to the metering acquisition cutoff time. The
following indicators are displayed:

Storage utilization
Internet traffic
Put request
Get request

The unit of each value is automatically adjusted by the order of magnitude. The exact value is
displayed when you hover the cursor over the selected value.

Object Storage Service Developer Guide

74

-

-

-

User-level metric indicators

This module displays user-level metric charts and tables and consists of Service overview and request
Status Category:

You can select a pre-determined time range, or define a time range in the custom time boxes, to
display the corresponding metric chart or table.

The following time range options are available: 1 hour, 6 hours, 12 hours, 1 day, and 7 days.
The default option is 1 hour.
The custom time boxes allow the start time and the end time to be defined at the minute-
level.

Metric charts/tables support the following display modes:

Legend hiding: You can click a legend to hide the corresponding indicator curve, as shown in
the figure below:

Object Storage Service Developer Guide

75

-

Click the

icon in the upper-

Object Storage Service Developer Guide

76

-

-

right corner of a metric chart to zoom in on the chart. NOTE: Tables cannot be zoomed in.
Click the

icon in the upper-
right corner of a metric chart to configure alarm rules for the displayed metric indicators. For
details, refer to the Alarm Service User Guide.

Note: You cannot set alarm rules for tables and metering reference indicators.

Place the cursor inside the curve area of a chart, and press and hold the left button on the
mouse while dragging the mouse to extend the time range. Click Reset Zoom to restore the
original time range.

Object Storage Service Developer Guide

77

-

-

-

-

Service overview

The Service overview page displays the following main metric charts:

User-level availability/valid request rate, which includes two metric indicators: availability and
percentage of valid requests
User-level requests/valid requests, which includes two metric indicators: total number of
requests and number of valid requests
User-level traffic, which includes eight metric indicators: Internet outbound traffic, Internet
inbound traffic, Intranet outbound traffic, Intranet inbound traffic, CDN outbound traffic,
CDN inbound traffic, outbound traffic of cross-region replication, and inbound traffic of
cross-region replication
User-level request state distribution, which is a table that displays the number and
percentage of each type of requests within the selected time range.

Object Storage Service Developer Guide

78

-

-

-

-

-

-

-

-

Request status category

The Request status category page displays the metric data of request state distribution through the
following metric charts:

User service error request count
User server error rate
User network error count
User network error Rate
Client error request, which includes four metric indicators: number of error requests
indicating resource not found, number of authorization error requests, number of client-site
timeout error requests, and number of other client-site error requests
Client error percent, which includes four metric indicators: percentage of error requests
indicating resource not found, percentage of authorization error requests, percentage of
client-site timeout error requests, and percentage of other client-site error requests
User success request, which includes two metric indicators: number of successful requests
and number of redirect requests
User request rate, which includes two metric indicators: percentage of successful requests
and percentage of redirect requests

Object Storage Service Developer Guide

79

-

-

-

Bucket List

Bucket list information

The Bucket list tab page displays the information including bucket name, region, creation time,
metering statistics of the current month, and related operations.

Display parameters are as follows:

The metering statistics of the current month display the storage size, Internet outbound
traffic, Put request count, and Get request count for each bucket.
Click Monitoring chart or the corresponding bucket name to go to the bucket monitoring
view page.
Click Alarm rules next to your desired bucket, or go to the Alarm rules tab to display all

Object Storage Service Developer Guide

80

-

-

-

-

-

-

-

-

-

-

alarm rules of the bucket.
Enter the desired bucket name in the search box in the upper left-corner to display the
bucket (fuzzy match is supported).
Select the check boxes before the desired bucket names and click Setting custom monitor
alarm rules to batch set alarm rules. For details, refer to the Alarm Service User Guide.

Bucket-level monitoring view

Click Monitoring chart next to the desired bucket name in the bucket list to go to the bucket
monitoring view.

The bucket monitoring view displays metric charts based on the following six indicator groups:

Monitoring service overview
Request status category
Measurement reference
Average latency
Maximum latency
Success request category

Except measurement reference, other indicators are displayed with an aggregation granularity of 60s.
The default time range for bucket-level metric charts is of the previous six hours, whereas that for
user-level metric charts is of the previous hour. Click Back to bucket list in the upper-left corner to
return to the Bucket list tab.

Monitoring service overview

This indicator group is similar to the service monitoring overview at the user level, but the former
displays metric data at the bucket level. The main metric charts include:

Request Valid Availability, which includes two metric indicators: availability and percentage
of valid requests
Total/Valid request, which includes two metric indicators: total number of requests and

Object Storage Service Developer Guide

81

-

-

-

-

-

-

-

-

-

-

number of valid requests
Overflow, which includes eight metric indicators: Internet outbound traffic, Internet inbound
traffic, Intranet outbound traffic, Intranet inbound traffic, CDN outbound traffic, CDN
inbound traffic, outbound traffic of cross-region replication, and inbound traffic of cross-
region replication
Request status count, which is a table that displays the number and percentage of each type
of requests within the selected time range.

Request status category

This indicator group is similar to the request state details at the user level, but the former displays
metric data at the bucket level. The main metric charts include:

Server error count
Server error rate
Network error count
Network error rate
Client error request count, which includes four metric indicators: number of error requests
indicating resource not found, number of authorization error requests, number of client-site
timeout error requests, and number of other client-site error requests
Client error request percent, which includes four metric indicators: percentage of error
requests indicating resource not found, percentage of authorization error requests,
percentage of client-site timeout error requests, and percentage of other client-site error
requests
Redirect request count, which includes two metric indicators: number of successful requests
and number of redirect requests
Success redirect rate, which includes two metric indicators: percentage of successful requests
and percentage of redirect requests

Object Storage Service Developer Guide

82

-

-

-

-

-

-

-

-

Measurement reference

The metering reference group shows metering indicators with an hourly collection and representation
granularity, as shown in the figure below:

The metering metric charts include:

Quota size
Overflow
Billing requests, which includes the Get request count and Put request count.

After a bucket is created, new data is collected in the next hour on the hour following the current
time point, and the collected data will be displayed within 30 minutes.

Average latency

This indicator group contains the average latency indicators of API monitoring. The metric charts
include:

getObject Average Latency
headObject Average Latency
putObject Average Latency
postObject Average Latency
append Object Average Latency

Object Storage Service Developer Guide

83

-

-

-

-

-

-

-

-

-

upload Part Average Latency
upload Part Copy Average Latency

Each metric chart shows the corresponding average E2E latency and average server latency. See the
figure below:

Maximum latency

This indicator group contains the maximum latency indicators of API monitoring. The metric charts
include:

getObject Max Latency(Millisecond)
headObject Max Latency
putObject Max Latency
postObject Max Latency
append Object Max Latency
upload Part Max Latency
upload Part Copy Max Latency

Each metric chart shows the corresponding maximum E2E latency and maximum server latency. See
the figure below:

Object Storage Service Developer Guide

84

-

-

-

-

-

-

-

-

-

Success request category

This indicator group contains the successful request count indicators of API monitoring. The metric
charts include:

getObject Success Count
headObject Success Count
putObject Success Count
post Object Success Count
append Object Success Count
upload Part Success Count
upload Part Copy Success Count
delete Object Success Count
deleteObjects Success Count

See the figure below:

Object Storage Service Developer Guide

85

-

-

Alarm rules

The “Alarm rules” tab page allows you to view and manage all your alarm rules, as shown in the
figure below:

For the description and usage of the “Alarm Rules” tab page, refer to the Alarm Service User Guide.

Additional links

For more details regarding the important points and user guide of the monitoring service, refer to the
related chapter in Monitoring, diagnosis, and troubleshooting.

Alarm service user guide

Prerequisites

In order to help familiarize yourself with the basic concepts and configurations of alarm contacts and
alarm contact groups, it is recommended that the following documents are read prior to this user
guide:

Alarm service overview
Manage alarm contact

Additionally, OSS alarm rules are developed in accordance with OSS metric items. This means they
are categorized by dimensions similar to those of OSS metric items. There are two alarm dimensions:
user-level and bucket-level.

Alarm rule page

The alarm rule page is where you can view, modify, activate, deactivate, and delete alarm rules related
to OSS monitoring alarms. You can also view historical alarms of the different alarm rules. An example
screenshot is as follows:

Object Storage Service Developer Guide

86

-

-

-

-

-

The parameters are as follows:

Click Modify next to the desired alarm rule to modify it.
Click Delete next to the desired alarm rule to delete it. You can also select multiple alarm
rules and then click Delete at the bottom of the table to delete alarm rules in batches.
If an alarm rule is in the Enable status, click Suspend next to the desired alarm rule to
deactivate it. Once the alarm rule is suspended, you will no longer receive alarm information
for this rule. You can also select multiple alarm rules and then click Forbidden at the bottom
of the table to deactivate alarm rules in batches.
If an alarm rule is in the Forbidden status, click Enable next to the desired alarm rule to
activate it. The rule will then be resumed to detect exceptions and send alarm information.
You can also select multiple alarm rules and then click Enable at the bottom of the table to
activate alarm rules in batches.
Click Alarm history next to the desired alarm rule to view information on past alarms
corresponding to this rule. An example screenshot is as follows:

Alarm history concepts

Alarm history refers to past status changes of a selected alarm rule. Operations such as switching
from normal status to alarm status, or switching from alarm status to normal status, are considered
status changes. Additionally, a status change called channel silence is also available.

Channel silence occurs when a triggered alarm has remained active for 24 hours and has not returned

Object Storage Service Developer Guide

87

-

-

to a normal status. In this case, no new alarm notifications will be sent for 24 hours.

Historical alarm information is retained for one month, and can be queried at a maximum of three
days’ data at one time within this time period. Alarm information older than one month will be
automatically deleted, and cannot be queried.

To view details about an alarm, such as the alarm contact list and contact details, click View next to
the desired alarm. An example screenshot displaying specific details is as follows:

Search for alarm rules

Based on the control information at the bottom of the alarm rule page, you can quickly find alarm
rules you have searched for:

Alarm dimension drop-down box: All and Bucket Level. If you select All, all user-level and
bucket-level alarm rules will be displayed.

Bucket drop-down box: If you select Bucket Level in the alarm dimension drop-down box,
this box will list the buckets of the current user. Select a bucket to display all the alarm rules
for this bucket:

Object Storage Service Developer Guide

88

Monitored items drop-down box lists all OSS metric items, including user-level and bucket
level metric items.

Alarm status drop-down box lists alarm status, including OK and Alarm.

Enable state drop-down box lists the enable status, including Enabled and Forbidden.

View alarm rules

Click the Alarm rules tab to display all alarm rules. You can also select Bucket Level in the drop-down
box and then select the name of the desired bucket in order to see alarm rules for that bucket. You
can then filter returned information using selections in the drop-down box such as All, Metric Item,
Alarm status, and Activation status.

View alarm rules for a specific bucket

If you need to view the alarm rules of a specific bucket, select Bucket Level in the alarm dimension
drop-down box and then select the name of the target bucket in the bucket drop-down box.

Select Alarm Rules for the target bucket in the Bucket List to go to the alarm tab. This tab displays all
the alarm rules for this bucket.

With the Metric item, Alarm status, and Activation status drop-down boxes, you can better filter the
alarm rules that match certain conditions in the current dimension.

View alarm rules related to a specific metric item

Select a specific metric item in the metric item drop-down box to display all the alarm rules for this
metric item.

View alarm rules in a certain alarm status

Choose an alarm status in the alarm status drop-down box, such as Alarm, to display all the alarm
rules currently in this status.

View alarm rules in a certain activation status

Choose an activation status in the activation status drop-down box, such as Deactivated, to display all
the alarm rules currently in this status.

Add alarm rules

After specifying a bucket in the Bucket List Tab, click Set Alarm Rule to set an alarm rule.

Alternatively, click the alarm icon

Object Storage Service Developer Guide

89

1.

in a metric chart in the
User Overview tab or the Monitoring View tab of a specific bucket to open the Batch Set Alarm Rules
page to set multiple alarm rules. The following example describes how to set alarms at the user-level.

Note: To learn more about the terms and concepts used below, see the CloudMonitor’s Alarm
service overview.

Set the following parameters:

Object Storage Service Developer Guide

90

-

-

-

-

-

●

●

Alarm dimension specifies the monitoring dimension of the alarm rule to set. If the
dimension is set to bucket-level, the desired bucket with which to set the alarm rule for must
be specified.
Monitored items specifies all the metric items for the selected alarm dimension. You can use
the quick search box to easily find metric items:
Statistics interval specifies the length of the interval between statistical measurements. The
default setting is 5 minutes.
Last times specifies the number of statistical cycles for which an alarm which is triggered
when the value of the metric item continuously exceeds the threshold value in several
consecutive statistical cycles.
Statistics method specifies the statistical indicator calculated for this metric item. For the OSS
monitoring service, the statistical method is set as Monitoring Value.

Note:

Click + Add alarm rules to set additional metric item alarm rules.
Click Delete next to the desired alarm rule to delete it.

Click Next. The page to set the alarm types is then displayed.

If you have set alarm contract groups, they will be displayed on the interface. If you have
not set alarm contact groups, click Quickly create a contact group and follow the prompts

Object Storage Service Developer Guide

91

to create a group. For more details, refer to Manage alarm contact.

Click OK.

Add alarm rules in the Bucket list

Under the Bucket list tab, you can add identical alarm rules for multiple buckets at the same time.
Select the desired buckets for which to configure alarm rules and click Set Custom monitor alarm
rules to go to the alarm rule settings page previously described in Add alarm rules.

Note: During batch setting, the alarm dimension is bucket-level and the metric item must be a
bucket-level metric item.

Add alarm rules in a metric chart

In the User overview or Monitoring chart tab, for the desired bucket, click

Object Storage Service Developer Guide

92

in the top-right corner of
a metric chart to set alarm rules for the metric item associated with this metric chart.

Note: If you click the alarm icon in a metric chart, the alarm dimension displayed on the alarms
rule page is pre-determined and you can only set alarm rules for the metric item corresponding
to the metric chart.

Considerations

Currently, alarm rules can be created without requiring prior association to a bucket. If you delete a
bucket, any associated alarm rules will not be deleted. Before deleting a bucket, it is recommended
that you delete any corresponding alarm rules first.

Object Storage Service Developer Guide

93

-

Metric item reference

This chapter provides parameter references to use with the OpenAPI, or the Cloud Monitor SDK, to
access the metric data of the OSS monitoring service.

Project

The OSS monitoring service metric data uses the same project name: acs_oss.

Sample code written by the Java SDK:

StartTime and EndTime

The value range of the time parameters for Cloud Monitor is in the format of [StartTime, EndTime].
The data that is attributed to StartTime is not collected, whereas the data that is attributed to
EndTime can be accessed.

The Cloud Monitor retention policy specifies that data is retained for 31 days. This means the interval
between StartTime and EndTime cannot exceed 31 days, and data outside the 31 day collection
period cannot be accessed.

For details about other time parameters, refer to Cloud Monitor API description.

Sample code written by the Java SDK:

Dimensions

OSS metric items are classified into user level bucket level based on application scenarios. The value
of Dimensions varies with regards to access of metric data at these different levels.

Dimensions does not need to be set for access to user-level metric data.

Set Dimensions access to bucket-level metric data as follows:

QueryMetricRequest request = new QueryMetricRequest();
request.setProject("acs_oss");

request.setStartTime("2016-05-15 08:00:00");
request.setEndTime("2015-05-15 09:00:00");

 {"BucketName": "your_bucket_name"}

Object Storage Service Developer Guide

94

your_bucket_name indicates the name of the bucket you want to access.

Note: Dimensions is a JSON string and has only one Key-Value pair for OSS metric indicators.

Sample code written by the Java SDK:

Period

The aggregation granularity of all OSS metric indicators, except metering indicators, is 60s by default.
The aggregation granularity of metering indicators is 3,600s by default.

Sample code written by the Java SDK:

Metric

The Monitoring indicators reference describes the following metric items.

request.setDimensions("{\"BucketName\":\"your_bucket_name\"}");

 request.setPeriod("60");

Metric Metric item name Unit Level

UserAvailability User-level
availability % User level

UserRequestValidRat
e

User-level valid
request rate % User level

UserTotalRequestCo
unt User-level requests Times User level

UserValidRequestCo
unt

User-level valid
requests Times User level

UserInternetSend User-level Internet
outbound traffic Byte User level

UserInternetRecv User-level Internet
inbound traffic Byte User level

UserIntranetSend User-level Intranet
outbound traffic Byte User level

UserIntranetRecv User-level Intranet
inbound traffic Byte User level

UserCdnSend User-level CDN
outbound traffic Byte User level

UserCdnRecv User-level CDN Byte User level

Object Storage Service Developer Guide

95

inbound traffic

UserSyncSend
User-level outbound
traffic of cross-
region replication

Byte User level

UserSyncRecv
User-level inbound
traffic of cross-
region replication

Byte User level

UserServerErrorCoun
t

User-level server-
site error requests Times User level

UserServerErrorRate
User-level server-
site error request
rate

% User level

UserNetworkErrorCo
unt

User-level network-
site error requests Times User level

UserNetworkErrorRa
te

User-level network-
site error request
rate

% User level

UserAuthorizationErr
orCount

User-level client-site
authorization error
requests

Times User level

UserAuthorizationErr
orRate

User-level client-site
authorization error
request rate

% User level

UserResourceNotFo
undErrorCount

User-level client-site
error requests
indicating resource
not found

Times User level

UserResourceNotFo
undErrorRate

User-level client-site
error request rate
indicating resource
not found

% User level

UserClientTimeoutEr
rorCount

User-level client-site
timeout error
request

Times User level

UserClientTimeoutEr
rorRate

User-level client-site
timeout error
request rate

% User level

UserClientOtherError
Count

Other user-level
client-site error
requests

Times User level

UserClientOtherError
Rate

Other user-level
client-site error
request rate

% User level

UserSuccessCount Successful user-level
requests Times User level

UserSuccessRate Successful user-level % User level

Object Storage Service Developer Guide

96

request rate

UserRedirectCount User-level redirect
requests Times User level

UserRedirectRate User-level redirect
request rate % User level

Availability Availability % Bucket level

RequestValidRate Valid request rate % Bucket level

TotalRequestCount Requests Times Bucket level

ValidRequestCount Valid requests Times Bucket level

InternetSend Internet outbound
traffic Byte Bucket level

InternetRecv Internet inbound
traffic Byte Bucket level

IntranetSend Intranet outbound
traffic Byte Bucket level

IntranetRecv Intranet inbound
traffic Byte Bucket level

CdnSend CDN outbound
traffic Byte Bucket level

CdnRecv CDN inbound traffic Byte Bucket level

SyncSend
Outbound traffic of
cross-region
replication

Byte Bucket level

SyncRecv
Inbound traffic of
cross-region
replication

Byte Bucket level

ServerErrorCount Server-site error
requests Times Bucket level

ServerErrorRate Server-site error
request rate % Bucket level

NetworkErrorCount Network-site error
requests Times Bucket level

NetworkErrorRate Network-site error
request rate % Bucket level

AuthorizationErrorC
ount

Client-site
authorization error
requests

Times Bucket level

AuthorizationErrorR
ate

Client-site
authorization error
request rate

% Bucket level

ResourceNotFoundE
rrorCount

Client-site error
requests indicating Times Bucket level

Object Storage Service Developer Guide

97

resource not found

ResourceNotFoundE
rrorRate

Client-site error
request rate
indicating resource
not found

% Bucket level

ClientTimeoutErrorC
ount

Client-site timeout
error requests Times Bucket level

ClientTimeoutErrorR
ate

Client-site timeout
error request rate % Bucket level

ClientOtherErrorCou
nt

Other client-site
error requests Times Bucket level

ClientOtherErrorRate Other client-site
error request rate % Bucket level

SuccessCount Successful requests Times Bucket level

SuccessRate Successful request
rate % Bucket level

RedirectCount Redirect requests Times Bucket level

RedirectRate Redirect request rate % Bucket level

GetObjectE2eLatenc
y

Average E2E latency
of GetObject
requests

Millisecond Bucket level

GetObjectServerLate
ncy

Average server
latency of GetObject
requests

Millisecond Bucket level

MaxGetObjectE2eLat
ency

Maximum E2E
latency of GetObject
requests

Millisecond Bucket level

MaxGetObjectServer
Latency

Maximum server
latency of GetObject
requests

Millisecond Bucket level

HeadObjectE2eLaten
cy

Average E2E latency
of HeadObject
requests

Millisecond Bucket level

HeadObjectServerLa
tency

Average server
latency of
HeadObject
requests

Millisecond Bucket level

MaxHeadObjectE2eL
atency

Maximum E2E
latency of
HeadObject
requests

Millisecond Bucket level

MaxHeadObjectServ
erLatency

Maximum server
latency of
HeadObject
requests

Millisecond Bucket level

Object Storage Service Developer Guide

98

PutObjectE2eLatenc
y

Average E2E latency
of PutObject
requests

Millisecond Bucket level

PutObjectServerLate
ncy

Average server
latency of PutObject
requests

Millisecond Bucket level

MaxPutObjectE2eLat
ency

Maximum E2E
latency of PutObject
requests

Millisecond Bucket level

MaxPutObjectServer
Latency

Maximum server
latency of PutObject
requests

Millisecond Bucket level

PostObjectE2eLaten
cy

Average E2E latency
of PostObject
requests

Millisecond Bucket level

PostObjectServerLat
ency

Average server
latency of
PostObject requests

Millisecond Bucket level

MaxPostObjectE2eL
atency

Maximum E2E
latency of
PostObject requests

Millisecond Bucket level

MaxPostObjectServe
rLatency

Maximum server
latency of
PostObject requests

Millisecond Bucket level

AppendObjectE2eLa
tency

Average E2E latency
of AppendObject
requests

Millisecond Bucket level

AppendObjectServer
Latency

Average server
latency of
AppendObject
requests

Millisecond Bucket level

MaxAppendObjectE
2eLatency

Maximum E2E
latency of
AppendObject
requests

Millisecond Bucket level

MaxAppendObjectS
erverLatency

Maximum server
latency of
AppendObject
requests

Millisecond Bucket level

UploadPartE2eLaten
cy

Average E2E latency
of UploadPart
requests

Millisecond Bucket level

UploadPartServerLat
ency

Average server
latency of
UploadPart requests

Millisecond Bucket level

MaxUploadPartE2eL
atency

Maximum E2E
latency of
UploadPart requests

Millisecond Bucket level

Object Storage Service Developer Guide

99

The following table lists the metric items of metering indicators with an aggregation granularity of
3,600s.

MaxUploadPartServ
erLatency

Maximum server
latency of
UploadPart requests

Millisecond Bucket level

UploadPartCopyE2e
Latency

Average E2E latency
of UploadPartCopy
requests

Millisecond Bucket level

UploadPartCopyServ
erLatency

Average server
latency of
UploadPartCopy
requests

Millisecond Bucket level

MaxUploadPartCopy
E2eLatency

Maximum E2E
latency of
UploadPartCopy
requests

Millisecond Bucket level

MaxUploadPartCopy
ServerLatency

Maximum server
latency of
UploadPartCopy
requests

Millisecond Bucket level

GetObjectCount Successful
GetObject requests Times Bucket level

HeadObjectCount
Successful
HeadObject
requests

Times Bucket level

PutObjectCount Successful PutObject
requests Times Bucket level

PostObjectCount Successful
PostObject requests Times Bucket level

AppendObjectCount
Successful
AppendObject
requests

Times Bucket level

UploadPartCount Successful
UploadPart requests Times Bucket level

UploadPartCopyCou
nt

Successful
UploadPartCopy
requests

Times Bucket level

DeleteObjectCount
Successful
DeleteObject
requests

Times Bucket level

DeleteObjectsCount
Successful
DeleteObjects
requests

Times Bucket level

Metric Metric item name Unit Level

Object Storage Service Developer Guide

100

Sample code written by the Java SDK:

MeteringStorageUtili
zation Size of storage Byte

If Dimensions is set,
the returned metric
data belongs to the
bucket level; if
Dimensions is not
set, the returned
metric data belongs
to the user level.

MeteringGetRequest Get requests Times

If Dimensions is set,
the returned metric
data belongs to the
bucket level; if
Dimensions is not
set, the returned
metric data belongs
to the user level.

MeteringPutRequest Put requests Times

If Dimensions is set,
the returned metric
data belongs to the
bucket level; if
Dimensions is not
set, the returned
metric data belongs
to the user level.

MeteringInternetTX Volume of Internet
outbound traffic Byte

If Dimensions is set,
the returned metric
data belongs to the
bucket level; if
Dimensions is not
set, the returned
metric data belongs
to the user level.

MeteringCdnTX Volume of CDN
outbound traffic Byte

If Dimensions is set,
the returned metric
data belongs to the
bucket level; if
Dimensions is not
set, the returned
metric data belongs
to the user level.

MeteringSyncRX
Volume of inbound
traffic of cross-
region replication

Byte

If Dimensions is set,
the returned metric
data belongs to the
bucket level; if
Dimensions is not
set, the returned
metric data belongs
to the user level.

 request.setMetric("UserAvailability");

Object Storage Service Developer Guide

101

Monitoring indicators reference

OSS indicators can be monitored at the user level or the bucket level based on application scenarios.

In addition to common chronological metric indicators, the system analyzes and collects statistics on
the existing metric indicators for easy user observation of metric data and matching of billing policy.
Statistical indicators over a specified period of time are provided, such as request status distribution
and metering statistics of the month. This reference guide describes the indicators in detail.

All indicators are collected at the minute-level (per minute) except for metering and statistical
indicators. Metering indicators are collected at the hour-level (per hour).

User-level indicators

User-level indicators consist of three monitoring indicator details: current-month metering statistics,
service monitoring overview, and request state details.

Current-month metering statistics

Metering statistics of the current month are collected from 00:00 on the first day of the month to the
metering cutoff time as indicated in the same month.

Details of the metering indicators currently available are as follows:

Indicator Unit Description

Storage size Byte

Size of the total storage
occupied by all buckets of a
specified user before the
metering statistic collection
deadline

Internet outbound traffic Byte

Total Internet outbound
traffic of the user from 00:00
of the first day of the current
month to the metering
statistic collection deadline.

Put requests Times

Total number of Put requests
of the user from 00:00 of the
first day of the current
month to the metering
statistic collection deadline.

Get requests Times

Total number of Get requests
of the user from 00:00 of the
first day of the current
month to the metering
statistic collection deadline.

Object Storage Service Developer Guide

102

Service monitoring overview

Indicators in service monitoring overview are basic service indicators. Details of service monitoring
overview indicators are as follows:

Indicator Unit Description

Availability %

An indicator showing the
system availability of using
the storage service. It is
obtained through the
equation: Availability = 1 -
percentage of requests with
server-end errors (indicated
by a return code 5xx) in all
requests.

Valid requests rate %

Percentage of valid requests
in all requests. For details
about valid requests, refer to
the description below.

Requests Times
Total number of requests
received and processed by
the OSS server

Valid requests Times
Total number of requests
whose return code is 2xx or
3xx.

Internet outbound traffic Byte Downstream Internet traffic

Internet inbound traffic Byte Upstream Internet traffic

Intranet outbound traffic Byte Downstream Intranet traffic
of the service system

Intranet inbound traffic Byte Upstream Intranet traffic of
the service system

CDN outbound traffic Byte

Downstream CDN traffic
when CDN acceleration
service is activated, that is,
the back-to-source traffic

CDN inbound traffic Byte
Upstream CDN traffic when
CDN acceleration service is
activated

Outbound traffic of cross-
region replication Byte

Downstream traffic
generated in the data
replication process when the
cross-region replication
function is activated

Inbound traffic of cross-
region replication Byte

Upstream traffic generated
in the data replication
process when the cross-
region replication function is
activated

Object Storage Service Developer Guide

103

Request state details

Request state details indicators are requested monitoring information based on the return status
code, or OSS error code, associated with the different requests. Details of request state details
indicators are as follows:

Indicator Unit Description

Server-site error requests Times

Total number of requests
with system-level errors
indicated by a return code
5xx

Server-site error requests
rate %

Percentage of requests with
server-end errors in all
requests

Network error requests Times
Total number of requests
whose HTTP status code is
499

Network error requests rate % Percentage of requests with
network errors in all requests

Client-end authorization
error requests Times Total number of requests

with a return code 403

Client-end authorization
error requests rate %

Percentage of requests with
client-end authorization
errors in all requests

Client-end error requests
indicating resource not
found

Times Total number of requests
with a return code 404

Client-end error requests
rate indicating resource not
found

%

Percentage of requests with
client-end errors indicating
resource not found in all
requests

Client-end timeout error
requests Times

Total number of requests
whose return status code is
408 or return OSS error code
is RequestTimeout

Client-end timeout error
requests rate %

Percentage of requests with
client-end timeout errors in
all requests

Other client-end error
requests Times

Total number of requests
with other client-end errors
indicated by a return code
4xx

Other client-end error
requests rate %

Percentage of requests with
other client-end errors in all
requests

Successful requests Times Total number of requests
whose return code is 2xx.

Object Storage Service Developer Guide

104

Bucket-level indicators

Bucket-level indicators are used to monitor OSS operations of specific buckets and are applicable for
business scenarios. As well as current-month metering statistics and basic service indicator items such
as service monitoring overview and request state details (which can be monitored at the account
level) bucket-level indicators include metering indicators and performance indicators such as
metering reference, latency, and successful request operation categories.

Service monitoring overview

Similar to the user-level description, the service monitoring overview indicators are basic indicators,
but use metric data that is displayed at the bucket-level.

Request state details

Similar to the user-level description, the request state details indicators use metric data that is
displayed at the bucket-level.

Current-month metering statistics

Statistical methods are similar to those listed in current-month metering statistics at the user level,
but the former collects resource usage statistics at the bucket level. Details of current-month
metering statistics at the bucket-level are as follows:

Successful requests rate % Percentage of successful
requests in all requests

Redirect requests Times Total number of requests
whose return code is 3xx.

Redirect requests rate % Percentage of redirect
requests in all requests

Indicator Unit Description

Storage size Byte

Size of storage occupied by a
specified bucket before the
metering statistic collection
deadline

Internet outbound traffic Byte

Total Internet outbound
traffic of a specified bucket
from 00:00 of the first day of
the current month to the
metering statistic collection
deadline.

Put requests Times
Total number of Put requests
of a specified bucket from
00:00 of the first day of the

Object Storage Service Developer Guide

105

-

Metering indicators

Metering indicators are monitored chronologically, and are collected and aggregated at the hour-
level. Details of metering indicators are as follows:

Latency

Latency Request latency directly reflects the system performance and is monitored using two
indicators: average latency and maximum latency. The indicators are collected and aggregated at the
minute-level.

Moreover, indicators can be classified based on the OSS API request operation type to more
specifically reflect the performance of the system responding to different operations. Only APIs
involving data operations in bucket-related operations (excluding meta operations) are monitored
currently.

Besides, in order to facilitate analyzing performance hotspots and environmental problems, latency
monitoring indicators are collected from two different links of E2E and the server, in which:

E2E latency refers to the E2E latency of sending a successful request to OSS, including the
processing time OSS requires to read the request, send a response, and receive a response
confirmation message.

current month to the
metering statistic collection
deadline.

Get requests Times

Total number of Get requests
of a specified bucket from
00:00 of the first day of the
current month to the
metering statistic collection
deadline.

Indicator Unit Description

Storage size Byte
Average size of storage used
by a specified bucket in an
hour

Internet outbound traffic Byte
Total Internet outbound
traffic of a specified bucket
in an hour.

Put requests Times
Total number of Put requests
of a specified bucket in an
hour.

Gut requests Times
Total number of Gut
requests of a specified
bucket in an hour.

Object Storage Service Developer Guide

106

- Server latency is the latency of OSS processing a successful request, excluding the network
delay involved in E2E latency.

Note that performance indicators are used to monitor successful requests (with a return status code
2xx).

The following table lists specific metric indicator items:

Indicator Unit Description

Average E2E latency of
GetObject requests Millisecond

Average E2E latency of
successful requests whose
request API is GetObject

Average server latency of
GetObject requests Millisecond

Average server latency of
successful requests whose
request API is GetObject

Maximum E2E latency of
GetObject requests Millisecond

Maximum E2E latency of
successful requests whose
request API is GetObject

Maximum server latency of
GetObject requests Millisecond

Maximum server latency of
successful requests whose
request API is GetObject

Average E2E latency of
HeadObject requests Millisecond

Average E2E latency of
successful requests whose
request API is HeadObject

Average server latency of
HeadObject requests Millisecond

Average server latency of
successful requests whose
request API is HeadObject

Maximum E2E latency of
HeadObject requests Millisecond

Maximum E2E latency of
successful requests whose
request API is HeadObject

Maximum server latency of
HeadObject requests Millisecond

Maximum server latency of
successful requests whose
request API is HeadObject

Average E2E latency of
PutObject requests Millisecond

Average E2E latency of
successful requests whose
request API is PutObject

Average server latency of
PutObject requests Millisecond

Average server latency of
successful requests whose
request API is PutObject

Maximum E2E latency of
PutObject requests Millisecond

Maximum E2E latency of
successful requests whose
request API is PutObject

Maximum server latency of
PutObject requests Millisecond

Maximum server latency of
successful requests whose
request API is PutObject

Average E2E latency of
PostObject requests Millisecond Average E2E latency of

successful requests whose

Object Storage Service Developer Guide

107

request API is PostObject

Average server latency of
PostObject requests Millisecond

Average server latency of
successful requests whose
request API is PostObject

Maximum E2E latency of
PostObject requests Millisecond

Maximum E2E latency of
successful requests whose
request API is PostObject

Maximum server latency of
PostObject requests Millisecond

Maximum server latency of
successful requests whose
request API is PostObject

Average E2E latency of
AppendObject requests Millisecond

Average E2E latency of
successful requests whose
request API is AppendObject

Average server latency of
AppendObject requests Millisecond

Average server latency of
successful requests whose
request API is AppendObject

Maximum E2E latency of
AppendObject requests Millisecond

Maximum E2E latency of
successful requests whose
request API is AppendObject

Maximum server latency of
AppendObject requests Millisecond

Maximum server latency of
successful requests whose
request API is AppendObject

Average E2E latency of
UploadPart requests Millisecond

Average E2E latency of
successful requests whose
request API is UploadPart

Average server latency of
UploadPart requests Millisecond

Average server latency of
successful requests whose
request API is UploadPart

Maximum E2E latency of
UploadPart requests Millisecond

Maximum E2E latency of
successful requests whose
request API is UploadPart

Maximum server latency of
UploadPart requests Millisecond

Maximum server latency of
successful requests whose
request API is UploadPart

Average E2E latency of
UploadPartCopy requests Millisecond

Average E2E latency of
successful requests whose
request API is
UploadPartCopy

Average server latency of
UploadPartCopy requests Millisecond

Average server latency of
successful requests whose
request API is
UploadPartCopy

Maximum E2E latency of
UploadPartCopy requests Millisecond

Maximum E2E latency of
successful requests whose
request API is
UploadPartCopy

Maximum server latency of Millisecond Maximum server latency of

Object Storage Service Developer Guide

108

Successful request operation categories

In conjunction with latency monitoring, the monitoring of successful requests reflects the system
capability of processing access requests to a certain extent. Similarly, only APIs involving data
operations in bucket-related operations are monitored currently.

The following lists specific indicator items:

Service monitoring, diagnosis, and

UploadPartCopy requests
successful requests whose
request API is
UploadPartCopy

Indicator Unit Description

Successful GetObject
requests Times

Number of successful
requests whose request API
is GetObject

Successful HeadObject
requests Times

Number of successful
requests whose request API
is HeadObject

Successful PutObject
requests Times

Number of successful
requests whose request API
is PutObject

Successful PostObject
requests Times

Number of successful
requests whose request API
is PostObject

Successful AppendObject
requests Times

Number of successful
requests whose request API
is AppendObject

Successful UploadPart
requests Times

Number of successful
requests whose request API
is UploadPart

Successful UploadPartCopy
requests Times

Number of successful
requests whose request API
is UploadPartCopy

Successful DeleteObject
requests Times

Number of successful
requests whose request API
is DeleteObject

Successful DeleteObjects
requests Times

Number of successful
requests whose request API
is DeleteObjects

Object Storage Service Developer Guide

109

-

-

-

-

-

-

troubleshooting

Despite reducing users’ costs of infrastructure construction and O&M cloud applications compared
to traditional applications, cloud applications have complicated monitoring, diagnosis, and
troubleshooting.

The OSS storage service provides a wide array of monitoring and log information, helping you fully
understand program behavior and promptly discover and locate problems.

Overview

This chapter instructs you how to monitor, diagnose, and troubleshoot OSS problems by using the
OSS monitoring service, logging and other third-party tools, helping you achieve the following goals:

Monitors in real time the running status and performance of OSS and provides prompt alarm
notifications.
Provides effective methods and tools to help you locate problems.
Provides methods to help you quickly solve common OSS-related problems.

This chapter is organized as follows:

OSS real-time monitoring: Describes how to use the OSS monitoring service to continuously
monitor the running status and performance of OSS.
Tracking and diagnosis: Describes how to use the OSS monitoring service and logging
function to diagnose problems, as well as how to associate the relevant information in log
files for tracking and diagnosis.
Troubleshooting: Describes typical problems and corresponding troubleshooting methods.

Object Storage Service Developer Guide

110

OSS monitoring

Overall operating conditions

Availability and percentage of valid requests

This is an important indicator related to system stability and the ability of users to correctly use the
system. Any value lower than 100% indicates that some requests have failed.

Object Storage Service Developer Guide

111

Of course, availability may also temporarily fall below 100% due to system optimization factors, such
as partition migration for load balancing. In these cases, OSS SDKs can provide relevant retry
mechanisms to handle this type of intermittent failure, keeping the service end unware.

Also, when the percentage of valid requests falls below 100%, you must analyze the issue based on
your own usage. You can use request distribution statistics or request status details to determine the
actual types of request errors. Then, you can use Tracking and Diagnosis to determine the cause and
perform Troubleshooting. Of course, in some business scenarios, a valid request rate is expected to
fall below 100%. For example, you may need to first check that an object exists and then perform a
certain operation based on the existence of the object. In this case, if the object does not exist, the
read request that checks its existence will return a 404 error code (resource does not exist error). This
will inevitably produce a valid request rate of less than 100%.

For businesses that require high system availability, you can set an alarm rule that is triggered when
the indicator falls below the expected threshold value.

Total No. of requests and No. of valid requests

This indicator reflects the system operation status from the perspective of the total traffic volume.
When the No. of valid requests is not equal to the total No. of requests, this indicates that some
requests have failed.

Object Storage Service Developer Guide

112

You can watch the fluctuations in the total No. of requests and No. of valid requests, especially when
there are sharp increases or decreases. In such cases, follow-up action is required. You can set alarm
rules to ensure you receive prompt notifications. For periodic businesses, you can set periodic alarm
rules (periodic alarms will be available soon). For details, see the Alarm Service User Guide.

Request status distribution statistics

When availability or the valid request rate falls below 100% (or the No. of valid requests is not equal
to the total No. of requests), you can look at the request status distribution statistics to quickly
determine the request error types. For more information about this metric indicator, see the OSS
Metric Indicator Reference Manual.

Request status details monitoring

Request status details provides more details about the request monitoring status on the basis of
request status distribution statistics. They let you monitor certain types of requests in more detail.

Object Storage Service Developer Guide

113

-

●

●

-

●

●

Performance monitoring

The monitoring service provides the following metric items that can be used as indicators for
performance monitoring.

Average latency
E2E average latency
Server average latency

Maximum latency

E2E maximum latency
Server maximum latency

Object Storage Service Developer Guide

114

-

-

Successful request categories

Traffic

Object Storage Service Developer Guide

115

-

-

-

-

-

-

-

-

-

The metric items above (except for ‘Traffic’) implement categorized monitoring based on API
operation types:

GetObject
HeadObject
PutObject
PostObject
AppendObject
UploadPart
UploadPartCopy

The latency indicators show the average or maximum time needed for API operation types to process
requests. E2E latency is the indicator for end-to-end latency. Besides the time needed to process
requests, it also includes the time needed to read requests and send responses, as well as the delay
caused by network transmission. Server latency only includes the time needed to process the
requests on the server, not the client-side transmission network latency. Therefore, if there is a
sudden increase in E2E latency but no significant change in server latency, you can determine that the
poor performance has been caused by network instability, instead of an OSS system fault.

In addition to the APIs mentioned above, ‘successful request operation categories’ also monitors
the quantity of requests for the two API operation types below:

DeleteObject
DeleteObjects

The traffic indicator is used to monitor the overall situation for a user or a specific bucket. It looks at
the usage of network resources in Internet, intranet, CDN back-to-source, cross-domain replication,
and other such scenarios.

For performance-type indicators, we must focus on sudden and abnormal changes, such as when the
average latency suddenly spikes or remains above the normal request latency baseline for a long
period of time. You can set alarm rules that correspond to performance indicators, so that the
relevant personnel are immediately notified if an indicator falls below or exceeds a threshold value.
For businesses with periodic peaks and troughs, you can set periodic alarm rules for week on week,
day on day, or hour on hour comparisons (periodic alarms will be available soon).

Billing monitoring

At press time, the OSS monitoring service can only monitor storage space, outbound Internet traffic,
Put requests, and Get requests (not including cross-domain replication outbound traffic and CDN
outbound traffic). It does not support alarm setting or OpenAPI read operations for billing data.

The OSS monitoring service collects bucket-level billing monitoring data on an hourly basis. In the
monitoring view for a specific bucket, you can see graphs of continuous monitoring trends. Using the
monitoring view, you can analyze your businesses’ OSS resource usage trends and estimate future
costs. See the figure below:

Object Storage Service Developer Guide

116

The OSS monitoring service also provides statistics on the quantity of user and bucket-level resources
consumed each month. For example, the total amount of OSS resources consumed by an account or
bucket starting from the 1st day of the month. These statistics are updated hourly. This will increase
your understanding of your resource usage and computation fees for the current month in real time,
as shown below:

Note: In the monitoring service, the provided billing data is pushed to the maximum extent
possible, but this may cause some discrepancies with the actual bill amount. Please note that the
Billing Center data is used in actual billing applications.

Tracking and diagnosis

Problem diagnosis

Performance diagnosis

Many subjective factors are involved in the determination of application performance. You must use
the satisfaction of your business needs in your specific business scenario as a baseline, to determine if
there is a performance problem. Also, when a client initiates a request, factors that may cause
performance problems may come from anywhere in the request chain. For example, problems may
be caused by OSS overloads, client TCP configuration problems, or traffic bottlenecks in the basic
network architecture.

Object Storage Service Developer Guide

117

Therefore, when diagnosing performance problems, you must first set a reasonable baseline. Then,
you use the performance indicators provided by the monitoring service to determine the potential
root cause of any performance problem. Next, you should find detailed information in the relevant
logs to help you further diagnose and troubleshoot any faults.

In the “Troubleshooting” section below, we will give examples of many common performance
problems and troubleshooting measures. This can be used as a reference.

Error diagnosis

When requests from client applications are at fault, the clients will receive error information from the
server. The monitoring service records these errors and shows statistics for the various types of errors
that may affect requests. You can also retrieve detailed information for individual requests from the
server log, client log, and network log. Generally, the returned HTTP status code, OSS error code, and
OSS error information will indicate the cause of the request failure.

For error response information details, see OSS Error Responses.

Using the logging function

OSS provides a server logging function for user requests. This helps you track end-to-end detailed
request logs.

For instructions on the activation and use of the logging function, refer to Set logging.

For more details on Log Service naming rules and record formats, refer to Set access logging.

Using network logging tools

In many situations, you can diagnose problems simply by using the logging function to record
storage log and client application log data. However, in certain situations, you may need more details
by using network logging tools.

This is because capturing traffic exchanged between clients and the server can give you more
detailed information on the data exchanged between clients and server and the underlying network
conditions, which can help you investigate problems. For example, in some situations, user requests
may report an error, but no request can be seen in the server log. In such cases, you can use the
records logged by the OSS logging function to see if the cause of the problem lies with the client, or
you can use network monitoring tools to check for a network problem.

Wireshark is one of the most common network log analysis tools. This free protocol analyzer runs on
the packet level and provides a view of detailed packet information for various network protocols.
This can help you troubleshoot packet loss and connection problems.

For more detailed information on Wireshark operations, refer to the Wireshark User Guide.

E2E tracking and diagnosis
Requests are initiated by a client application process and pass through the network environment to

Object Storage Service Developer Guide

118

-

-

-

-

-

the OSS server, where they are processed. Then, a response is sent by the server over the network
environment and received by the client. This is an end-to-end tracking process. Associating client
application logs, network tracking logs, and server logs provides detailed information for you to
troubleshoot the root cause of a problem and discover potential problems.

In OSS, the provided RequestIDs serve as identifiers used to associate the information from various
logs. In addition, the log timestamps not only allow you to quickly query specific log time ranges, but
can also show you the time points when request events and other client application, network, and
service system events occurred during this period. This helps you analyze and investigate problems.

RequestID

Whenever the OSS receives a request, it allocates it a unique server request ID, its RequestID. In
different logs, the RequestID is located in different fields:

In server logs recorded by the OSS logging function, the RequestID is located in the
“Request ID” column.
In the process of network tracking (for example, when using Wireshark to capture data
streams), the RequestID is the x-oss-request-id header value in the response message.
In client applications, you must use the client code to manually print the RequestID in the
client log. At the press time, the latest Java SDK version already supported printing
RequestID information for normal requests. You can use the getRequestId operation to
retrieve RequestIDs from the results returned by different APIs. All OSS SDK versions allow
you to print RequestIDs for abnormal requests. You can call the OSSException’s
getRequestId method to obtain this information.

Timestamps

You can use timestamps to find relevant log entries. You must note that there may be some
deviations between the client time and server time. On a client, you can use timestamps to search for
server log entries recorded by the logging function. For this, you should add or subtract 15 minutes.

Troubleshooting

Common performance-related problems

High average E2E latency, with low average server latency

We have already discussed the differences between average E2E latency and average server latency.
Therefore, we can say that there are two possible causes of high E2E latency and low server latency:

Slow client application response speed
Network factors

Investigate client performance problems

Object Storage Service Developer Guide

119

●

a.

b.

●

●

●

-

There are several possible causes of a slow client application response speed:

Limited number of available connections or threads

The following method can be used to solve available connection quantity issues:
Use the relevant command to check if the system has a large number of
connections in the TIME_WAIT status.
If yes, adjust the core parameters to solve this problem.

When there is a limited number of available threads, first check for bottlenecks
affecting the client CPU, memory, network, or other resources. If there are none,
increase the number of concurrent threads properly.
If the problem persists, you will have to optimize the client code. For example, you
can use an asynchronous access method. You can also use the performance analysis
function to analyze client application hotspots, and then perform the necessary
optimization.

Insufficient resources, such as CPU, memory, or bandwidth

For this type of problem, you must first use the relevant system monitoring function
to find client resource bottlenecks. Then, optimize the client code to rationalize
resource usage or increase the client resources (increase the number of cores or the
memory).

Investigate network latency problems

Generally, high E2E latency due to network factors is temporary. You can use Wireshark to investigate
temporary and persistent network problems, such as packet loss problems.

Low average E2E latency, low average server latency, but high client request
latency

When the client experiences high request latency, the most probable cause is that the requests are
not reaching the server. Therefore, we must find out why the client requests are not arriving at the
server.

Two client-side factors can cause high client request sending latency:

A limited number of available connections or threads: Refer to the solution described in the
preceding section.

Client requests are retried multiple times: In this situation, you must find and solve the cause
of the request retries based on the retry information. You can use the method below to
determine if the client has a retry problem:

Check the client log. The detailed log entries will indicate if retries have occurred.
Using the OSS Java SDK as an example, you can search for the following warn or

Object Storage Service Developer Guide

120

info-level log entries. If such entries are found in the log, this indicates that requests
have been retried.

If the client log level is debug, search for the following log entries (again we are
using the OSS Java SDK as an example). If such entries exist, this indicates requests
have been retried.

If there is no problem with the client, you must check for potential network problems, such as packet
loss. You can use a tool such as Wireshark to investigate network problems.

High average server latency

If there is a high server latency during downloads or uploads, this may be caused by the following
two factors:

A large number of clients are frequently accessing the same small object.

In this situation, you can view the server log recorded by the logging function to determine if
a small object or a group of small objects are being frequently accessed in a short period of
time.

For download scenarios, we suggest you activate the CDN service for this bucket, to improve
performance. This will also reduce your traffic fees. In the case of upload, you may consider
revoking write permissions for this object (bucket), as long as this will not affect your
business.

Internal system factors

For internal system problems or problems that cannot be solved through optimization,
please provide our system staff with the RequestIDs in your client logs or in the logs
recorded by the logging function, and they will help you solve the problem.

Server errors

When there is an increase in server-side errors, there are two scenarios to consider:

 [Server]Unable to execute HTTP request:
Or
[Client]Unable to execute HTTP request:

 Retrying on

Object Storage Service Developer Guide

121

-

-

-

-

-

i.

Temporary increase
For this type of problem, you must adjust the retry policy in the client program and adopt a
reasonable concession mechanism, such as exponential backoff. This not only will avoid temporary
service unavailability due to system optimization, upgrades, and other such operations (such as
partition migration for system load balancing), but will also avoid high pressure during business
peaks.

Permanent increase

When there is a sustained increase in the number of server-side errors, please provide our back-end
staff with the RequestIDs in your client logs or in the logs recorded by the logging function, and they
will help you find the problem.

Network errors

Network errors occur when the server is processing a request and the connection is lost (not due to a
server-side issue), so the HTTP request header cannot be returned. In such a situation, the system
records an HTTP Status Code of 499 for this request.

In the following situations, the server may change the request status code to 499:

Before processing a received read/write request, if the server detects that the connection is
unavailable, the request is recorded as 499.
When the server is processing a request and the client preemptively closes the connection,
the request is recorded as 499.

In summary, a network error occurs during the request process when a client independently closes
the request or the client is disconnected from the network. If the client independently closes
requests, you need to check the client code, to identify the cause and time of the client’s
disconnection from OSS. When the client loses its network connection, you can use a tool such as
Wireshark to investigate network connection problems.

Client errors

Increase in client authorization errors

If you detect an increase in client authorization errors or the client receives a large number of 403
request errors, this is most commonly caused by the following problems:

The bucket domain name accessed by the user is incorrect.
If the user uses a third-level or second-level domain name to access a bucket, this
may cause a 403 error if the bucket is not in the region indicated by the domain
name. For example, if you have created a bucket in the Hangzhou region, but a user
attempts to access it using the domain name Bucket.oss-cn-shanghai.aliyuncs.com.
In this case, you need to confirm the bucket’s region and then correct the domain
name information.

Object Storage Service Developer Guide

122

ii.

-

-

●

●

●

●

-

-

If you have activated the CDN acceleration service, this problem may occur when
CDN binds an incorrect back-to-source domain name. In this case, check that the
CDN back-to-source domain name is the bucket’s third-level domain name.

If you encounter 403 errors when using JavaScript clients, this may be caused by a problem
in the CORS (Cross-Origin Resource Sharing) settings, because web browsers implement
“same source policy” security restrictions. In this case, you must check the bucket’s CORS
settings and correct any errors. For information about CORS settings, refer to CORS.
Access control problems can be divided into four types:

When you use a primary AK for access, you must check the AK settings for errors if
the AK is invalid.
When you use a RAM sub-account for access, you need to check that the sub-
account is using the correct sub-account AK and that the sub-account has the
relevant permissions.
When you use temporary STS tokens for access, you need to confirm that the
temporary token has not expired. If the token has expired, apply for a new one.
If you use bucket or object settings for access control, you need to check that the
bucket or object to be accessed supports the relevant operations.

When you authorize third-party downloads (using signed URLs to access OSS resources), if
access was previously normal and then suddenly reports a 403 error, it is likely that the URL
has expired.
When RAM sub-accounts use OSS utilities, this may also produce 403 errors. These utilities
include ossftp, ossbrowser, and the OSS console client. When you enter the relevant AK
information during login and the system throws an error, if you entered the correct AK, you
must check that the AK is a sub-account AK and that this sub-account has permission for
GetService and other operations.

Increase in client-side ‘resource does not exist’ errors

When the client receives a 404 error, this means that you are attempting to access a resource or
information that does not exist. When the monitoring service detects an increase in ‘resource does
not exist’ errors, this is most likely caused by one of the following problems:

Service usage: For example, when you first need to check that an object exists before
performing another operation and you call the doesObjectExist method (using the Java SDK
as an example), if the object does not exist, the client will receive the value ‘false’.
However, the server will actually produce a 404 request error. Therefore, in this business
scenario, 404 errors are normal.

The client or another process previously deleted this object. You can confirm this problem by
searching for the relevant object operation in the server log recorded by the logging
function.

Network faults case packet loss and retries. For example, the client may initiate a delete

Object Storage Service Developer Guide

123

●

●

i.

ii.

operation to delete a certain object. The request reaches the server and successfully executes
the delete operation. However, if the response packet is lost during transmission on the
network, the client will initiate a retry. This second request will then produce a 404 error. You
can confirm that network problems are producing 404 errors using the client log and server
log:

Check for retry requests in the client application log.
Check if the server log shows two delete operations for this object and that the first
delete operation has an HTTP status of 2xx.

Low valid request rate and high number of other client-side request errors

The valid request rate is the number of requests that return an HTTP status code of 2xx/3xx as a
percentage of total requests. Status codes of 4XX or 5XX indicate a failed request and reduce the
valid request rate.

Other client-side request errors indicate requests errors other than the following: server errors (5xx),
network errors (499), client authorization errors (403), resource does not exist errors (404), and client
timeout errors (408 or OSS error code: RequestTimeout 400).

Check the server log recorded by the logging function to determine the specific errors encountered
by these requests. You can refer to OSS Error Responses to find a list of common error codes
returned by OSS. Then, check the client code to find and solve the specific cause of these errors.

Abnormal increase in storage capacity

If there is an abnormal increase in storage capacity without a corresponding increase in upload
requests, this is generally caused by a delete problem. In such a case, check for the following two
factors:

When the client application uses a specific process to regularly delete storage objects to free
up space:

Check if the valid request rate has decreased, because a failed delete request may
cause storage objects to fail to be deleted as expected.
Find the specific cause for the decrease in the valid request rate by looking at the
error types of the requests. Then, you can combine the specific client logs to see
the detailed error information (for example, the STS temporary token used to free
up storage space may have expired).

When the client sets a LifeCycle to delete storage objects: Use the console or an API to check
that the current bucket LifeCycle value is the same as before. If not, simply modify the
configuration and use the server log recorded by the logging function to find information on
the previous modification of this value. If the LifeCycle is normal but inactive, contact an OSS
system administrator to help identify the problem.

Object Storage Service Developer Guide

124

Other OSS problems

If the preceding troubleshooting sections did not cover your problem, use one of the following
methods to diagnose and troubleshoot the problem.

View the OSS monitoring service, to see if there have been any changes compared to the expected
baseline behavior. Using the monitoring view, you may be able to determine if this problem is
temporary or permanent and which storage operations are affected.

The monitoring information can help you search the server log data recorded by the logging
function, to find information on any errors that may have occurred when the problem started. This
information may be able to help you find and solve the problem.

If the information in the server log is insufficient, use the client long to investigate the client
application, or use a network tool such as Wireshark to check your network for problems.

Object Storage Service Developer Guide

125

	Developer Guide
	Basic OSS concepts
	Object
	Bucket
	Region
	Endpoint
	AccessKey
	High consistency
	Comparison between OSS and file system
	OSS Glossary

	Storage classes
	Introduction to storage classes
	Standard
	IA
	Archive
	Comparison of storage classes

	Access and control
	Endpoints
	Composition rules for domain names
	Endpoint naming rules for an external network
	Endpoint naming rules for an internal network

	OSS regions and endpoints
	Endpoint settings in the OSS SDK
	Use intranet endpoints to access OSS in ECS

	OSS access
	OSS access URLs
	OSS access security
	OSS access verification process
	Anonymous request access process
	Access process for requests with ID verification information
	Methods for OSS access using ID verification information

	Bind custom domain names (CNAME)
	CNAME application example
	CNAME process comparisons
	Reference

	Access control
	Send an OSS access request
	Types of AccessKeys
	Alibaba Cloud account AccessKeys
	RAM account AccessKeys
	STS account AccessKeys

	Implementation of identity authentication

	Permission control
	Bucket-level permissions
	Bucket permission types
	Bucket permission settings and read methods

	Object-level permissions
	Object permission types
	Considerations
	Object permission settings and read methods

	Account-level permissions (RAM)
	Application scenarios
	Specific implementation

	Temporary account permissions (STS)
	Application scenarios
	Specific implementation

	RAM and STS application scenario practices
	Mode 1: Using AppServer for data transit and data isolation
	Mode 2: Using STS for direct access to OSS

	RAM and STS authorization policy configuration
	Example
	Configuration rules
	Version
	Statement

	Best practices

	Regions and endpoints
	Regions and endpoints in a classic network
	Regions and endpoints in a VPC network

	Access OSS
	OSS-based app development
	Development architecture
	Service development process
	Temporary credential upload authorization
	Signed URL authorization for uploads and form uploads
	Temporary credential download authorization
	Signed URL authorization for downloads
	Special note

	Reference for using the function

	Quick start
	Quick start with the console
	Quick introduction to OSS upload and download
	Quick start with SDKs

	Bucket management
	Create a bucket
	Reference

	Set bucket read and write permissions (ACL)
	Reference

	View the bucket list
	Reference
	Additional links

	Obtain bucket region information
	Reference

	Delete a bucket
	Reference

	Upload files
	Simple upload
	Set object Meta when uploading files
	Upload restrictions
	Upload large files
	Upload security and authorization
	Post-upload operations
	Reference
	Best practices
	Additional links

	Form upload
	Applicable scenarios
	Upload restrictions
	Upload security and authorization
	Basic process
	Reference
	Best practices
	Reference links

	Multipart upload
	Applicable scenarios
	Concepts
	Restrictions
	Upload security and authorization
	Post-upload operations
	Reference
	Best practices
	Additional links

	Append object
	Applicable scenarios
	Upload restrictions
	Upload security and authorization
	Post-upload Operations
	Reference for using the function
	Best practices
	Reference links

	Authorized third-party upload
	Applicable scenarios
	URL signature
	Temporary access credentials
	Best practices
	Additional links

	Upload callback
	Applicable scenarios
	Reference
	Best practices
	Reference links

	Download files
	Simple download
	Reference
	Best practices
	Additional links

	Multipart download
	Reference
	Additional links

	Authorized third-party download
	URL signature
	Implementation method
	Reference

	Temporary access credentials
	Implementation method
	Reference

	Best practices
	Additional links

	File management
	Object Meta
	Set object Meta when uploading objects
	Modify object Meta after uploading objects
	Retrieve object Meta

	View the object list
	Folder simulation
	Reference

	Copy an object
	Reference
	Copy large objects

	Delete an object
	Reference

	Manage object lifecycle
	Example
	Detailed analysis
	Reference

	Cross-region replication
	Application scenarios
	Supported synchronization functions
	Restrictions
	Reference

	Manage back-to-source settings
	Mirroring
	Example scenario
	Usage rules

	Redirection
	Application scenarios

	Reference

	Security management
	Set access logging
	Object naming rules for access logging
	Log file format
	Detail analysis
	Reference for using the function

	Anti-leech settings
	Detail analysis
	Reference for using the function

	Cross-origin resource sharing
	Key points
	Reference for using the function

	Server-side encryption
	Detail analysis
	Reference for using the function

	Static website hosting
	Detail analysis
	Reference

	Monitoring service
	Monitoring service overview
	High real-time performance
	Metering indicator description
	OSS alarm service
	Metric data retention policy
	Metric data access through the OpenAPI
	Monitoring, diagnosis, and troubleshooting
	Considerations

	Monitoring service user guide
	Cloud Monitor Console
	OSS monitoring entry
	OSS monitoring page

	User overview
	User monitoring information
	Latest month statistics
	User-level metric indicators
	Service overview
	Request status category

	Bucket List
	Bucket list information
	Bucket-level monitoring view
	Monitoring service overview
	Request status category
	Measurement reference
	Average latency
	Maximum latency
	Success request category

	Alarm rules
	Additional links

	Alarm service user guide
	Prerequisites
	Alarm rule page
	Alarm history concepts
	Search for alarm rules
	View alarm rules
	View alarm rules for a specific bucket
	View alarm rules related to a specific metric item
	View alarm rules in a certain alarm status
	View alarm rules in a certain activation status

	Add alarm rules
	Add alarm rules in the Bucket list
	Add alarm rules in a metric chart

	Considerations

	Metric item reference
	Project
	StartTime and EndTime
	Dimensions
	Period
	Metric

	Monitoring indicators reference
	User-level indicators
	Current-month metering statistics
	Service monitoring overview
	Request state details

	Bucket-level indicators
	Service monitoring overview
	Request state details
	Current-month metering statistics
	Metering indicators
	Latency
	Successful request operation categories

	Service monitoring, diagnosis, and troubleshooting
	Overview
	OSS monitoring
	Overall operating conditions
	Availability and percentage of valid requests
	Total No. of requests and No. of valid requests
	Request status distribution statistics

	Request status details monitoring
	Performance monitoring
	Billing monitoring

	Tracking and diagnosis
	Problem diagnosis
	Performance diagnosis
	Error diagnosis
	Using the logging function
	Using network logging tools

	E2E tracking and diagnosis
	RequestID
	Timestamps

	Troubleshooting
	Common performance-related problems
	High average E2E latency, with low average server latency
	Investigate client performance problems
	Investigate network latency problems

	Low average E2E latency, low average server latency, but high client request latency
	High average server latency

	Server errors
	Network errors
	Client errors
	Increase in client authorization errors
	Increase in client-side ‘resource does not exist’ errors
	Low valid request rate and high number of other client-side request errors

	Abnormal increase in storage capacity
	Other OSS problems

