
Object Storage Service

Developer Guide

Developer Guide

Document Overview

Alibaba Cloud Object Storage Service (OSS) provides you with the network-based data access
services. OSS enables you to store and invoke structured or unstructured datan objects including text
files, images, audio, and videos via network connection. Alibaba Cloud OSS provides simple network
service interfaces for users to store and retrieve any quantity of data anytime anywhere on the
network.

The Guide introduces how to send a request to create a bucket, how to store and retrieve an object
and how to manage permissions of a resource. It also describes how to perform access control and
identity authentication. Access control is used to determine the users who can access objects and
buckets in Alibaba Cloud OSS and the access types. Identity authorization is used to authenticate the
identity of a user who tries to access computing services of Alibaba Cloud.

The following table lists the resources you may need when using OSS.

Product introduction

Resource Description

Alibaba Cloud OSS Quick Start Describes how to complete basic tasks on the
OSS Console.

Alibaba Cloud OSS Developer Guide (this
document)

Describes the core concepts, functions, and
operation procedure of OSS, as well as
examples of how to use APIs and SDKs

Alibaba Cloud OSS Console User Guide
Describes all operations supported by the
OSS Console. Using the OSS Console, you can
perform partial OSS functions

Alibaba Cloud OSS Best Practice Describes the application scenarios and
configuration practices of OSS

Alibaba Cloud OSS API Reference Describes the REST API operations supported
by OSS and provides related examples

Alibaba Cloud OSS SDK Reference Describes the SDK development and related
parameters based on major languages

Object Storage Service Developer Guide

1

-

-

-

-

-

-

-

What is OSS?

Alibaba Cloud Object Storage Service (OSS) provides you with network-based data access services.
OSS enables you to store and invoke structured or unstructured datan objects including text files,
images, audio, and videos via network connection.

You can execute basic and advanced OSS tasks directly on the OSS Console without coding, in
addition to using the Alibaba Cloud software development kit (SDK) or calling the REST API in an
application program.

Introduction to basic OSS concepts

This section will introduce the basic concepts of the OSS product for you to better understand the
product.

Bucket

A bucket is a container of objects. All objects must belong to a bucket. You can set and modify the
attributes of a bucket for region and object access control and object lifecycle management. These
attributes apply to all objects in the bucket. Therefore, you can create different buckets to perform
different management functions.

The storage space in a bucket is non-hierarchical without features of an object system, such
as directory. Therefore, all objects are directly affiliated with their corresponding buckets.
Each user can have multiple buckets.
Bucket names must be globally unique within the OSS and cannot be changed once a bucket
is created.
An unlimited number of objects can be stored in a bucket.

Bucket naming rules

The bucket name can only contain lower-case letters, digits, and hyphens (-).
It must start with a lower-case letter or number.
The length must be 3-63 bytes

Objects/Files

Object Storage Service Developer Guide

2

-

-

-

Objects are the basic elements used in OSS to store data. They are also called OSS files. An object is
composed of metadata (Object Meta), user data (Data), and an object name (Key).Objects are labeled
by a key that is unique within the bucket. An Object Meta is a key-value pair that expresses the
object’s attributes, such as its last modification time and size. Users can also store user-defined
information in the Object Meta.

Object size may vary depending on the upload method. Multipart Upload can support objects of up
to 48.8 TB. Other upload methods support a maximum size of 5 GB.

An object’s lifecycle starts from when it has been successfully uploaded till it has been deleted. The
object information cannot be changed during the lifecycle. Objects with the same name which are
uploaded repeatedly will overwrite the previous object. Thus, unlike file systems, OSS does not allow
users to modify only part of an object/file.

OSS provides the Append Upload function, which allows users to continually append data to the end
of an object.

Object naming rules

It uses UTF-8 encoding
The length must be 1-1023 bytes
It cannot start with “/“ or “\”

Notes

Region

A region is an area where OSS data centers are physically located.Users can select data storage
regions based on their fees, request sources, and other factors. Generally, the closer the user is to a
region, the faster the access speed. For details, see OSS Regions and Endpoints.

The region is specified when a bucket is created and cannot be subsequently changed. All the objects
in this bucket will be stored in the corresponding data center. Currently, setting regions on an object
basis is not supported.

Endpoint (Access Domain Name)

An endpoint is the domain name used to access the OSS.OSS provides services to the external
through HTTP RESTful APIs. Different regions use different domain names. For access to the same
region through the intranet or Internet, different endpoints are used. For example, the Internet
endpoint for the Hangzhou region is oss-cn-hangzhou.aliyuncs.com, while the intranet endpoint is
oss-cn-hangzhou-internal.aliyuncs.com. For more details, refer to OSS Regions and Endpoints.

Object names are case sensitive. Unless otherwise stated, files are equivalent to objects herein.

Object Storage Service Developer Guide

3

-

-

-

AccessKey

An AccessKey (AK) indicates an AccessKeyId and AccessKeySecret pair used in access identity
verification.The OSS verifies the identity of a request sender by using the
AccessKeyId/AccessKeySecret symmetric encryption method. The AccessKeyId identifies a user. With
the AccessKeySecret, a user can encrypt the signature string and the OSS can verify the AccessKey of
the signature string. The AccessKeySecret must be kept confidential. In the OSS, AccessKeys come
from the following sources:

The AccessKey applied for by the bucket owner.
The AccessKey granted by the bucket owner to an authorized third-party requestor through
RAM.
The AccessKey granted by the bucket owner to an authorized third-party requestor through
STS.

For more information about AccessKeys, see RAM.

High Consistency

In the OSS, object operations are atomic. These operations must either succeed or fail without
intermediate status. After a user uploads an object, OSS ensures it is complete. OSS will not return an
upload success response for partial objects.

Object operations in OSS are likewise highly consistent. Once a user receives an upload (PUT) success
response, this object can be read immediately and the data have already been written in triplicate.
There are no intermediate upload statuses, i.e. read-after-write, but data is unreadable. The same
goes for delete operations. After a users deletes an object, this object no longer exists.

This high-consistency feature facilitates user architectural design. The logic of OSS usage is the same
as that of a traditional storage device: modifications are immediately visible and users do not have to
consider final consistency issues.

Comparison of OSS and File Systems

OSS is a distributed object storage service that uses a Key-Value pair format. Users retrieve object
content based on unique object names (Keys). Although users can use names like test1/test.jpg, this
does not indicate the object is saved in a directory named test1. In the OSS, test1/test.jpg is simply a
string, no difference in nature than a.jpg. Therefore, similar amounts of resources are consumed when
accessing objects with different names.

File systems use a typical tree-type index structure. To access an object named test1/test.jpg, the
client must first access the directory test1 and then find the file named test.jpg in this directory. This
makes it easy for file systems to support folder operations, such as renaming directories, deleting
directories, and moving directories, as these operations are only directory node operations. This

Object Storage Service Developer Guide

4

structure means that more resources are consumed when more directory levels must be accessed and
operations involving directories with many files are slow.

In OSS, there are several operations that can be used to simulate similar functions, but this is very
expensive. For example, if a users wants to rename the test1 directory test2, the actual OSS operation
would be to replace all objects starting with test1/ with copies starting with test2/. Such an operation
would consume a great deal of resources. Thus, when using OSS, users should try to avoid such
operations as far as possible.

OSS does not support the modification of saved objects (in the append object operation, users must
call a specific API, and the generated object is of a different type than normally uploaded objects). To
modify even just a single byte, the user must upload the entire object again. File systems allow users
to modify files, e.g. modify the content at a specified offset location or truncate the end of an object.
These features give file systems wide applicability. However, on the other hand, OSS supports massive
concurrent access volumes, whereas file systems are limited by the performance of a single device.

Therefore, mapping the OSS onto an object system is very inefficient and not recommended. If
mounting an object system is required, the user should try to confine the operations to writing new
files, deleting files, and reading files. When using the OSS, users should make full use of its
advantages, i.e. its massive data volume processing capabilities to store massive volumes of
unstructured data, such as images, videos, and documents.

Comparison of OSS and File System Concepts:

OSS File System

Object File

Bucket Main directory

Region N/A

Endpoint N/A

AccessKey N/A

N/A Multilevel directory

GetService Retrieving the list of main directories

GetBucket Retrieving the list of files

PutObject Writing an object

AppendObject Append writing an object

GetObject Reading an object

DeleteObject Deleting an object

N/A Modifying file content

CopyObject (same target and source) Modifying file attributes

CopyObject Copying an object

N/A Renaming an object

Object Storage Service Developer Guide

5

OSS Glossary

Advantages

OSS outperforms user-created server storage in the following ways:

Term Definition

Bucket Storage space

Object An object or file

Endpoint The domain name for OSS access

Region An area or data center

AccessKey An alias for the AccessKeyId and
AccessKeySecret pair

Put Object Simple upload

Post Object Form upload

Multipart Upload An upload in multiple parts

Append Object An upload that appends data

Get Object Simple download

Callback Upload callback

Object Meta File Metadata;it describes the file, e.g. length
and type

Data File data

Key A file name

ACL(Access Control List) Permissions for buckets or files

Item OSS User-created Server Storage

Reliability

- Service availability is no
lower than 99.9%
- Automatic scaling, without
affecting external services
- Data persistence no less
than 99.99999999%,
automatic redundant data
backup

- Limited by hardware
reliability, traditional storage
is prone to faults. If a bad
track is found on a disk, data
may be irretrievably lost
- Manual data recovery is
difficult and time and
energy-consuming

Security

- Provides enterprise-level,
multi-layer security
protection and anti-DDoS
defenses, including

- Expensive cleaning and
black hole equipment must
be purchased separately
- Security mechanisms must

Object Storage Service Developer Guide

6

Application Scenarios

OSS is an object storage service applicable to a wide range of scenarios.

Massive Storage Space for Image and Audio/Video
Applications

Suitable for the storage of massive volumes of images, audio/video, logs, and other files; supports
various devices; websites and mobile apps directly write or read data to/from OSS; supports stream
writing and file writing methods.

Static/Dynamic Resource Separation for Webpages and

automatic black hole
cleaning
- Multi-user resource
isolation mechanisms;
supports remote disaster
recovery
- Provides various
authentication and
authorization mechanisms,
as well as white list, anti-
leeching, and
primary/subaccount features

be implemented
independently, resulting in
high development and
maintenance costs

Costs

- Very cost-effective, with a
price starting from
RMB0.14/GB/Month; a free
quota each month
- Multi-line BGP backbone
network; no bandwidth
restrictions; free upstream
traffic
- No maintenance staff or
hosting costs; no O&M cost

- Large, one-time
investment; low resource
utilization
- Storage space is limited by
hardware capacity, must be
resized manually
- Single and double-line
access methods provide slow
speeds; limited bandwidth;
must be manually resized
during peak traffic periods
- Requires professional O&M
staff, resulting in high costs

Data Processing Capabilities

Provides image processing,
audio/video transcoding,
accelerated content delivery,
porn identification service,
archiving services, etc. The
range of value-added data
services continues to expand

Must be purchased and
deployed separately

Object Storage Service Developer Guide

7

Apps

Developers can directly use OSS and the BGP bandwidth for direct data download at an ultra-low
latency. The OSS can also be used with Alibaba Cloud CDN acceleration service to deliver images,
audio/video files, and app updates, enhancing the user experience.

Cloud Data Processing

After uploading an object to OSS, the user can use the integrated Media Transcoding Service (MTS)
and Image Processing Service (IMG) to process data on the cloud.

OSS Change History

Date Event Description

2016/3/10

Support for automatic fragment cleaning
function: Fragment lifecycles can be set
through the object lifecycle management
function.

2016/3/6
Official release of the OSS Media SDK. Camera
equipment encapsulates data for direct
upload to OSS

2016/1/14
OSS supports back-to-source settings and can
send back-to-source requests to the origin
site through the mirror or redirection method

2016/1/7
Release of the cross-region replication
function, providing a live management
mechanism for different places

2015/12/7 Release of OSS FUSE

2015/11/26 Release of the OSS Ruby SDK

2015/11/10 Image processing function enabled by default
for OSS buckets

2015/10/23 Size limit for file uploads to the console raised
to 500 MB

2015/8/20 The migration tool oss-import becomes
available

2015/7/29

Unit price for CDN back-to-source OSS traffic
reduced by 40% to 0.15 RMB/GB, OSS
downstream traffic price reduced by 15% in
the South China 1 region (originally
Shenzhen)

2015/7/18 Append and write function available

Object Storage Service Developer Guide

8

2015/7/8 Support for Keep Alive connections,
optimized connection quality

2015/7/8 Support for callback of uploaded files to the
application server

2015/6/15
OSS supports VPC network connection
configuration; supports object-level ACL
settings

2015/4/26 Support for URL redirects; automatic refresh
of CDN cache when content is overwritten

2015/4/26
OSS connected to RAM; support for
primary/subaccount authorization and
temporary authorization

2015/2/10

Free 5 GB provided in the North China 2
(originally Beijing) and South China 1
(originally Shenzhen) regions, unit price for
CDN back-to-source OSS traffic reduced by
66% to 0.25 RMB/GB

2015/1/27

Reduction of unit prices for storage: 15%
reduction in the North China 1 region
(originally Qingdao), 10% reduction in the
North China 2 region (originally Beijing), and
5% reduction in the East China 1 region
(originally Hangzhou)

2014/10/20 File lifecycle management available, support
for bulk file management

2014/10/14 Internet traffic priced according to time, with
early morning traffic charged at half price

2014/5/28
Unit price for Internet traffic reduced by 10%
in the North China 1 region (originally
Qingdao)

2014/3/28 Unit price per GB of storage reduced by 40%

2014/3/15 OSS supports the CORS function (supports
user webpages' browser links)

2014/2/12 OSS supports chunked encoded uploads and
Post form uploads

2012/11/4 Server-side encryption function made
available

2012/9/4 CNAME function made available

2012/8/9
Support for log functions, records of all user
access requests are logged in the specified
bucket

2012/6/20 Support for the static website hosting
function

2012/3/30 Support for separate billing for Internet and
intranet traffic, reduces users' ECS costs

Object Storage Service Developer Guide

9

Access and Control

OSS Access Domain Names

Composition Rules for OSS Domain Names

For all network requests for the OSS except those for the GetService API, the domain names are third-
level domain names for specific buckets. The domain name is composed by the bucket name and
endpoint:bucketname.endpoint. Here, endpoint varies with the region (data center) of the bucket and
the intranet/Internet access method.

Endpoint Naming Rules for External Network

Here, external network refers to the Internet.

Endpoint Naming Rules for Internal Network

Here, internal network refers to AliCloud's intranet.

OSS Regions and Endpoints

2012/3/29 Support for https

2012/2/29 Support for multipart upload

2011/12/16 Support for Copy Object, anti-leeching
function, and HTTP Headers function

2011/10/22 Official launch of the OSS paid service

Region + .aliyuncs.com

Region + -internal + .aliyuncs.com

Region Name Region Expression Internet Endpoint Intranet Endpoint
for ECS Access

East China 1 oss-cn-hangzhou oss-cn- oss-cn-hangzhou-

Object Storage Service Developer Guide

10

For more information, refer to Access Domain Names and Data Centers

Domain Name Settings in OSS SDK

The OSS SDK has spliced an access domain name for each action of a user. However, users need to
set different endpoints when operating on buckets of different regions.

Taking the Java SDK as an example, users need to set the endpoint during class instantiation before
operating on buckets on the Hangzhou node:

Using Intranet Endpoints to Access OSS in ECS

Access is allowed between an ECS instance and an OSS instance in the same region through intranet
addresses.

(Hangzhou) hangzhou.aliyuncs.c
om internal.aliyuncs.com

East China 2
(Shanghai) oss-cn-shanghai

oss-cn-
shanghai.aliyuncs.co
m

oss-cn-shanghai-
internal.aliyuncs.com

North China 1
(Qingdao) oss-cn-qingdao

oss-cn-
qingdao.aliyuncs.co
m

oss-cn-qingdao-
internal.aliyuncs.com

North China 2
(Beijing) oss-cn-beijing oss-cn-

beijing.aliyuncs.com
oss-cn-beijing-
internal.aliyuncs.com

South China 1
(Shenzhen) oss-cn-shenzhen

oss-cn-
shenzhen.aliyuncs.co
m

oss-cn-shenzhen-
internal.aliyuncs.com

Hong Kong data
center oss-cn-hongkong

oss-cn-
hongkong.aliyuncs.c
om

oss-cn-hongkong-
internal.aliyuncs.com

Silicon Valley data
center oss-us-west-1 oss-us-west-

1.aliyuncs.com
oss-us-west-1-
internal.aliyuncs.com

Virginia data center oss-us-east-1 oss-us-east-
1.aliyuncs.com

oss-us-east-1-
internal.aliyuncs.com

Asia Pacific
(Singapore) data
center

oss-ap-southeast-1 oss-ap-southeast-
1.aliyuncs.com

oss-ap-southeast-1-
internal.aliyuncs.com

String accessKeyId = "<key>";
String accessKeySecret = "<secret>";
String endpoint = "http://oss-cn-hangzhou.aliyuncs.com";
OSSClient client = new OSSClient(endpoint, accessKeyId, accessKeySecret);

Object Storage Service Developer Guide

11

1.

2.

For example, a user has purchased an ECS instance located in Beijing. Assuming that this user has an
OSS bucket which is named 'beijingres' and located in Beijing, the user can access resources in
'beijingres' through 'beijingres.oss-cn-beijing-internal.aliyuncs.com'. Assuming that this user has
another bucket which is named 'qingdaores' and located in Qingdao, the user is unable to access it
through the intranet address 'qingdaores.oss-cn-qingdao-internal.aliyuncs.com ' from the ECS
instance located in Beijing. In this case, the user must access the OSS in Qingdao through the Internet
address 'qingdaores.oss-cn-qingdao.aliyuncs.com'.

In the above sample Java SDK, the Internet address of the bucket is used for OSS access. To access
the OSS through the intranet, just modify endpoint:

Accessing OSS

OSS Access URLs

OSS is an object storage service based on HTTP APIs. In all operations, users need to specify the OSS
resource to access.This resource may be a bucket or an object. During the access, the OSS resource is
expressed in URL format.Construction of OSS URLs

Notes

Here, the endpoint must be consistent with the bucket’s data center (region). For example:
If a bucket was created in Hangzhou, the Hangzhou endpoint must be used. Endpoints for
other regions cannot be used.
For access to the OSS, ECS instances can use the intranet endpoint for OSS resources in the
same region.For a list of regions and their endpoints, refer to Access Domain Names.

If a user uses HTTPS to send a request to the Hangzhou OSS for an object named mytest/oss-test-
object in a bucket named oss-sample,the accessed third-level domain name will be as follows:

String accessKeyId = "<key>";
String accessKeySecret = "<secret>";
String endpoint = "http://oss-cn-hangzhou-internal.aliyuncs.com";
OSSClient client = new OSSClient(endpoint, accessKeyId, accessKeySecret);

<Schema>://<Bucket>.<Endpoint>/<Object> Third-level domain name access method

Schema: value of HTTP or HTTPS
Bucket: the user's OSS storage space
Endpoint: the access domain name for a bucket's data center
Object: an object uploaded by a user to the OSS

https://oss-sample.oss-cn-hangzhou.aliyuncs.com/mytest/oss-test-object

Object Storage Service Developer Guide

12

-

-

1.

2.

3.

4.

5.

1.

2.

3.

4.

5.

Users can directly use object URLs in HTML, as shown below:

OSS Access Security

HTTP requests sent to OSS are divided into two types depending on whether they include identity
authentication information: Requests with identity verification information and anonymous requests
without identity verification information.The identity verification information in requests can be
structured in two ways:

Authorization is contained in the request header, in the format: OSS + AccessKeyId +
signature string.
OSS AccessKeyId and Signature fields are contained in the request URL.

OSS Access Verification Process

Anonymous Request Access Process

The user’s request is sent to the OSS’s HTTP server.
The OSS resolves the URL to get the bucket and object.
If no ACL is set for the object, the process goes directly to Step 4. Otherwise, if the object’s
ACL permits anonymous access, the process skips to step 5. If it does not, the request is
rejected and the process ends.
If the bucket’s ACL does not permit anonymous access, an error message is returned and
the process ends.
The request passes permission verification and the object content is returned to the user.

Access Process for Requests with ID Verification Information

The user’s request is sent to the OSS’s HTTP server.
The OSS resolves the URL to get the bucket and object.
Based on the request’s OSS AccessKeyId, the OSS retrieves the ID information of the
requestor. If this cannot be obtained, an error message is returned and the process ends. If
the information is obtained, but the requestor is not permitted to access this resource, an
error message is returned and the process ends. If the information is obtained, but the
signature calculated based on the request’s HTTP parameters does not match the sent
signature, an error message is returned and the process ends.
If no ACL is set for the object, the process goes directly to Step 5. Otherwise, if the object’s
ACL permits anonymous access, the process skips to step 6. If it does not, the request is
rejected and the process ends.
If the bucket’s ACL does not permit anonymous access, an error message is returned and

Object Storage Service Developer Guide

13

6.

-

-

-

-

-

-

-

-

the process ends.
The request passes permission verification and the object content is returned to the user.

Three Methods for OSS Access with ID Verification Information

Using the console to access the OSS:In the console, the identity verification process is
concealed from users. When users access the OSS through the console, they do not have to
concern themselves with the details of this process.
Using SDKs to access the OSS:The OSS provides SDKs for multiple development languages. A
signature algorithm is implemented in an SDK, where users only need to input the AK
information as a parameter.
Using APIs to access the OSS:If you want to write your own code to package a call to the
RESTful API, you need to implement a signature algorithm to calculate the signature. For
details about the signature algorithm, refer to Adding a Signature to the Header and Adding
a Signature to the URL in the API Reference.

For an explanation of AccessKeys and more information on identity authentication operations, refer
to RAM

User-defined OSS Domain Names

The OSS allows users to bind custom domain names to their buckets. This operation must be
performed through the OSS Console. According to the requirements of Internet Management
Regulations, all users activating this function shall provide valid materials including the MIIT filing
number and the ID of the domain name holder. This function can be used only after these materials
are approved by Alibaba Cloud. After the CNAME function is activated, the OSS will automatically
process access requests on that domain name.

Example of the CNAME application scenario:

User A possesses a website with the domain name abc.com and which contains a page with
the link http://img.abc.com/logo.png.
At this time, user A must send a request to migrate the image img.abc.com to the OSS.
However, he does not want to modify any website code or change the external link. The
CNAME function is perfectly suited to this scenario.
Through the OSS Console, user A submits an application to bind the user-defined domain
name img.abc.com to abc-img and provides the associated materials.
After AliCloud approves the application, the OSS background will map img.abc.com onto
abc-img (permission verification will be performed at this time).
On his own domain name server, user A adds a CNAME rule, mapping img.abc.com onto
abc-img.oss-cn-hangzhou.aliyuncs.com. Thus, all access traffic to the user’s img.abc.com
domain name will be forwarded to abc-img.oss-cn-hangzhou.aliyuncs.com on the OSS.

Object Storage Service Developer Guide

14

-

-

After a request for http://img.abc.com/logo.png reaches the OSS, the OSS will find the
img.abc.com and abc-img mapping and actually convert the request to an access request for
the abc-img bucket. When a user attempts to access http://img.abc.com/logo.png, after
passing through the OSS, the website actually accessed is http://abc-img.oss-cn-
hangzhou.aliyuncs.com/logo.png.

CNAME Usage Notes

Operation process:

Console: Domain Name Management

OSS Access Domain Names

OSS Regions and Endpoints

The intranet/internet endpoints in each region for a typical network are as follows:

Without Bound CNAME With Bound CNAME

Process Comparison

Access to
http://img.abc.com/logo.png

-> DNS resolution to the
user’s server IP -> Accesses

logo.png on the user’s
server

Access to
http://img.abc.com/logo.png

-> DNS resolution to abc-
img.oss-cn-

hangzhou.aliyuncs.com ->
Access to logo.png in the

OSS bucket abc-img

1. First, approval must be obtained from Alibaba Cloud.
2. The user creates a bucket on OSS and uploads the relevant files.
3. The user activates CNAME on the console and maps the user-defined domain name on the bucket.
4. The user resolves the user-defined domain name to Bucket.Endpoint on the DNS provider's console.

Perform these operations in the above order.

Region Name Region Expression Internet Endpoint Intranet Endpoint
for ECS Access

East China 1
(Hangzhou) oss-cn-hangzhou

oss-cn-
hangzhou.aliyuncs.c
om

oss-cn-hangzhou-
internal.aliyuncs.com

East China 2
(Shanghai) oss-cn-shanghai

oss-cn-
shanghai.aliyuncs.co
m

oss-cn-shanghai-
internal.aliyuncs.com

North China 1
(Qingdao) oss-cn-qingdao

oss-cn-
qingdao.aliyuncs.co
m

oss-cn-qingdao-
internal.aliyuncs.com

Object Storage Service Developer Guide

15

NOTE

-It is recommended you use third-level domain names, i.e., 'Bucket' + 'Endpoint' format when
sharing links or binding CNAME domain names. For example, the third-level domain name for
the Shanghai bucket oss-sample would be oss-sample.oss-cn-shanghai.aliyuncs.com.

When using new SDK versions (except 'C SDK'), please use 'http://andhttps://+Endpoint'
as the initialization parameter. Take the Shanghai endpoint as an example. This would
be http://oss-cn-shanghai.aliyuncs.com or https://oss-cn-shanghai.aliyuncs.com。. Do
not use a third-level domain name as the initialization parameter（i.e., do not use
http://bucket.oss-cn-shanghai.aliyuncs.com).

However, because earlier SDK versions (for example, the 'C, PHP, and Python SDKs')
directly use endpoints (for example, 'oss-cn-shanghai.aliyuncs.com'). please refer to the
documentation or code instructions for the SDK version you are using.

The original address oss.aliyuncs.com is directed to the Internet address of the
Hangzhou node by default.

The original intranet address oss-internal.aliyuncs.com is directed to the intranet
address of the Hangzhou node by default.

VPC Network Regions and Endpoints

To access OSS, ECS of a VPC network can only use the following endpoints:

North China 2
(Beijing) oss-cn-beijing oss-cn-

beijing.aliyuncs.com
oss-cn-beijing-
internal.aliyuncs.com

South China 1
(Shenzhen) oss-cn-shenzhen

oss-cn-
shenzhen.aliyuncs.co
m

oss-cn-shenzhen-
internal.aliyuncs.com

Hong Kong data
center oss-cn-hongkong

oss-cn-
hongkong.aliyuncs.c
om

oss-cn-hongkong-
internal.aliyuncs.com

Silicon Valley data
center oss-us-west-1 oss-us-west-

1.aliyuncs.com
oss-us-west-1-
internal.aliyuncs.com

Virginia data center oss-us-east-1 oss-us-east-
1.aliyuncs.com

oss-us-east-1-
internal.aliyuncs.com

Asia Pacific
(Singapore) data
center

oss-ap-southeast-1 oss-ap-southeast-
1.aliyuncs.com

oss-ap-southeast-1-
internal.aliyuncs.com

Region Name Region Expression Endpoint of the VPC

Object Storage Service Developer Guide

16

-

-

-

-

Accessing OSS

OSS-based App Development

Development Architecture

There are four components in typical OSS-based app development

OSS: Provides functions such as upload, download, and upload callback.
Developer’s mobile client (app or webpage application), called the client for short:
Indirectly accesses the OSS though the service provided by the developer.
Application server: The server that interacts with the client. This is also the server for the
developer’s service.
AliCloud STS: Issues temporary credentials.

Service Development Process

Network

East China 1 (Hangzhou) oss-cn-hangzhou vpc100-oss-cn-
hangzhou.aliyuncs.com

East China 2 (Shanghai) oss-cn-shanghai vpc100-oss-cn-
shanghai.aliyuncs.com

North China 1 (Qingdao) oss-cn-qingdao vpc100-oss-cn-
qingdao.aliyuncs.com

North China 2 (Beijing) oss-cn-beijing vpc100-oss-cn-
beijing.aliyuncs.com

South China 1 (Shenzhen) oss-cn-shenzhen vpc100-oss-cn-
shenzhen.aliyuncs.com

Silicon Valley data center oss-us-west-1 vpc100-oss-us-west-
1.aliyuncs.com

Virginia data center oss-us-east-1 oss-us-east-1-
internal.aliyuncs.com

Asia-Pacific (Singapore) data
center oss-ap-southeast-1 vpc100-oss-ap-southeast-

1.aliyuncs.com

Object Storage Service Developer Guide

17

1.

2.

3.

4.

5.

-

-

1.

2.

3.

4.

1.

2.

3.

4.

5.

Temporary Credential Upload Authorization

The client sends a request to the application server asking to upload an object to OSS.
The application server must send a request to the STS server to obtain temporary
credentials.
The application server replies to the client, returning the temporary credentials.
The client obtains authorization to upload to OSS (the STS AccessKey and token) and calls
the mobile client SDK provided by OSS to upload data.
The client successfully uploads data to the OSS. If callback is not set, the process is
complete. If the callback function is set, the OSS will call the relevant interface.

Here are several key points:

The client does not have to request authorization from the application server for each
upload. After the first authorization, the client will cache the temporary credentials returned
by the STS until they expire.
STS provides powerful access control functions that can restrict client access permission at
the object level. This completely isolates the objects uploaded to the OSS by different clients,
greatly enhancing the security of applications.

For more information, refer to Authorized Third-Party Uploads

Signed URL Authorization for Uploads and Form Uploads

The client sends a request to the application server asking to upload an object to OSS.
The application server replies to the client, returning credentials (signed URL or form).
The client obtains authorization to upload to OSS (the signed URL or form) and calls the
mobile client SDK provided by OSS to upload data or directly uploads a form.
The client successfully uploads data to the OSS. If callback is not set, the process is
complete. If the callback function is set, the OSS will call the relevant interface.

For more information, refer to Authorized Third-Party Uploads

Temporary Credential Download Authorization

The process is similar to temporary credential upload authorization:

The client sends a request to the application server for downloading an object from OSS.
The application server must send a request to the STS server to obtain temporary
credentials.
The application server replies to the client, returning the temporary credentials.
The client obtains authorization to download from OSS (the STS AccessKey and token) and
calls the mobile client SDK provided by OSS to download data.
The client successfully downloads an object from OSS.

Object Storage Service Developer Guide

18

-

-

1.

2.

3.

4.

-

-

1.

2.

3.

Here are several key points:

Just as for uploads, the client will cache the temporary credentials to increase access speed.
The STS likewise provides precise object download permission control, which, together with
upload permission control, serves to completely isolate the OSS storage space of each
mobile client.

Signed URL Authorization for Downloads

This is similar to signed URL authorization for uploads:

The client sends a request to the application server for downloading an object from OSS.
The application server replies to the client, returning the signed URL.
The client obtains authorization to download from OSS (the signed URL) and calls the
mobile client SDK provided by OSS to download data.
The client successfully downloads an object from OSS.

Special Note

The client cannot store the developer’s AccessKey, but may only obtain a signed URL or the
temporary credentials issued by the STS (the STS AccessKey and token) from the application server.

Reference for Using the Function:

SDK: Android SDK File Operations
SDK: iOS SDK File Operations

OSS Quick Start

Quick Start with the Console:

Log onto the OSS Console and activate OSS.
Create a bucket.
Upload and download files.

For details, see the Console Quick Start documentation.

Quick Introduction to OSS Uploads and Downloads

Before getting started with SDKs, please refer to the sections about the upload and download

Object Storage Service Developer Guide

19

-

-

1.

2.

3.

-

-

-

-

functions in the Developer Guide.

OSS uses RESTful APIs to perform operations and all requests are standard HTTP requests.

OSS provides different file upload methods, such as using a single PUT request to complete
a Simple Upload, using webpage forms for direct uploads, called Form Uploads, and
uploading large files with Multipart Uploads. For video monitoring and other applications,
OSS also provides Append Object.
Likewise, OSS provides multiple download methods: Simple Downloads and, for larger files,
Resumable Data Transfer.

Quick Start with SDKs:

After activating OSS, retrieve the AccessKeyId and AccessKeySecret from the console.
Download the SDKs for various programming languages.
Based on the descriptions in the SDK documentation, perform uploads, downloads, and
other operations.

For details, see the SDK Development Documentation.

Bucket Management

Create a Bucket

Users can create a bucket in an existing region. Note that the following conditions must be met:

Each user can create up to 10 buckets.
The name of each bucket must be globally unique; otherwise, the bucket cannot be created.
The bucket name must comply with the naming rules.
Once the bucket is created, its name and region cannot be modified.

The OSS provides an Access Control List (ACL) for permission control. You can configure an ACL when
creating a bucket and modify the ACL after creating the bucket. If no ACL is configured, the default
value is Private. For more details, refer to Set Bucket ACLs.

Function Usage Reference

Creating a Bucket

Object Storage Service Developer Guide

20

-

-

-

-

-

-

-

-

-

Console: Create a Bucket
SDK: Java SDK-Create a bucket in Bucket
API: Put Bucket

Setting Bucket Read and Write Permissions
(ACL)

You can not only set the bucket ACL when creating a bucket, but also modify the bucket ACL
according to your service requirements. Only the creator of the bucket has permission to perform this
operation. Currently, three access permissions are available for a bucket:

For details, refer to Access Permissions

Function Usage Reference

Setting ACLs for a bucket

Console: Access Permissions Configuration
SDK：Java SDK-Set Bucket ACL in Bucket
API: Put BucketACL

Obtaining ACLs for a bucket

Console: After logging in to the console, users can view the ACL in the bucket attributes.
SDK：Java SDK-Obtain Bucket ACL in Bucket
API: Get BucketACL

Permission Access Restriction

public-read-write

Anyone (including anonymous users) can
perform read and write operations on the files
in the bucket. The fees incurred by these
operations will be borne by the creator of the
bucket. Please use this permission with
caution.

public-read

Only the creator of the bucket can perform
write operations on the files in the bucket,
while others (including anonymous users) can
perform read operations on the files.

private

Only authorized users are allowed to read,
write, and delete files in the bucket. Others
cannot access the files in the bucket without
authorization.

Object Storage Service Developer Guide

21

-

-

-

-

-

-

-

Viewing the List of Buckets

The following section describes how to view the list of all buckets you have created.

Function usage reference:

Console: After you log in to the console, the list of all buckets you have created is displayed
by default.
API: GetService
SDK：Java SDK-List buckets in Bucket

Reference Links:

Create aBucket

Obtaining Bucket Information

Users can obtain the region of a bucket. The region means the physical location of the data center.
The returned Location field indicates the region where the bucket is located. For example, if the
location is East China 1 (Hangzhou in former use), the returned Location field is oss-cn-
hangzhou.OSS’s Access Domain Names

Function Usage Reference

Console: The region information is directly displayed in the bucket attributes on the console.
API: Get Bucket Location
SDK: Java SDK-Obtain the Bucket Address in Bucket

Delete a Bucket

Users can delete the buckets they have created.

NOTEA non-empty bucket (which contains files or file fragments) cannot be deleted. The bucket
can be deleted only after the files or file fragments are deleted. If you want to delete all files in a
bucket, it is recommended to use Lifecycle Management.

Function usage reference:

Object Storage Service Developer Guide

22

-

-

-

-

-

●

●

●

API: Delete Bucket
SDK: Delete Bucket in Java SDK-Bucket
Console: Delete Bucket

Uploading Files

Simple Upload

Applicable Scenarios

Simple upload refers to the situation where a user uploads a single object by using the Put Object
method in the OSS API. This is applicable to any scenario where a single HTTP request interaction
completes an upload, e.g. upload of a small file upload.

Setting Object Meta When Uploading Files

A simple upload can carry an Object Meta that describes the object, for example, Content-Type and
other standard HTTP headers, or user-defined information. For details, refer to Object Meta.

Upload Restrictions

Size limit: The maximum object size is 5 GB in this mode.
Naming restrictions

It uses UTF-8 encoding.
The length must be 1-1,023 bytes
It cannot start with “/“ or “\”.

Upload of Large Files

Using a single HTTP request to upload a large object may lead to an excessive upload time. If a
network error occurs during this time (for example, timeout or disconnection), the upload will
probably fail. In this case, users may consider resumable upload (multipart upload). For objects larger
than 5 GB, only resumable upload (multipart upload) can be used. For details, refer to Resumable
Upload.

Object Storage Service Developer Guide

23

-

-

-

-

-

-

-

-

-

-

-

-

-

Upload Security and Authorization

To prevent unauthorized third parties from uploading objects to the developer’s bucket, OSS
provides bucket- and object-level access permission control. For details, refer to Access Control.In
addition to bucket and object-level access permissions, OSS also provides account-level authorization
to authorize third-party uploads. For details, see Authorized Third-party Upload for Upload Security.

Post-upload Operations

After an object has been uploaded to OSS, the developer can use Upload Callback to initiate a
callback request to the specified application server in order to perform subsequent operations.To
process uploaded images, users can use Cloud Processing for Uploaded Images.For audio/video file
format conversion, users can use Media Transcoding.

Reference for Using the Function:

API: PutObject
SDK: Java SDK-PutObject in Object
Console: Uploading Files

Best Practices

RAM and STS User Guide
Web Client Direct Data Transfer and Upload Callback

Reference Links:

Upload Callback
Introduction to Mobile Development Upload Scenarios
Downloading Uploaded Files
Cloud Processing for Uploaded Images
Cloud Processing for Uploaded Audio/Video Files
Access Control for Upload Security
Authorized Third-party Upload for Upload Security
Copying, Deleting, and Managing Uploaded Files

Form Upload
Applicable Scenarios

Object Storage Service Developer Guide

24

-

-

●

●

●

-

-

1.

Form upload, suitable for uploading small files, refers to the situation where a user uploads an object
by using the Post Object request in the OSS API. This method is quite helpful in uploading objects
embedded in HTML webpages. A typically scenario is websites. Here, we use a job search website as
an example:

Upload Restrictions

Size limit: The maximum object size is 5 GB in this mode.
Naming restrictions:

It uses UTF-8 encoding.
The length must be 1-1,023 bytes.
It cannot start with “/“ or “\”.

Advantages of Form Upload

In procedure, the step of file forwarding is bypassed.
In architecture, the way of uploading files to the website server may require resizing the
website server, which becomes the bottleneck. With form upload, files are uploaded directly
from the client to the OSS. The OSS will guarantee the quality of service, especially in the
case of large upload volumes.

Upload Security and Authorization

To prevent unauthorized third parties from uploading objects to the developer’s bucket, OSS
provides bucket- and object-level access permission control. For details, refer to Access Control.To
prevent unauthorized third parties from uploading objects to the developer’s bucket, OSS provides
bucket- and object-level access permission control. For details, refer to Access Control.

Basic Process

Construct a Post Policy. This policy allows the Website developer to restrict the uploads of
Website users. For example, it can specify upload size restrictions, object name restrictions,
and the URL the client jumps to and the status code received after a successful upload. For

Without Using Form Upload Using Form Upload

Procedures

A website user uploads a
resume -> The website
server responds to the

upload page -> The resume
is uploaded to the server ->

The server uploads the
resume to OSS

A website user uploads a
resume -> The website
server responds to the

upload page -> The resume
is uploaded to OSS

Object Storage Service Developer Guide

25

1.

2.

3.

4.

details, refer to Post Policy.
In this simple policy example, the expiration time for site user uploads is 2115-01-
27T10:56:19Z (here we have set a long expiration time so that the test is successful; in actual
use we do not recommend this setting) and the maximum upload file size is 104,857,600
bytes.

Encode the policy string using base64 encoding.
Use the OSS AccessKeySecret to sign the base64 encoded policy.
Construct an HTML page for uploads.
Open the HTML page and select the file to upload.

Complete Python code example

This example uses Python code and the policy is a string in JSON format.

policy="{\"expiration\":\"2115-01-27T10:56:19Z\",\"conditions\":[[\"content-length-range\", 0, 104857600]]}"

#coding=utf8
import md5
import hashlib
import base64
import hmac
from optparse import OptionParser

def convert_base64(input):
return base64.b64encode(input)

def get_sign_policy(key, policy):
return base64.b64encode(hmac.new(key, policy, hashlib.sha1).digest())

def get_form(bucket, endpoint, access_key_id, access_key_secret, out):
#1 Construct a Post Policy
policy="{\"expiration\":\"2115-01-27T10:56:19Z\",\"conditions\":[[\"content-length-range\", 0, 1048576]]}"
print("policy: %s" % policy)

#2 Encode the policy string using base64 encoding
base64policy = convert_base64(policy)
print("base64_encode_policy: %s" % base64policy)

#3 Use the OSS AccessKeySecret to sign the base64 encoded policy
signature = get_sign_policy(access_key_secret, base64policy)

#4 Construct an HTML page for uploads
form = '''
<html>
<meta http-equiv=content-type content="text/html; charset=UTF-8">
<head><title>OSS form upload (PostObject)</title></head>
<body>
<form action="http://%s.%s" method="post" enctype="multipart/form-data">
<input type="text" name="OSSAccessKeyId" value="%s">
<input type="text" name="policy" value="%s">

Object Storage Service Developer Guide

26

-

Save this code segment as post_object.py and use Python to run it.

NOTE

Reference for Using the Function:

API: PostObject

<input type="text" name="Signature" value="%s">
<input type="text" name="key" value="upload/${filename}">
<input type="text" name="success_action_redirect" value="http://oss.aliyun.com">
<input type="text" name="success_action_status" value="201">
<input name="file" type="file" id="file">
<input name="submit" value="Upload" type="submit">
</form>
</body>
</html>
''' % (bucket, endpoint, access_key_id, base64policy, signature)
f = open(out, "wb")
f.write(form)
f.close()
print("form is saved into %s" % out)

if __name__ == '__main__':
parser = OptionParser()
parser.add_option("", "--bucket", dest="bucket", help="specify ")
parser.add_option("", "--endpoint", dest="endpoint", help="specify")
parser.add_option("", "--id", dest="id", help="access_key_id")
parser.add_option("", "--key", dest="key", help="access_key_secret")
parser.add_option("", "--out", dest="out", help="out put form")
(opts, args) = parser.parse_args()
if opts.bucket and opts.endpoint and opts.id and opts.key and opts.out:
get_form(opts.bucket, opts.endpoint, opts.id, opts.key, opts.out)
else:
print "python %s --bucket=your-bucket --endpoint=oss-cn-hangzhou.aliyuncs.com --id=your-access-key-id --
key=your-access-key-secret --out=out-put-form-name" % __file__

Usage:
python post_object.py --bucket=Your bucket --endpoint=The bucket's OSS domain name --id=Your AccessKeyId --
key=Your AccessKeySecret --out=Output file name

Example:
python post_object.py --bucket=oss-sample --endpoint=oss-cn-hangzhou.aliyuncs.com --id=tphpxp --
key=ZQNJzf4QJRkrH4 --out=post.html

In the constructed form, "success_action_redirect" value="http://oss.aliyun.com"indicates the page to jump to after
a successful upload. This can be replaced as needed.
In the constructed form, "success_action_status" value="201" indicates that Status Code 201 is returned after a
successful upload. This can be replaced as needed.
If the generated HTML file is post.html, open post.html and select the file to upload. In this example, the client
jumps to the OSS homepage after a successful upload.

Object Storage Service Developer Guide

27

-

-

-

-

-

-

-

-

-

-

-

-

-

-

Best Practices

Web Client Direct Data Transfer
OSS Cross-origin Resource Sharing (CORS) User Guide

Reference Links:

Upload Callback
Introduction to Mobile Development Upload Scenarios
Downloading Uploaded Files
Cloud Processing for Uploaded Images
Cloud Processing for Uploaded Audio/Video Files
Access Control for Upload Security
Authorized Third-party Upload for Upload Security
Copying, Deleting, and Managing Uploaded Files

Resumable Upload

Applicable Scenarios

When using simple upload (PutObject) to upload large files to OSS, the upload may fail by a network
error. A re-attempt uploads the file from the very beginning. To address this problem, the OSS
provides the multipart upload so that users can resume interrupted uploads.As its name suggests,
multipart upload splits the uploaded file into multiple data blocks (or parts in OSS) and then uploads
each part separately. When the upload is complete, an OSS API is called to combine the parts into an
object.

Compared to other upload methods, multipart upload is useful in the following scenarios:

Poor network environments. If an upload fails when using a cell phone, the user can re-
upload only the failed part, and does not have to re-upload the other parts.
Resumable upload required. After pausing an upload in progress, it can be restarted from
the paused part.
Accelerating upload. When the file to be uploaded to OSS is very large, multiple parts can be
uploaded in parallel to accelerate the upload.
Stream upload. Users can start to upload an object of an unknown size. A typical application
is the video monitoring industry.

Object Storage Service Developer Guide

28

-

-

-

-

Basic Process

The process is as follows:

Split the file to be uploaded according to a specified part size.
Initialize a multipart upload task (InitiateMultipartUpload).
Upload the parts in sequence or in parallel (UploadPart).

Complete the upload (CompleteMultipartUpload).

NOTE:

Each part except the last cannot be smaller than 100 KB; otherwise, the call to the
CompleteMultipartUpload will fail.

After splitting the file into parts, the parts are ordered by the partNumbers specified during
the upload. In actual execution, the parts can be uploaded in parallel. Upload in sequential is
not required. The upload speed does not necessarily increase with the number of parts
uploaded in parallel, as both the user’s network conditions and the device load must be
considered.

By default, when the upload is complete, but CompleteMultipartUpload has not been called,
the parts will not be automatically recycled. Therefore, to terminate the upload and delete
the data-occupied storage space, call AbortMultipartUpload. To automatically recycle
uploaded parts, refer to Lifecycle Management.

Resumable Upload

Because the lifecycle of uploaded parts is permanent, it is easy to implement the resumable upload
function.

If the system crashes during a multipart upload, the user can resume the upload by using the
ListMultipartUploads and ListParts APIs to retrieve all multipart upload tasks for an object and list the
completed uploads in each task. This allows uploads to be resumed from the last uploaded part. The
same principles apply to pausing and resuming uploads.

This function is especially useful for mobile device and large file uploads.

Upload Restrictions

Size limit: the object size is determined by part size. The function supports a maximum of
10,000 parts, with a minimum part size of 100 KB (the last part may be smaller) and a

Object Storage Service Developer Guide

29

-

●

●

●

-

-

-

-

-

-

-

-

-

-

-

maximum part size of 5 GB.
Naming restrictions

It uses UTF-8 encoding
The length must be 1-1,023 bytes.
It cannot start with “/“ or “\”.

Upload Security and Authorization

To prevent unauthorized third parties from uploading objects to the developer’s bucket, OSS
provides bucket- and object-level access permission control. For details, refer to Access Control.In
addition to bucket and object-level access permissions, OSS also provides account-level authorization
to authorize third-party uploads. For details, refer to Authorized Third-party Upload for Upload
Security.

Post-upload Operations

After an object has been uploaded to OSS, the developer can use Upload Callback to initiate a
callback request to the specified application server in order to perform subsequent operations.To
process uploaded images, users can use Cloud Processing for Uploaded Images.For audio/video file
format conversion, users can use Media Transcoding.

Reference for Using the Function:

APIs: MultipartUpload, InitiateMultipartUpload, UploadPart, UploadPartCopy,
CompleteMultipartUpload, AbortMultipartUpload, ListMultipartUploads, ListParts
SDK: Java SDK-Multipart upload in MultipartUpload

Best Practices

RAM and STS User Guide
Web Client Direct Data Transfer

Reference Links:

Upload Callback
Introduction to Mobile Development Upload Scenarios
Downloading Uploaded Files
Cloud Processing for Uploaded Images
Cloud Processing for Uploaded Audio/Video Files
Access Control for Upload Security
Authorized Third-party Upload for Upload Security

Object Storage Service Developer Guide

30

-

-

-

-

-

-

Copying, Deleting, and Managing Uploaded Files

Append Upload

Applicable Scenarios

The Simple Upload, Form Upload, and Resumable Upload methods create normal-type objects which
have fixed content after the upload is finished. They can only be read, but cannot be modified. If the
object content changes, the user must upload an object of the same name to overwrite the content.
This is a major difference between OSS and file systems.

This feature makes many application scenarios inconvenient, such as video monitoring and live video
broadcast, since video data is constantly produced in real time. Using other upload methods, users
must slice the video stream into small pieces and then upload them as new objects. In actual use,
these methods have obvious defects:

The software architecture is quite complex and users must consider intricate issues such as
file fragments.
Storage space is required for metadata, e.g. the list of generated objects. Thus, each request
must read the metadata to judge if any new object has been generated. This puts a high
level of access pressure on the server. In addition, each client request must be transmitted
twice, causing a certain amount of delay.
If the object parts are small, the delay is quite short. However this will complicate the
management of most objects. If the object parts are large, the data will suffer a substantial
delay.

To simply development and reduce costs in such a scenario, OSS provides the append object method,
which allows users to directly append content to the end of an object. This method is used to operate
on Appendable objects. The objects uploaded by other methods are Normal objects. The data
appended is instantly readable.

With append object, the previous scenario becomes very simple. When video data are produced, they
can be immediately added to the same object through the append object method. The client simply
needs to regularly retrieve the object length and compare it with the previous value. If new readable
data are found, this triggers a read operation to retrieve the newly uploaded data segments. This
method greatly simplifies the architecture and enhances the scalability of applications.

In addition to video scenarios, the append object method can also be used to append log data.

Upload Restrictions

Size limit: The maximum object size is 5 GB in this mode.
Naming restrictions

Object Storage Service Developer Guide

31

●

●

●

-

-

-

-

-

-

-

-

-

It uses UTF-8 encoding.
The length must be 1-1,023 bytes.
It cannot start with “/“ or “\”.

File type: Only files created through append object can be appended with new data.
Therefore, new data cannot be appended to files created through simple upload, form
upload, or multipart upload.

Upload Security and Authorization

To prevent unauthorized third parties from uploading objects to the developer’s bucket, OSS
provides bucket- and object-level access permission control. For details, refer to Access Control.In
addition to bucket- and object-level access permissions, OSS also provides account-level
authorization to authorize third-party uploads. For details, refer to Authorized Third-party Upload for
Upload Security.

Post-upload Operations

To process uploaded images, users can use Cloud Processing for Uploaded Images.For audio/video
file format conversion, users can use Media Transcoding.

Reference for Using the Function:

API: Append Object
SDK: Java SDK-Append Object Example

NOTE

Best Practices

RAM and STS User Guide

Reference Links:

Downloading Uploaded Files
Cloud Processing for Uploaded Images
Cloud Processing for Uploaded Audio/Video Files
Access Control for Upload Security
Authorized Third-party Upload for Upload Security

Append object does not support upload callback.

Object Storage Service Developer Guide

32

-

-

-

Authorized Third-party Upload

Applicable Scenarios

In a typical client/server system architecture, the server is responsible for receiving and processing
requests from the client. If we consider a scenario where OSS is used as a backend storage service,
the client sends files to upload to the application server, which then forwards them to the OSS. In this
process, the data need to be transmitted twice, once from the client to the server, and once from the
server to the OSS. In the case of high access volumes, the server needs ample bandwidth resources to
satisfy multiple clients’ simultaneous upload needs. This presents a challenge to the architecture’s
scalability.

This challenge is solved since the OSS provides the authorized third-party upload function. Using this
function, each client can directly upload files to the OSS, rather than going through the server first.
This reduces the cost for application servers and takes full advantage of the OSS’s ability to process
massive data volumes. Because users do not have to worry about bandwidth and concurrency
restrictions, servers focus on service processing.

Currently, there are two ways to grant upload permissions:

URL Signature

URL signature is a way to authorize access. This adds the OSS AccessKeyID and Signature fields in the
request URL, allowing users to directly use this URL for an upload. Each URL signature has an
expiration time to ensure security. For details, refer to Adding a Signature to the URL.

Temporary Access Credentials

Temporary access credentials are granted through the Alibaba Cloud SecurityTokenService(STS) and
provide users with access authorization.For information on the implementation of temporary access
credentials, refer to STS Java SDK.

The client initiates a request to the server to obtain authorization. The server first verifies the
client’s legality. If the client is legal, the server uses its own AccessKey to initiate an
authorization request to STS. For details, refer to Access Control.
After the server obtains the temporary credentials, it returns them to the client.
The client uses these temporary credentials to initiate an upload request to OSS. For the
request structure details, refer to Issuing a Temporary Access Credential. The client can cache
these credentials and use them for subsequent uploads until they expire. Then, new
credentials must be requested from the server.

Object Storage Service Developer Guide

33

-

-

-

-

-

-

-

-

-

Best Practices

RAM and STS User Guide
Web Client Direct Data Transfer and Upload Callback

Reference Links:

Upload Callback
Introduction to Mobile Development Upload Scenarios
Downloading Uploaded Files
Cloud Processing for Uploaded Images
Cloud Processing for Uploaded Audio/Video Files
Access Control for Upload Security
Form Upload

Upload Callback

Applicable Scenarios

When an upload is complete, the OSS can perform a callback to the application server. To perform
callback, users simply need to attach the relevant Callback parameter to the request sent to OSS. APIs
that currently support CallBack include PutObject, PostObject, and CompleteMultipartUpload.

A typical upload callback scenario is when authorized third-party users upload files to the OSS, the
clients specify the servers for callback. Then after the upload is complete, the OSS will automatically
initiate a callback request to the application server over the HTTP. This promptly notifies the
application server that the upload is complete, so it can complete operations such as database
modification. Upon receiving a response from the server, the OSS will return the status to the client.

When the OSS sends a POST callback request to the application server, the POST request’s body will
contain parameters that provide certain information. Such parameters are divided into two types:
system-defined parameters (such as bucket name and object name) and user-defined parameters.
Users can specify user-defined parameters based on the application logic when sending a request
including callback to the OSS. User-defined parameters can be used to carry information relevant to
the application logic, such as the user ID of the request initiator. For information on user-defined
parameters, refer to Callback.

The appropriate use of the upload callback mechanism can decrease the complexity of the client’s
logic and reduce the consumption of network resources. The process is as follows:

Object Storage Service Developer Guide

34

-

-

-

-

-

-

-

-

-

-

-

NOTE

Reference for Using the Function:

API: Callback
SDK: iOS Callback Notification after Upload

Best Practices:

Web Client Direct Data Transfer and Upload Callback

If a Callback Application Server Is Built (Including Sample Code Download)

Reference Links:

Direct Data Transfer for a Mobile App
Permission Management for a Mobile App
Introduction to Mobile Development Upload Scenarios
Downloading Uploaded Files
Cloud Processing for Uploaded Images
Cloud Processing for Uploaded Audio/Video Files
Access Control for Upload Security
Authorized Third-party Upload for Upload Security
Copying, Deleting, and Managing Uploaded Files

File Download

Currently, upload callback is supported only in Chinese Mainland.
At the moment, this function is only available for simple uploads (PutObject) and form uploads (PostObject).
Support for multipart uploads will be added on a later date.

Object Storage Service Developer Guide

35

-

-

-

-

-

-

-

-

-

-

-

-

-

-

Simple Download

A simple download occurs when a user downloads an uploaded file (object). The object download is
accomplished through an HTTP GET request. For the rules of generating object URLs, refer to
Accessing OSS.For the access to an object by a user-defined domain name, refer to Accessing OSS
with User-defined Domain Names.

When a user accesses a certain object, there are two possibilities:

This object does not have anonymous read permission, but the user has a corresponding
AccessKey, which can be used to sign the GET request and access the object.
This object has anonymous read permission, so all users can directly access the object
through GET requests.

For details about object and bucket access permission control, refer to Access Control.

To authorize a third-party user to download an object from a private bucket, refer to Authorized
Third-party Download.

To use resumable download, refer to Resumable Download.

Function usage reference:

API: Get Object
SDK: Java SDK-Object
Console: Getting File Access Addresses

Best Practices:

RAM and STS User Guide

Reference Links:

File Upload Methods
Upload Callback
Mobile Client Development and Download Scenario Introduction
Cloud Processing for Uploaded Images
Cloud Processing for Uploaded Audio/Video Files
Secure Download Access Control
Authorized Third-party Download for Download Security
Copying, Deleting, and Managing Uploaded Files

Resumable Download

OSS provides a “start object download from specified point” function. This allows users to spilt

Object Storage Service Developer Guide

36

-

-

-

-

-

-

-

-

-

-

large objects into multiple downloads. If the download is interrupted, it will continue from where it
left off when restarted.

Just as for simple upload, the user must have read permission for this object. Resumable downloads
are supported when the Range parameter is set. This function is recommended for larger objects.For
the definition of Range, refer to the HTTP RFC.If the Range parameter is specified in the request
header, the returned message contains the length of the entire file and the range returned this
time.For example, Content-Range: bytes 0-9/44 indicates that the length of the entire file is 44, and
the range returned this time is 0–9. If the range requirement is not met, the system transfers the
entire file and does not include Content-Range in the result.The return code is 206.

Function usage reference:

API: Get Object
SDK: Java SDK-Multipart File Access

Reference Links:

File Upload Methods
Upload Callback
Mobile Client Development and Download Scenario Introduction
Cloud Processing for Uploaded Images
Cloud Processing for Uploaded Audio/Video Files
Secure Download Access Control
Authorized Third-party Download for Download Security
Copying, Deleting, and Managing Uploaded Files

Authorized Third-Party Download

When users want to grant a third party authorization to download objects in a private bucket, they
should not directly give the AccessKey to the downloader, but use one of the following two methods.

URL Signature

OSS provides a signature download method. The developer can add a signature into the URL and
forward this URL to a third party to authorize access.The third-party user can access this URL using an
HTTP GET request to download the object.

Implementation Method

Example URL that includes a signature:

http://<bucket>.<region>.aliyuncs.com/<object>?OSSAccessKeyId=<user access_key_id>&Expires=<unix

Object Storage Service Developer Guide

37

-

-

-

-

-

-

-

-

-

The signature in the URL must include at least the following three parameters: Signature, Expires, and
OSSAccessKeyID.

OSSAccessKeyId: the developer’s AccessKeyId.
Expires: the developer’s desired URL expiration time.
Signature: the developer’s signature string. For details, refer to API Documentation -
signature section.

NOTE: This link must undergo URL encoding.

Specific Implementation

Function usage reference:

API: Get Object
SDK: Java SDK-Using URL Signature to Authorize Access
Console: Getting File Access Addresses

NOTE

Temporary Access Credentials

OSS uses STS (Security Token Service) to provide temporary credentials to third-party users. By
adding a signature in the request header, these users can access the object.This authorization method
is applicable to mobile scenario downloads.For information on the implementation of temporary
access credentials, refer to STS Java SDK.

Implementation Method

Third-party users send a request to the application server to obtain an AccessKeyID, AccessKeySecret,
and STS Token issued by STS.They then use the STS AccessKeyID, AccessKeySecret, and STS Token as
a signature to request the developer’s object resource.

Reference for Using the Function:

API: Temporary Access Credentials
SDK: Java SDK-Using STS Service Temporary Authorization in Object
Console: Getting File Access Addresses

time>&Signature=<signature_string>

On the console, when there is a bucket set to private read/write permission, the retrieved access address will be a
URL with a signature. Otherwise, the URL will not have a signature.

Object Storage Service Developer Guide

38

-

-

-

-

-

-

-

-

-

Best Practices:

RAM and STS User Guide

Reference Links:

File Upload Methods
Upload Callback
Mobile Client Development and Download Scenario Introduction
Cloud Processing for Uploaded Images
Cloud Processing for Uploaded Audio/Video Files
Secure Download Access Control
Authorized Third-party Download for Download Security
Copying, Deleting, and Managing Uploaded Files

File Management

Object Meta

Object Meta describes the attributes of files uploaded to OSS. These attributes come in two types:
HTTP standard attributes (HTTP Headers) and User Meta (custom metadata).File metadata can be
configured when files are uploaded or copied in various ways.

HTTP Standard Attributes

Name Description

Cache-Control Cache action of the web page when the
object is downloaded

Content-Disposition Name of the object when downloaded

Content-Encoding Content encoding format when the object is
downloaded

Content-Language Specifies the content language encoding
when the object is downloaded

Expires Expiry time

Content-Length Size of the object

Content-Type File type of the object

Last-Modified Time of last modification

Object Storage Service Developer Guide

39

-

-

-

-

-

-

-

-

User Meta

This attribute is designed for users to enrich the description of objects. In OSS, all parameters
prefixed with “x-oss-meta-“ are considered as User Meta, such as x-oss-meta-location. A single
object can have multiple similar parameters, but the total size of all User Meta cannot exceed 8 KB.
User Meta information will be returned in the HTTP header during GetObject or HeadObject
operations.

Setting Object Meta When Uploading Objects

Users can set Object Meta when uploading objects.

Reference for Using the Function:

API: Put Object
SDK: Setting Object HTTP Headers and Custom Metadata in the Java SDK-Uploads
documentation

Users can set Object Meta when using multipart uploads (resumable data transfer).

Reference for Using the Function:

API: InitiateMultipartUpload
SDK: ‘Initializing Multipart Upload’ in Java SDK-Initializing Multipart Upload

Modifying Object Meta After Uploading Objects

To modify the Object Meta without changing actual data, users should use the copy object interface.
To do so, users only need to put the new metadata (note that this metadata must be complete) in the
HTTP header and set the copy source and destination addresses to the current address of the object.

Reference for Using the Function:

API: Copying Objects
SDK: Java SDK-Using CopyObjectRequest to Copy Objects

Retrieving Object Meta

This feature applies where the user needs to retrieve Object Meta, but not the object data.

Reference for Using the Function:

API: Head Object
SDK: Java SDK-Only Retrieve File Metadata

Object Storage Service Developer Guide

40

-

-

View the Object List

This feature lists the files (objects) uploaded by the user to the bucket. By calling this OSS interface,
users can obtain a list of up to 1,000 objects in a certain bucket at a time. The following four
parameters provide users with extended capabilities:

Folder Simulation

The OSS service does not use folders. All elements are stored as objects. Creating a simulated folder
is simply creating an object with a size of 0. This object can also be uploaded and downloaded. The
console will display any object ending with “/“ as a folder. Therefore, users can create simulated
folders this way.

Users can use a combination of Delimiters and Prefixes to simulate folder functions. Combinations of
Delimiter and Prefix serve the following purposes:

Setting the Prefix as the name of a folder enumerates the files starting with this prefix,
recursively returning all files and subfolders (directories) in this folder. The file names are
shown in Contents.
When the Delimiter is set as “/“, the returned values will enumerate the files in the folder
and the subfolders (directories) will be returned in the CommonPrefixes section. Recursive
files and folders in subfolders will not be displayed.

Name Function

Delimiter

Used to group object name characters. All
objects whose names are found between the
specified prefix and the first occurrence of the
Delimiter act as a group of elements:
CommonPrefixes.

Marker
Sets up the returned results to begin from the
first entry after the Marker in alphabetical
order.

MaxKeys

Limits the maximum number of objects
returned for one request. If not specified, the
default value is 100. The MaxKeys value
cannot exceed 1,000.

Prefix

Indicates that only the objects whose Keys
contain the specified prefix are returned. Note
that the keys returned from queries using a
prefix will still contain the prefix.

For example:
In this example, the OSS bucket oss-sample, contains the following objects:

File D

Object Storage Service Developer Guide

41

Directory A/File C
Directory A/File D
Directory A/Directory B/File B
Directory A/Directory B/Directory C/File A
Directory A/Directory C/File A
Directory A/Directory D/File B
Directory B/File A

1. List first-level directories and files
Based on the API request conventions, you must set the Prefix to "", and the Delimiter to "/":
The returned results are as follows:
<?xml version="1.0" encoding="UTF-8"?>
<ListBucketResult>
<Name>oss-sample</Name>
<Prefix></Prefix>
<Marker></Marker>
<MaxKeys>1000</MaxKeys>
<Delimiter>/</Delimiter>
<IsTruncated>false</IsTruncated>
<Contents>
<Key>File D</Key>
<LastModified>2015-11-06T10:07:11.000Z</LastModified>
<ETag>"8110930DA5E04B1ED5D84D6CC4DC9080"</ETag>
<Type>Normal</Type>
<Size>3340</Size>
<StorageClass>Standard</StorageClass>
<Owner>
<ID>oss</ID>
<DisplayName>oss</DisplayName>
</Owner>
</Contents>
<CommonPrefixes>
<Prefix>Directory A/</Prefix>
</CommonPrefixes>
<CommonPrefixes>
<Prefix>Directory B/</Prefix>
</CommonPrefixes>
</ListBucketResult>

We can see that:
Contents returns the first-level file: "File D".
CommonPrefixes returns the first-level directories: "Directory A/" and "Directory B/", but the files in these
directories are not shown.

2. List second-level directories and files under Directory A
Based on the API request conventions, you must set the Prefix to "Directory A", and the Delimiter to "/":
The returned results are as follows:

<?xml version="1.0" encoding="UTF-8"?>
<ListBucketResult>
<Name>oss-sample</Name>
<Prefix>Directory A/</Prefix>
<Marker></Marker>
<MaxKeys>1000</MaxKeys>
<Delimiter>/</Delimiter>
<IsTruncated>false</IsTruncated>

Object Storage Service Developer Guide

42

-

-

Reference for Using the Function:

API: Get Bucket
SDK：Java SDK-Listing Files in a Bucket

Copy an Object

This allows users to copy files from a bucket. In certain situations, users simply need to copy an object
to another bucket, without modifying its content. In this case, normally we download and then
upload the object to the new bucket. However, because the data are the same, this is a waste of

<Contents>
<Key>Directory A/File C</Key>
<LastModified>2015-11-06T09:36:00.000Z</LastModified>
<ETag>"B026324C6904B2A9CB4B88D6D61C81D1"</ETag>
<Type>Normal</Type>
<Size>2</Size>
<StorageClass>Standard</StorageClass>
<Owner>
<ID>oss</ID>
<DisplayName>oss</DisplayName>
</Owner>
</Contents>
<Contents>
<Key>Directory A/File D</Key>
<LastModified>2015-11-06T09:36:00.000Z</LastModified>
<ETag>"B026324C6904B2A9CB4B88D6D61C81D1"</ETag>
<Type>Normal</Type>
<Size>2</Size>
<StorageClass>Standard</StorageClass>
<Owner>
<ID>oss</ID>
<DisplayName>oss</DisplayName>
</Owner>
</Contents>
<CommonPrefixes>
<Prefix>Directory A/Directory B/</Prefix>
</CommonPrefixes>
<CommonPrefixes>
<Prefix>Directory A/Directory C/</Prefix>
</CommonPrefixes>
<CommonPrefixes>
<Prefix>Directory A/Directory D/</Prefix>
</CommonPrefixes>
</ListBucketResult>

We can see that:
Contents returns the second-level files: "Directory A/File C" and "Directory A/File D".
CommonPrefixes returns the second-level directories: "Directory A/Directory B/", "Directory A/Directory C/", and
"Directory A/Directory D/". The file names under these directories are not shown.

Object Storage Service Developer Guide

43

-

-

-

-

-

-

-

-

-

network bandwidth. Therefore, the OSS provides the CopyObject function for users to copy objects
within the OSS, removing the need to transmit large volumes of data between the user and the OSS.

In addition, because the OSS does not support renaming, it is best to call the OSS CopyObject
interface when renaming an object. First copy the original data to an object with a new name and
then delete the original file. To modify an object’s Object Meta only, users can also call the
CopyObject interface and set the source address and destination address to the same value. In this
way, the OSS will only update the Object Meta.For more information about Object Meta, refer to
Object Meta.

Users must note the following when carrying out the operation:

Users must have permissions to operate the source object. Otherwise the operation may fail.
This operation cannot copy data across regions. For example, an object in a Hangzhou
bucket may not be copied to Qingdao.
This operation supports objects up to 1 GB.

Reference for Using the Function:

API: Copy Object
SDK: Java SDK-Object

Copying Large Objects

Users must take different steps to copy a large object. The OSS supports the function of copying
large files similar to Resumable Data Transfer.

The basic operations are the same as those described in Resumable Data Transfer. The one difference
is that UploadPart is replaced byUploadPartCopy. The syntax of UploadPartCopy is basically the same
as that of UploadPart. However, instead of being directly uploaded from the HTTP request, the data
are retrieved from the source object.

Reference for Using the Function:

API: UploadPartCopy
SDK：Java SDK-Copying Large Files

Delete an Object

This allows users to delete files (objects) that have been uploaded to OSS buckets. The OSS allows
users to delete objects in the following ways:

Delete Single Object:deletes a specified object.
Batch Delete:Deletes up to 1,000 objects at a time.

Object Storage Service Developer Guide

44

-

-

-

-

-

-

-

Auto Delete: This feature applies where large numbers of objects must be deleted according
to certain rules, for example, to regularly delete objects that are created a certain number of
days ago or to regularly empty the entire bucket. To do so, we recommend Lifecycle
Management. Once the rules are specified, the OSS will use these rules to recycle expired
objects, helping greatly reduce the number of user requests for deletion and increasing the
speed of deletion.

Reference for Using the Function:

API: Delete Object and Delete Multiple Objects
SDK：Java SDK-Deleting Files
Console: Deleting Files

Object Lifecycle Management

The OSS enables users to manage objects through object (file) lifecycle management. The user can
configure the lifecycle of a bucket to define various rules for the bucket’s objects. Currently, users
can use rules to delete matching objects. Each rule is composed of the following parts:

The object name prefix; this rule will only apply to objects with the matched prefix.
Operation; the operation the user wishes to perform on the matched objects.
Date or number of days; the user will execute the operation on the objects on the specified
date or a specified number of days after the object’s last modification time.

A rule applies to an object if the object name prefix matches the rule prefix. For example, a bucket
has the following several objects:

If the prefix of a rule is logs/, the rule applies to the first three objects prefixed with logs/. If the prefix
of a rule is doc/readme.txt, the rule only applies to doc/readme.txt.

Currently, rules allow “overdue deletion”. For example, a user can set a rule as follows: If the last
update date of objects prefixed with logs/ is 30 days ago, delete the objects. A date can also be
specified to delete doc/readme.txt.

When an object matches an overdue rule, the OSS will include the x-oss-expiration header in the
response to the GET Object or HEAD Object requests. The header contains two key-value pairs:
expiry-date indicates the expiration date of the object; rule-id indicates the matched rule ID.

Users can set the lifecycle configurations of a bucket through the open interface of the OSS. Lifecycle
configurations are given in XML format. Below is a specific example.

logs/program.log.1
logs/program.log.2
logs/program.log.3
doc/readme.txt

Object Storage Service Developer Guide

45

-

-

-

-

●

●

1.

2.

3.

4.

5.

In the above example, all elements are described as follows:

ID: a unique identifier of each rule.
Status: Enabled or Disabled. The OSS only uses the Enabled rules.
Prefix: the prefix.
Expiration: the operation expiration date. The sub-elements CreatedBeforeDate and Days
specify the absolute and relative expiry time, respectively.

CreatedBeforeDate indicates that files with a last modification time before 2014-12-
31T00:00:00.000Z will be deleted. Objects modified after this time will not be
deleted.
Days indicates that files that were last modified more than 10 days ago will be
deleted.

In the first rule, the OSS will delete objects that are prefixed with logs/ and were last updated 10 days
ago. The second rule indicates that objects prefixed with doc/ that were last modified before
December 31, 2014 will be deleted, but the rule will not take effect because it is in disabled status.

Detail analysis:

The naming rules of the prefix are the same as those of the object.
When the prefix is empty, the rule applies to all objects in the bucket.
Each prefix of a rule must be unique. For example, if a bucket has two rules whose prefixes
are respectively logs/ and logs/program, the OSS will return an error.
If a rule is set to delete objects on a specific date, the date must be zero o’clock UTC and
comply with the ISO8601 format, for example, 2014-01-01T00:00:00.000Z. In the above
example, the OSS deleted matched objects after zero o’clock on January 1, 2014.
If the number of days is specified in a rule to delete objects, the OSS will sum up the last
update time (Last-Modified) and the specified number of days, and then round the sum to

<LifecycleConfiguration>
<Rule>
<ID>delete logs after 10 days</ID>
<Prefix>logs/</Prefix>
<Status>Enabled</Status>
<Expiration>
<Days>10</Days>
</Expiration>
</Rule>

<Rule>
<ID>delete doc</ID>
<Prefix>doc/</Prefix>
<Status>Disabled</Status>
<Expiration>
<CreatedBeforeDate>2014-12-31T00:00:00.000Z</CreatedBeforeDate>
</Expiration>
</Rule>
</LifecycleConfiguration>

Object Storage Service Developer Guide

46

6.

-

-

-

-

-

-

the next zero o’clock UTC. For example, if the last update time of an object is 01:00 a.m.
on April 12, 2014 and the number of days specified in the matched rule is 3, the expiry time
is zero o’clock on April 16, 2014.
The OSS deletes the objects matched with the rule at the specified time. Note that objects
are usually deleted shortly after the specified time.Usually the last update time of an object
is nearly the same as the creation time. If an object is put multiple times, the last update
time is the time of the last Put operation. If an object was copied to itself, the last update
time is the time when the object was last copied.

Reference for Using the Function:

API: Put Bucket Lifecycle

Cross-Region Replication

Bucket Cross-Region Replication automatically and asynchronously copies objects in buckets across
different OSS data centers. It will synchronize changes to objects in the source bucket (creation,
overwriting, deletion, etc.) to the target bucket. This function provides ideal cross-region disaster
recovery for buckets or enables users to copy data. The target bucket objects are precise copies of
the source bucket objects, with the same object names, metadata, and content (for example, creation
time, owner, user-defined metadata, Object ACL, and object content).

Application Scenarios

You may configure bucket Cross-Region Replication for a variety of reasons, including:

Compliance requirements: Although the OSS creates multiple copies of each stored object
on a physical disk, copies must be stored at a certain distance from each other for
compliance with established requirements. Through cross-region synchronization, data can
be copied between OSS data centers located far apart to satisfy these compliance
requirements.
Minimized latency: Customers may be located at two geographical locations. In order to
minimize object access latency, a copy of the object can be maintained at an OSS data center
closer to users.
Data backup and disaster recovery: You require very high data security and availability and
wish to explicitly maintain copies of all written data at a second data center for protection
from natural disasters. In the event of an earthquake, tsunami, or other event that damages
OSS data centers, you can use the backup data in another OSS data center.
Data copying: For business reasons, you may need to migrate data from one OSS data center
to another.
Operational reasons: You may have computing clusters in different data centers and wish to
use them to analyze the same group of objects. Therefore, you may choose to maintain

Object Storage Service Developer Guide

47

1.

2.

3.

4.

1.

2.

3.

4.

5.

-

object copies in these different regions.
Instructions for Use

Currently, cross-region synchronization supports buckets with different names. For two buckets in
different regions, the user can sync the data in the source bucket to the target bucket in real time by
enabling the synchronization function. The following features are currently supported:

Real-time data synchronization: This monitors data addition, deletion, and modification in
real time and syncs the changes to the target region bucket. For files of 2M or larger,
synchronization may take several minutes. This ensures the ultimate consistency of the data
on both sides.
Historical data migration: This lets you synchronize historical data in the source bucket as
well, forming two completely identical data copies.
Real-time synchronization progress retrieval: This shows the latest synchronization time
node for real-time data synchronization. For historical data migration, this shows the
percentage of data migrated.
Easy configuration: The OSS Console provides easy-to-use management interfaces.

Constraints

Users can simultaneously operate on two buckets in the synchronization status. However,
objects copied from the source bucket may overwrite objects of the same name in the
target bucket. Please note this.
Because Bucket Replication uses an asynchronous copying method, it may take some time
for data to be copied to the target bucket. This may take anywhere from a few minutes to
several hours depending on the data size.
Cross-region synchronization applies only when the two buckets to be synced do not
enable data to be synced to or from a third bucket. For example, if synchronization is
activated from Bucket A to Bucket B, the user cannot activate synchronization from Bucket
A to Bucket C before deleting the synchronization configuration between Bucket A and
Bucket B. Likewise, if synchronization is activated from Bucket A to Bucket B, the user
cannot activate synchronization from Bucket C to Bucket B.
The two buckets involved in data synchronization must belong to different regions. Data
synchronization cannot be performed between buckets in the same region.
Currently, cross-region synchronization is available between the Beijing and Shanghai
regions. This function will be gradually extended to other regions.

Reference for Using the Function:

Console: Cross-Region Replication

Object Storage Service Developer Guide

48

-

Back-to-Source Settings

Back-to-source settings allow for multiple back-to-source reading methods in response to requests
for data, meeting users’ needs for hot data migration and specific request redirection.

The rules method enables users to match the URL of each OSS Get request and then use a specified
method for back-to-source. A maximum of five rules can be configured. Requests are compared to
the rules in a set sequence until matched to a valid rule. The specified method can be either image or
redirect method.

Image Method

If image write-back is enabled, for a request to get an object that does not exist, the file is requested
from the source URL, returned to the user, and simultaneously written to the OSS.

Application Scenarios

Image write-back is primarily used to seamlessly migrate data to OSS. In this situation, a service that
is already running on a user-established origin site or on another cloud product needs to be migrated
to OSS without interrupting the service. The image write-back function is designed to serve this
purpose. An analysis of specific scenarios is given below:

The origin site has an amount of cold data and is constantly generating new hot dataFrist,
the user can use the migration tool to migrate the cold data to the OSS (this migration tool
is ossimport2，and at the same time, the user can configure image write-back and set the
origin site’s URL to OSS. Even if some newly generated data are not migrated when the
domain name is switched to OSS (or Alibaba Cloud CDN, with OSS back-to-source), the user
can still access it normally on OSS and the files will be saved to OSS after they have been
accessed for the first time. After switching the domain name for an origin site that no longer
produces new data, the site will be scanned once and all non-migrated data will be imported
to the OSS at a time. In this situation, the user may disable image write-back.

If the configured origin site is an IP address, after the domain name is migrated to the OSS, data can
still be imaged to the origin site. However, if it is a domain name, no image can be produced because
the domain name is resolved to the OSS or CDN. In this situation, the user can apply for another
domain name to image the origin site. This domain name and the in-service domain name would
both be resolved to the same IP address. This allows origin site imaging to continue when the service

Object Storage Service Developer Guide

49

-

1.

2.

3.

4.

5.

6.

domain name is migrated.

Only some origin site traffic is switched to the OSS or CDN, while the origin site continually
produces dataThe migration method is similar to that described in scenario 1. After
switching only a portion of traffic to the OSS, the user does not have to delete the image
write-back configuration. This ensures that the traffic switched to OSS or CDN can also
obtain data from the origin site.

Usage Rules

The OSS only executes image write-back to request an object from the origin site when
GetObject() returns a 404 code.
The URL requested from the origin site is ‘MirrorURL+object’ and the name of the file
written back to the OSS is “object”. For example, assume that a bucket is named
example-bucket, image write-back is configured, the MirrorURL is ‘http://www.example-
domain.com/‘, and the file ‘image/example_object.jpg’ does not exist in this bucket.
Then, when downloading this file, the OSS will initiate a Get request to ‘
http://www.example-domain.com/image/example_object.jpg‘ and return the result to the
user while at the same time writing it to the OSS. Once downloaded, the file will be present
on OSS as ‘image/example_object.jpg’. This is the same as migrating an object with the
same name to the OSS. If the MirrorURL carries path information, such as ‘
http://www.example-domain.com/dir1/‘, the process is the same as above, but the OSS
back-to-source URL will be ‘http://www.example-
domain.com/dir1/image/example_object.jpg‘ although the object written to the OSS will
remain image/example_object.jpg. This is the same as migrating an object from an origin
site directory to the OSS.
The header and querystring information transmitted to the OSS will not be sent to the
origin site.
If the origin site returns data in chunked code, the OSS will likewise return data to the user
in chunked code.
The OSS will return and save the following header information from the origin site to the
OSS:

An x-oss-tag response header will be added to image write-back files, with the value
“MIRROR” + space + url_decode(back-to-source URL). In the example given above, this
would be ‘x-oss-tag:MIRROR http%3a%2f%2fwww.example-

Content-Type
Content-Encoding
Content-Disposition
Cache-Control
Expires
Content-Language
Access-Control-Allow-Origin

Object Storage Service Developer Guide

50

7.

8.

1.

2.

3.

domain.com%2fdir1%2fimage%2fexample_object.jpg’. After the file is written back to the
OSS, so long as it is not overwritten again, this header will be added each time it is
downloaded to indicate that it is taken from a image.
Assuming that the file has already been written to the OSS through image write-back, if the
corresponding file on the origin site is changed, the OSS will not update the file that exists
on the OSS because this file which is already present on the OSS does not meet the image
write-back conditions.
If the file also does not exist in the image source (i.e. the image source returns the HTTP
status 404 to the OSS), the OSS will return 404 to the user. If the image source returns
another non-200 status code (including file retrieval failure due to network-related causes),
the OSS will return 424 to the user, the error code for ‘MirrorFailed’.

Redirection

The URL redirection function returns a 3xx hop to the user based on the user-defined conditions and
corresponding hop configuration. Users can use this hop function to redirect files and provide various
services based on this action.

Seamlessly migrating other data sources to OSS: Users can asynchronously migrate data
from their data sources to the OSS. In this process, requests for un-migrated data use the
URL rewrite method to return a 302 redirect request to the user. The user’s client will then
read back the data from the user’s data source based on the location in the 302 redirect
request.
Used to configure page jump functions: For example, if a user wishes to hide objects with a
certain header prefix, a special page can be returned to visitors.
To configure page jumps when a 404 or 500 error occurs: When this type of error occurs,

Object Storage Service Developer Guide

51

-

-

the user can be taken to a preset page. Therefore, OSS errors will not be completely
exposed to users when the system goes wrong.

Reference for Using the Function:

Console: Back-To-Source Rule Management

Security Management

Identity Authentication for visitors

Sending an OSS Access Request

OSS developers can access the OSS directly by calling a RESTful API provided by the OSS or using an
API-encapsulated SDK. Each request for access to the OSS requires identity verification or direct
anonymous access based on the current bucket permission and operation.

Access to OSS resources is divided into access by the owner and third-party access. Here, the owner
refers to the bucket owner, also known as “developer”. Third-party users are users who access
resources in a bucket.There are two access methods: anonymous access and signature-based access.
In the OSS, a request that does not contain any identification information is considered anonymous
access.Signature-based access refers to requests that, according to the rules in the OSS API
documentation, contain signature information in the request header or URL.

Types of AccessKeys

Currently, there are three types of AccessKeys (AccessKey) for OSS access. They are described below:

Alibaba Cloud Account AccessKeys

These are the AccessKeys of bucket owners. The AccessKey provided by each Alibaba Cloud account
has full access to its own resources. Each Alibaba Cloud account can simultaneously have 0 to 5 active
or inactive AccessKey pairs (AccessKeyID and AccessKeySecret). You can log in to Console and add or
delete AccessKey pairs on AccessKey Console. Each AccessKey pair may be in two states: active and
inactive.

Active indicates that the user’s AccessKey is in the active state and can be used for identity

Object Storage Service Developer Guide

52

-

-

-

-

authentication.
Inactive indicates that the user’s AccessKey is in the inactive state and cannot be used for
identity authentication.

The AccessKey of the Alibaba Cloud account should not be directly used unless necessary.

RAM Account AccessKeys

Resource Access Management (RAM) is a resource access control service provided by Alibaba Cloud.
RAM account AKs are the access keys granted by RAM. These AKs only allow access to resources in a
bucket according to the rules defined by RAM. RAM helps you to collectively manage your users
(such as employees, systems or applications) and controls which resources your users can access. For
example, you can allow your users to have only the read permission on a bucket.Subaccounts are
subordinate to normal accounts and cannot own any actual resources. All resources belong to
primary accounts.

STS Account AccessKeys

The AliCloud STS (Security Token Service) is a service that provides temporary access credentials. STS
account AKs are the AKs issued by the STS. These AKs only allow access to buckets in accordance with
the rules defined by the STS.

Implementation of Identity Authentication

Currently, there are three methods of authentication:

AK authentication
RAM authentication
STS authentication

Before sending a request to the OSS as an individual identity, a user needs to generate a signature
string for the request according to the format specified by the OSS and then encrypt the signature
string using the AccessKeySecret to generate a verification code.After receiving the request, the OSS
finds the corresponding AccessKeySecret based on the AccessKeyID, and obtains the signature string
and verification code in the same way. If the obtained verification code is the same as the provided
verification code, the request is assumed valid. If not, the OSS rejects the request and returns an HTTP
403 error.Users can directly use the SDKs provided by the OSS with different types of AccessKeys for
different types of identity authentication.

Permission Control

OSS provides various permission control mechanisms for access to its stored objects:

Object Storage Service Developer Guide

53

-

-

-

-

-

-

-

-

-

Bucket-level permissions
Object-level permissions
Account-level permissions (RAM)
Temporary account permissions (STS)

Bucket-level Permissions

Bucket Permission Types

The OSS provides an Access Control List (ACL) for permission control. The OSS ACL provides bucket-
level access control. Currently, three access permissions are provided for a bucket: public-read-write,
public-read, and private. They are described as follows:

Bucket Permission Settings and Read Methods

Function usage reference:

API: Put BucketACL
SDK: Java SDK-Set Bucket ACL
Console: Create Bucket Permission Setting
API: Get BucketACL
SDK: Java SDK-Obtain Bucket ACL

Object-level Permissions

Object Permission Types

The OSS ACL also provides object-level permission access control.Currently, four access permissions
are available for an object, including private, public-read, public-read-write and default. You can use

Permission Access Restriction

public-read-write

Anyone (including anonymous users) can
read, write, and delete the objects in the
bucket. The fees incurred by such operations
shall be borne by the creator of the bucket.
Please use this permission with caution.

public-read

Only the creator of a bucket can write or
delete the objects in the bucket. Anyone
(including anonymous users) can read the
objects in the bucket.

private

Only the creator of a bucket can read, write,
and delete the objects in the bucket. Others
cannot access the objects in the bucket
without authorization.

Object Storage Service Developer Guide

54

-

-

-

-

-

-

-

the “x-oss-object-acl” header in the Put Object ACL request to set the access permission. Only the
bucket owner has the permission to perform this operation.

Considerations

If no ACL is configured for an object, the object uses the default ACL, indicating that the
object has the same ACL as the bucket where the object is stored.
If an ACL is configured for an object, the object ACL has higher-level permission than the
bucket ACL. For example, an object with the public-read permission can be accessed by
authenticated users and anonymous users, regardless of the bucket permission.

Object Permission Settings and Read Methods

Function usage reference:

API: Put Object ACL
SDK: Java SDK-Set the object ACL in ObjectACL
API: Get Object ACL
SDK: Java SDK-Read the object ACL from ObjectACL

Account-level Permissions (RAM)

Application Scenarios

If you have purchased cloud resources and multiple users in your organization need to use them,
these users have to share the AccessKey of your Alibaba Cloud account. There are two problems:

If your key is shared by many people, it has a high risk of leakage.

Permission Access Restriction

public-read-write
Indicates that the object can be read and
written by the public. That is, all users have
the permission to read and write the object.

public-read

Indicates that the object can be read by the
public. Only the owner of the object has the
permission to read and write the object. Other
users only have the permission to read the
object.

private

Indicates that the object is a private resource.
Only the owner of the object has the
permission to read and write the object. Other
users have no permission to operate the
object.

default Indicates that the object inherits the
permission of the bucket.

Object Storage Service Developer Guide

55

- You cannot determine which resources (e.g. buckets) can be accessed by the users.
Solution: Under your Alibaba Cloud account, you can use RAM to create subusers with their own
AccessKeys. In this case, your Alibaba Cloud account will be the primary account and the created
accounts will be subaccounts. Subaccounts can only use their AccessKeys for the operations and
resources authorized by the primary account.

Specific Implementation

For details about the RAM, refer to RAM User Manual. The RAM User Manual describes how to grant
permissions, create RAM accounts, and manage group permissions in detail.For details about how to
configure the policies required in authorization, refer to the final section of this chapter.

Temporary Account Permissions (STS)

Application Scenarios

Users managed by your local identity system, such as your app users, your local corporate account, or
third-party apps, may also directly access OSS resources. They are called federated users. In addition,
users can also be the applications you create that have access to your AliCloud resources.

With respect to these federated users, short-term access permission management is provided for the
AliCloud account (or RAM users) through the Security Token Service (STS) of AliCloud. You do not
need to reveal the long-term key (such as the login password and AccessKey) of your AliCloud
account (or RAM users), but only need to create a short-term access credential for a federated user.
The access permission and validity of this credential are both up to you.You do not need to care
about permission revocation. The access credential automatically becomes invalid when it expires.

STS-based access credentials include the security token (SecurityToken) and the temporary access key
(AccessKeyId and AccessKeySecret). The AccessKey method is the same as the method of using the
AccessKey of the Alibaba Cloud account or RAM user. In addition, each OSS access request must
carry a security token.

Specific Implementation

For details about the STS, refer to Role Management in the RAM User Guide. The key is to call
AssumeRole of the STS interface to obtain valid access credential. You can also directly use STS SDK
to call the access credential.

For details about role management and usage, refer to Role Management in the RAM User Guide.

For details about how to configure the policies required in authorization, refer to the final section of
this chapter.

RAM and STS Application Scenario Practices

Object Storage Service Developer Guide

56

1.

2.

In different application scenarios, how the access identity is verified may vary. The following describes
two methods for access identity verification in typical application scenarios.

A mobile app is used as an example. Assume that you are a mobile app developer. You attempt to
use the Alibaba Cloud OSS to store end user data of the app. You also have to ensure data is isolated
between app users to prevent an app user from obtaining data of other app users.

Mode 1: Using AppServer for Data Transit and Data Isolation

As shown in the figure above, you need to develop an AppServer. Only the AppServer can access the
ECS. The ClientApp can read or write data only through the AppServer. The AppServer ensures
isolated access to different user data.

In this method, you can use the key provided by your AliCloud account or RAM account for signature
verification. In case of any security problem, you are recommended not to directly use the key of your
AliCloud account (root account) to access the OSS.

Mode 2: Using STS For Direct Access to OSS

The STS solution is shown below:

The solution is described in detail as follows:

Log in as the app user. The app user is irrelative to the Alibaba Cloud account but is an end
user of the app. The AppServer allows the app user to log in. For each valid app user, the
AppServer needs to define the minimum access permission for them.
The AppServer requests a security token (SecurityToken) from the STS. Before calling STS,
the AppServer needs to determine the minimum access permission (described in policy
syntax) of app users and the expiration time of the authorization.Then, the AppServer uses
AssumeRole to obtain a security token indicating a role. For details about role management
and usage, refer to Role Management in the RAM User Guide.

Object Storage Service Developer Guide

57

3.

4.

5.

The STS returns a valid access credential to the AppServer, where the access credential
includes a security token, a temporary access key (AccessKeyID and AccessKeySecret), and
the expiry time.
The AppServer returns the access credential to the ClientApp. The ClientApp caches this
credential.When the credential becomes invalid, the ClientApp needs to request a new valid
access credential from the AppServer. For example, if the access credential is valid for one
hour, the ClientApp can request the AppServer to update the access credential every 30
minutes.
The ClientApp uses the access credential cached locally to request Alibaba Cloud Service
APIs. The ECS perceives the STS access credential, relies on STS to verify the credential, and
correctly responds to the user request.

RAM and STS Authorization Policy
Configuration

The detailed rules of the use of policies during RAM or STS authorization are as follows.

Example

First, let’s look at the following policy example:

{
"Version": "1",
"Statement": [
{
"Action": [
"oss:GetBucketAcl",
"oss:ListObjects"
],
"Resource": [
"acs:oss:*:1775305056529849:mybucket"
],
"Effect": "Allow",
"Condition": {
"StringEquals": {
"acs:UserAgent": "java-sdk",
"oss:Delimiter": "/",
"oss:Prefix": "foo"
},
"IpAddress": {
"acs:SourceIp": "192.168.0.0"
}
}
},
{
"Action": [

Object Storage Service Developer Guide

58

This is an authorization policy. You can use this policy to grant permissions for users through RAM or
STS.The policy has a Statement (one policy can have multiple Statements). In the Statement, Action,
Resource, Effect, and Condition are specified.

This policy authorizes your ‘mybucket’ and ‘mybucket/file*’ resources to corresponding users
and supports GetBucketAcl, GetBucket, PutObject, GetObject, and DeleteObject actions. The
Condition indicates that authentication is successful and authorized users can access related
resources only when UserAgent is java-sdk and the source IP address is 192.168.0.1.The Prefix and
Delimiter conditions apply during the GetBucket (ListObjects) action. For details about the two fields,
see OSS API Documentation.

Configuration Rules

Version

Policy version is defined. For configuration method in this document, it is set to “1”.

Statement

The Statement describes the authorization meaning. It can contain multiple meanings based on the
business scenario. Each meaning includes a description of the Action, Effect, Resource, and Condition.
The request system will check each statement for a match one by one. All successfully matched
statements will be divided into Allow and Deny based on the difference of Effect settings, and Deny is
given priority. If the matches are all Allow, the request passes authentication. If one of the matches is
Deny or there are no matches, this request is denied to access.

Action

Actions fall into two categories: bucket-level actions and object-level actions. Bucket-level actions
include oss:PutBucketAcl and oss:GetBucketLocation. The action objects are buckets and the action

"oss:PutObject",
"oss:GetObject",
"oss:DeleteObject"
],
"Resource": [
"acs:oss:*:1775305056529849:mybucket/file*"
],
"Effect": "Allow",
"Condition": {
"IpAddress": {
"acs:SourceIp": "192.168.0.0"
}
}
}
]
}

Object Storage Service Developer Guide

59

names correspond to the involved interfaces in a one-to-one manner. Object-level actions include
oss:GetObject, oss:PutObject, oss:DeleteObject, oss:DeleteObject, and oss:AbortMultipartUpload. If
you want to authorize actions for a type of object, you can select one or more of the above actions. In
addition, all action names must be prefixed with “oss:”, as shown in the example above. Action is a
list. There can be multiple Actions. The mapping between Actions and APIs is as follows:

Server-level

Bucket-level

API Action

GetService (ListBuckets) oss:ListBuckets

API Action

PutBucket oss:PutBucket

GetBucket (ListObjects) oss:ListObjects

PutBucketAcl oss:PutBucketAcl

DeleteBucket oss:DeleteBucket

GetBucketLocation oss:GetBucketLocation

GetBucketAcl oss:GetBucketAcl

GetBucketLogging oss:GetBucketLogging

PutBucketLogging oss:PutBucketLogging

DeleteBucketLogging oss:DeleteBucketLogging

GetBucketWebsite oss:GetBucketWebsite

PutBucketWebsite oss:PutBucketWebsite

DeleteBucketWebsite oss:DeleteBucketWebsite

GetBucketReferer oss:GetBucketReferer

PutBucketReferer oss:PutBucketReferer

GetBucketLifecycle oss:GetBucketLifecycle

PutBucketLifecycle oss:PutBucketLifecycle

DeleteBucketLifecycle oss:DeleteBucketLifecycle

ListMultipartUploads oss:ListMultipartUploads

PutBucketCors oss:PutBucketCors

GetBucketCors oss:GetBucketCors

DeleteBucketCors oss:DeleteBucketCors

PutBucketReplication oss:PutBucketReplication

GetBucketReplication oss:GetBucketReplication

Object Storage Service Developer Guide

60

Object level

Resource

Resource stands for a specific resource or resources on the OSS (the wildcard is supported).
Resources are named in the format of “acs:oss:region:bucket_owner:bucket_name/object_name”.
For all bucket-level actions, the final part “/object_name” is not required. You can just render it as
“acs:oss:region:bucket_owner:bucket_name”. Resource is also a list and there can be multiple
Resources. Here, the region field is currently not supported and set as “*”.

Effect

Effect indicates the authorization result of the Statement. Two value options are available: Allow and
Deny. When there are multiple Statement matches, the Deny is given higher priority.

Condition

Condition indicates the conditions for the authorization policy. In the above example, you can set

DeleteBucketReplication oss:DeleteBucketReplication

GetBucketReplicationLocation oss:GetBucketReplicationLocation ｜

GetBucketReplicationProgress oss:GetBucketReplicationProgress ｜

API Action

GetObject oss:GetObject

HeadObject oss:GetObject

PutObject oss:PutObject

PostObject oss:PutObject

InitiateMultipartUpload oss:PutObject

UploadPart oss:PutObject

CompleteMultipart oss:PutObject

DeleteObject oss:DeleteObject

DeleteMultipartObjects oss:DeleteObject

AbortMultipartUpload oss:AbortMultipartUpload

ListParts oss:ListParts

CopyObject oss:GetObject,oss:PutObject

UploadPartCopy oss:GetObject,oss:PutObject

AppendObject oss:PutObject

GetObjectAcl oss:GetObjectAcl

PutObjectAcl oss:PutObjectAcl

Object Storage Service Developer Guide

61

check conditions for acs:UserAgent and acs:SourceIp. The oss:Delimiter and oss:Prefix fields are used
to restrict resources during the GetBucket action.

The OSS supports the following conditions:

More Examples

For more examples of authorization policies in specific scenarios, click here；For convenient online
graphical policy configuration tools, click here.

Best Practices:

RAM and STS User Guide

Access Logging Configuration

The OSS provides users with automatic saving of server access logs. A bucket owner can log in to
OSS Consoleto enable the server access logging feature for all the owner’s buckets. When access
logging is activated for a bucket (Source Bucket), the OSS will generate an object containing all
access request logs of that bucket (by hour) and write the object into the user-designated bucket
(Target Bucket) according to fixed naming rules.

Object Naming Rules for Access Logging

Condition Function Valid Value

acs:SourceIp Specifying the IP address
segment

Common IP address,
wildcard (*) supported

acs:UserAgent Specifying the http
useragent header String

acs:CurrentTime Specifying valid access time ISO8601 format

acs:SecureTransport Whether HTTPS is used “true” or “false”

oss:Prefix Used as the prefix for
ListObjects Valid object name

oss:Delimiter Used as the delimiter for
ListObject Valid delimiter value

<TargetPrefix><SourceBucket>-YYYY-mm-DD-HH-MM-SS-UniqueString

Object Storage Service Developer Guide

62

In the naming rules, the TargetPrefix is specified by the user; YYYY, mm, DD, HH, MM and SS give the
year, month, day, hour, minutes and seconds of the creation time in Arabic numerals (note the digits);
and UniqueString is the string generated by the OSS system. An example for the name of an object
actually used to store OSS access logs is given below:

In the above example, “MyLog-“ is the Object prefix specified by the user; “oss-example” is the
name of the origin bucket; “2012-09-10-04-00-00” is the Object creation time (Beijing time); and
“0000” is the string generated by the OSS system.

Log File Format

(Separated by spaces from left to right):

MyLog-oss-example-2012-09-10-04-00-00-0000

Name Example Description

Remote IP 119.140.142.11

IP address from which the
request is initiated (the proxy
or user firewall may block
this field)

Reserved - Reserved field

Reserved - Reserved field

Time [02/May/2012:00:00:04
+0800]

Time when the OSS receives
the request

Request-URI “GET /aliyun-logo.png
HTTP/1.1”

User-Requested URI
(including query-string)

HTTP Status 200 HTTP status code returned
by the OSS

SentBytes 5576 Traffic that the user
downloads from the OSS

RequestTime (ms) 71 Time spent in completing
this request (in ms)

Referer http://www.aliyun.com/prod
uct/oss Requested TTP Referer

User-Agent curl/7.15.5 HTTP User-Agent header

HostName oss-example.oss-cn-
hangzhou.aliyuncs.com

Domain name for access
request

Request ID 505B01695037C2AF032593A
4

UUID used to uniquely
identify this request

LoggingFlag true Whether the access logging
function is enabled

Reserved - Reserved field

Object Storage Service Developer Guide

63

1.

2.

3.

4.

5.

6.

7.

Detail Analysis

The source bucket and target bucket must belong to the same user.
TargetPrefix indicates the name prefix of the object used for storing access logs. The field
can be left blank.
The source bucket and target bucket can be the same or different buckets. You can save
logs from multiple source buckets to the same target bucket (in this case, it is
recommended that you assign different values to TargetPrefix).
The OSS generates a bucket access log file every hour. However, all requests in the hour
may not be recorded in the log file, but may be recorded in the previous or next log file.
In the naming rules for log files generated by the OSS, “UniqueString” is just a UUID that
the OSS generates for an object to uniquely identify the file.
Each time the OSS generates a bucket access log file, this is considered a PUT operation and
the occupied space is recorded, but the generated traffic is not recorded. After log files are
generated, you can operate these log files as common objects.
The OSS ignores all query-string parameters prefixed by “x-“ but such query-string
parameters are recorded in access logs. If you want to mark a special request from massive
access logs, you can add a query-string parameter prefixed by “x-“ to the URL. For
example:http://oss-example.oss-cn-hangzhou.aliyuncs.com/aliyun-logo.pnghttp://oss-
example.oss-cn-hangzhou.aliyuncs.com/aliyun-logo.png?x-user=adminWhen the OSS

Requester AliCloud ID 1657136103983691 AliCloud ID of the requester,
“-“ for anonymous access

Operation GetObject Request type

Bucket oss-example Name of the bucket
requested for access

Key /aliyun-logo.png User-Requested Key

ObjectSize 5576 Object size

Server Cost Time (ms) 17
Time taken by the OSS server
to process this request (in
ms)

Error Code NoSuchBucket Error code returned by the
OSS

Request Length 302 Length of user request (byte)

UserID 1657136103983691 ID of the bucket owner

Delta DataSize 280 Bucket size variation, “-“
for no change

Sync Request -
Whether this is a back-to-
source request from CND,
“-“ for no

Reserved - Reserved field

Object Storage Service Developer Guide

64

8.

-

1.

2.

3.

4.

5.

6.

7.

8.

-

processes the above two requests, the results are the same. However, you can search access
logs with “x-user=admin” to quickly locate the marked request.
You may see “-“ in any field of OSS logs. It indicates that data is unknown or the field is
invalid for the current request.Certain fields will be added to the end of OSS log files in the
future based on the requirements. It is recommended that developers take compatibility
issues into consideration when developing log processing tools.

Function usage reference:

Console: Server Access Logging

Anti-leech Settings

The OSS collects service fees based on use. To prevent users’ data on OSS from being leeched, OSS
supports anti-leech based on the field referer in the HTTP header. Users can log in to OSS Console or
use APIs to configure a referer white list for a bucket or whether to allow access by requests where
referer is blank. For example, for a bucket named oss-example, set its referer white list to ‘
http://www.aliyun.com‘. Then, only requests with a referer of ‘http://www.aliyun.com‘ can access
the objects in the bucket.

Detail Analysis

Anti-leech verification will be performed only when users access objects through URL
signatures or anonymously. When the request header contains the “Authorization” field,
anti-leech verification is not performed.
A bucket supports multiple referer fields, which are separated by the comma “,”.
The referer field supports the wildcard “*“ and “?”。
Users can set whether to allow access requests with empty referer fields.
When the white list is empty, the system will not check if the referer field is null (otherwise,
all requests will be rejected).
When the white list is not empty and the rules do not allow null referer fields, only requests
with referers in the white list will be allowed. Other requests (including null referer requests)
will be rejected.
If the white list is not empty and the rules allow empty referer fields, requests with empty
referer and with the referers in the white list will be allowed. Other requests will be rejected.
The three bucket permissions (private, public-read, and public-read-write) will all check the
referer field.

Wildcard details:

Asterisk “”:The asterisk can be used to represent 0 or multiple characters. If you are
looking for an object name prefixed with AEW but have forgotten the remaining part, you

Object Storage Service Developer Guide

65

-

-

-

can enter AEW* to search for all types of files starting with AEW, such as AEWT.txt,
AEWU.EXE and AEWI.dll. If you want to narrow down the search scope, you can enter
AEW*.txt to search for all .txt files starting with AEW, such as AEWIP.txt and AEWDF.txt.
Question mark “?”: The question mark can be used to represent one character. If you enter
love?, all types of files starting with love and ending with one character will be displayed,
such as lovey and lovei. If you want to narrow the search scope, you can enter love?.doc to
search for all .doc files starting with love and ending with one character, such as lovey.doc
and loveh.doc.

Function usage reference:

API: Put Bucket Referer
Console: Anti-leech Settings

Cross-origin Resource Sharing Configuration

Cross-origin access, or the cross-origin of JavaScript, is a browser restriction set for the sake of
security, namely, the same-origin policy. When Website A tries to use the JavaScript code in its
webpage to access Website B, the attempt will be rejected by the browser because A and B are two
websites of different origins.

Cross-origin access needs arise frequently in actual usage, such as when OSS is used at the back end
for the user’s website www.a.com.The upload function implemented with JavaScript is provided in
the webpage. However, requests could only be sent to www.a.com in the webpage, and all the
requests sent to other websites are rejected by the browser. Thus the data uploaded by users has to
be relayed to other sites via www.a.com.If cross-origin access is set, users could upload their data
directly to OSS instead of relaying it via www.a.com.

Cross-origin Resource Sharing (CORS) is the standard across-origin solution provided by HTML5.
Currently, the CORS standard is supported by OSS for cross-origin access. For details about the
specific CORS rules, refer to W3C CORS Norms. In simple terms, CORS indicates the origin of where
the request is originated by using a header containing the origin of the HTTP request. As in the
previous example, the origin header contains www.a.com.After receiving the request, the server will
judge based on certain rules whether the request should be accepted or not. If yes, the server will
attach the Access-Control-Allow-Origin header in the response. The header contains www.a.com,
indicating that cross-origin access is allowed. In case that the server accepts all the cross-origin
requests, just set the Access-Control-Allow-Origin header to *. The browser will determine whether
the cross-origin request is successful or not based on whether the corresponding header has been
returned or not. In case that no corresponding header is attached, the browser will block the request.
In case that the request is not a simple one, the browser will firstly send an OPTIONS request to
obtain the CORS configuration of the server. In case that the server does not support the following
operations, the browser will also block the following requests.

Object Storage Service Developer Guide

66

-

-

-

-

-

-

-

-

OSS provides the configuration of the CORS rule, accepting or rejecting corresponding cross-origin
requests as needed. The rule is configured at the bucket level. The details are available in
PutBucketCORS.

Here are several key points:

Attaching relevant CORS headers and other actions are automatically executed by the
browser, and no additional action is required by the user. Only in the browser environment
could the CORS operations be meaningful.
Whether a CORS request is accepted is completely independent of OSS authentication and
other such measures, i.e. the OSS CORS rule is only used to determine whether to attach the
relevant CORS headers. Whether the request should be blocked should be exclusively
determined by the browser.
When using cross-origin requests, make sure the browser’s cache function is enabled. For
example, the same cross-origin resource have been requested by two webpages running on
the same browser (originated from www.a.com and www.b.com) at the same time
respectively. If the request of www.a.com is received by the server in the first place, the
server will return to the user the resource with the Access-Control-Allow-Origin header
“www.a.com”. When www.b.com initiates its request, the browser will return its previous
cached request to the user. As the header content does not match the CORS request, the
subsequent request fails.

Function usage reference:

API: Cross-origin Resource Sharing
SDK: Java SDK-Cross-origin Resource Sharing
Console: Cross-origin Resource Sharing

Server-Side Encryption

OSS supports server-side encryption of data uploaded by users: When a user uploads data, the OSS
encrypts the received user data and permanently stores the encrypted data. When a user downloads
data, the OSS automatically decrypts the encrypted data, returns the original data to the user, and
declares in the header of the returned HTTP request that the data has been encrypted on the server
side. In other words, there is major big difference between downloading an object encrypted on the
server side and downloading a common object, because the OSS manages the entire codec process
for users.Currently, the OSS’s server-side encryption is an attribute of objects. When creating an
object, a user only needs to add the HTTP Header “x-oss-server-side-encryption” to the Put Object
request and specify its value as “AES256”. Then, the object can be encrypted on the server side
before it is stored. Currently, server-side encryption is supported by the following operations:

Put Object
Copy Object

Object Storage Service Developer Guide

67

-

1.

2.

3.

-

-

-

-

-

-

-

-

-

-

-

-

Initiate Multipart Upload
Detail Analysis

Except the Put Object, Copy Object, and Initiate Multipart Upload requests, if any other
request received by the OSS contains the ‘x-oss-server-side-encryption’ header, the OSS
will directly return HTTP Status Code 400, with the error code in the message body being
InvalidArgument.
Currently, the OSS only supports the AES256 encryption algorithm. If the user specifies
another value for the ‘x-oss-server-side-encryption’ header, the OSS will directly return
HTTP Status Code 400, with the error code in the message body being
‘InvalidEncryptionAlgorithmError’.
For objects stored after server-side encryption, the OSS returns the x-oss-server-side-
encryption header in the API requests below, with its value being the entropy encryption
algorithm:

Put Object
Copy Object
Initiate Multipart Upload
Upload Part
Complete Multipart Upload
Get Object
Head Object

Specific Implementation

API: Append Object
API: Put Object
API: Copy Object
API: Post Object

Static Website Hosting

The OSS supports static website hosting. On the OSS Console users can set up their storage space to
work in static website hosting mode. After the configuration takes effect,The domain name of a static
website hosted in bucket located in the Hangzhou region is as follows:

For users to manage static websites hosted on the OSS more easily, the OSS provides two functions:

Index Document SupportThe index document refers to the default index document

http://<Bucket>.oss-cn-hangzhou.aliyuncs.com/

Object Storage Service Developer Guide

68

-

-

-

1.

2.

3.

4.

5.

6.

7.

-

-

(equivalent to index.html of the website) returned by the OSS when a user directly accesses
the root domain name of the static website. If you have set static website hosting mode for a
bucket, you have to specify an index document.
Error Document SupportThe error document refers to the error page the OSS returns to a
user if the HTTP 4XX error (the most typical error is 404 “NOT FOUNT”) occurs when the
user accesses the static website. By specifying the error page, you can provide your users
with appropriate error prompts.

For example: The user sets the index document support as index.html, the error document support as
error.html, the bucket as oss-sample, and the endpoint as oss-cn-hangzhou.aliyuncs.com. Thus:

When the user accesses http://oss-sample.oss-cn-hangzhou.aliyuncs.com/ and http://oss-
sample.oss-cn-hangzhou.aliyuncs.com/directory/,This is the same as accessing http://oss-
sample.oss-cn-hangzhou.aliyuncs.com/index.html
When the user accesses http://oss-sample.oss-cn-hangzhou.aliyuncs.com/object, OSS will
return http://oss-sample.oss-cn-hangzhou.aliyuncs.com/error.html if the object does not
exist.

Detail Analysis

Static websites are websites where all web pages are composed of static content, including
scripts such as JavaScript executed on the client. The OSS does not support content that
needs to be processed by the server, such as PHP, JSP, and APS.NET.
For access to a bucket-based static website through a user-defined domain name, you can
use Domain Name CNAME.
Because the OSS restricts access by bucket domain names, users’ files cannot be directly
viewed in a browser. Users are recommended to use CNAMEs.
When a user sets static website hosting mode for a bucket, the index page must be
specified and the error page is optional.
When a user sets a bucket to static website hosting mode, the specified index page and
error page must be objects in this bucket.
After a bucket is set to static website hosting mode, the OSS returns the index page for
anonymous access to the root domain name of the static website, and returns Get Bucket
results for signed access to the root domain name of the static website.
After static website hosting mode is set for a bucket and the user accesses the root domain
name of a static website or a nonexistent object, the OSS will return a specified object to
the user and bills the return traffic and requests.

Reference for Using the Function:

API: Put Bucket Website
Console: Static Website Hosting

Object Storage Service Developer Guide

69

	Developer Guide
	Document Overview
	Product introduction
	What is OSS?
	Introduction to basic OSS concepts
	Bucket
	Objects/Files
	Region
	Endpoint (Access Domain Name)
	AccessKey
	High Consistency
	Comparison of OSS and File Systems
	OSS Glossary

	Advantages
	Application Scenarios
	Massive Storage Space for Image and Audio/Video Applications
	Static/Dynamic Resource Separation for Webpages and Apps
	Cloud Data Processing

	OSS Change History
	Access and Control
	OSS Access Domain Names
	Composition Rules for OSS Domain Names
	Endpoint Naming Rules for External Network
	Endpoint Naming Rules for Internal Network

	OSS Regions and Endpoints
	Domain Name Settings in OSS SDK
	Using Intranet Endpoints to Access OSS in ECS

	Accessing OSS
	OSS Access URLs
	OSS Access Security
	OSS Access Verification Process
	Anonymous Request Access Process
	Access Process for Requests with ID Verification Information
	Three Methods for OSS Access with ID Verification Information

	User-defined OSS Domain Names
	OSS Access Domain Names
	OSS Regions and Endpoints
	VPC Network Regions and Endpoints

	Accessing OSS
	OSS-based App Development
	Development Architecture
	Service Development Process
	Temporary Credential Upload Authorization
	Signed URL Authorization for Uploads and Form Uploads
	Temporary Credential Download Authorization
	Signed URL Authorization for Downloads
	Special Note

	Reference for Using the Function:

	OSS Quick Start
	Quick Start with the Console:
	Quick Introduction to OSS Uploads and Downloads
	Quick Start with SDKs:

	Bucket Management
	Create a Bucket
	Function Usage Reference

	Setting Bucket Read and Write Permissions (ACL)
	Function Usage Reference

	Viewing the List of Buckets
	Obtaining Bucket Information
	Function Usage Reference

	Delete a Bucket
	Uploading Files
	Simple Upload
	Applicable Scenarios
	Setting Object Meta When Uploading Files
	Upload Restrictions
	Upload of Large Files
	Upload Security and Authorization
	Post-upload Operations
	Reference for Using the Function:
	Best Practices
	Reference Links:

	Form Upload
	Applicable Scenarios
	Upload Restrictions
	Advantages of Form Upload
	Upload Security and Authorization
	Basic Process
	Reference for Using the Function:
	Best Practices
	Reference Links:

	Resumable Upload
	Applicable Scenarios
	Basic Process
	Resumable Upload
	Upload Restrictions
	Upload Security and Authorization
	Post-upload Operations
	Reference for Using the Function:
	Best Practices
	Reference Links:

	Append Upload
	Applicable Scenarios
	Upload Restrictions
	Upload Security and Authorization
	Post-upload Operations
	Reference for Using the Function:
	Best Practices
	Reference Links:

	Authorized Third-party Upload
	Applicable Scenarios
	URL Signature
	Temporary Access Credentials
	Best Practices
	Reference Links:

	Upload Callback
	Applicable Scenarios
	Reference for Using the Function:
	Best Practices:
	Reference Links:

	File Download
	Simple Download
	Resumable Download
	Authorized Third-Party Download
	URL Signature
	Implementation Method
	Specific Implementation

	Temporary Access Credentials
	Implementation Method

	Reference for Using the Function:
	Best Practices:
	Reference Links:

	File Management
	Object Meta
	Setting Object Meta When Uploading Objects
	Modifying Object Meta After Uploading Objects
	Retrieving Object Meta

	View the Object List
	Folder Simulation

	Copy an Object
	Copying Large Objects
	Delete an Object
	Object Lifecycle Management
	Cross-Region Replication
	Application Scenarios
	Instructions for Use
	Constraints
	Reference for Using the Function:

	Back-to-Source Settings
	Image Method
	Application Scenarios
	Usage Rules

	Redirection
	Reference for Using the Function:

	Security Management
	Identity Authentication for visitors
	Sending an OSS Access Request
	Types of AccessKeys
	Alibaba Cloud Account AccessKeys
	RAM Account AccessKeys
	STS Account AccessKeys

	Implementation of Identity Authentication

	Permission Control
	Bucket-level Permissions
	Bucket Permission Types
	Bucket Permission Settings and Read Methods

	Object-level Permissions
	Object Permission Types
	Considerations
	Object Permission Settings and Read Methods

	Account-level Permissions (RAM)
	Application Scenarios
	Specific Implementation

	Temporary Account Permissions (STS)
	Application Scenarios
	Specific Implementation

	RAM and STS Application Scenario Practices
	Mode 1: Using AppServer for Data Transit and Data Isolation
	Mode 2: Using STS For Direct Access to OSS

	RAM and STS Authorization Policy Configuration
	Example
	Configuration Rules
	Version
	Statement

	More Examples
	Best Practices:

	Access Logging Configuration
	Object Naming Rules for Access Logging
	Log File Format
	Detail Analysis

	Anti-leech Settings
	Detail Analysis

	Cross-origin Resource Sharing Configuration
	Server-Side Encryption
	Detail Analysis
	Specific Implementation

	Static Website Hosting
	Detail Analysis

