
Object Storage Service

SDK Reference

-

-

1.

2.

3.

4.

SDK Reference

Java-SDK

Preface

Introduction

This document introduces the installation and use of the OSS Java SDK (JAVA SDK 2.0.5 particularly).
This document assumes that you have already subscribed to the AliCloud OSS service and created an
Access Key ID and Access Key Secret. In the document, ID represents the Access Key ID and KEY
indicates the Access Key Secret. If you have not yet subscribed to or do not know about the OSS
service, please log into the OSS Product Homepage for more help.

SDK Download

Java SDK 2.4.0：aliyun_java_sdk_20161121.zip
GitHub：https://github.com/aliyun/aliyun-oss-java-sdk

Version Revisions

Java SDK (2015-07-10) Version 2.0.5

Updates:

Added Append Object support.
Added HTTPS support.
Added the encoding-type parameter in the DeleteObject and ListObjects interfaces for
users to specify the object name encoding method.
Removed the mandatory check of the Expires response header date format, fixing the issue
where the system could not parse Expires response headers without using the GMT date
format.

Object Storage Service SDK Reference

1

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

Java SDK (2015-05-29) Version 2.0.4

Updates:

Added STS support.
Added a test Demo Jar; for specific usage, refer to Readme.txt in the demo folder.
Modified the CreateBucket logic to allow users to specify the Bucket ACL during creation.
Modified the bucket name inspection rules, allow for operations on existing buckets with
underlines, but not the creation of buckets with underlines.
Optimized the HTTP connection pool, enhancing its concurrent processing capability.

Java SDK (2015-04-24) Version 2.0.3

Updates:

Added the deleteObjects interface to batch delete object lists.
Added the doesObjectExist interface to check for the existence of objects under the specified
bucket.
Added the switchCredentials interface, allowing users to switch the credentials of existing
OSSClient instances.
Added the OSSClient constructor with CredentialsProvider to allow for more customization
of the CredentialsProvider.
Fixed the bug that occurred when the Source Key in the copyObject interface contained the
plus sign special character.
Adjusted the OSSException/ClientException information display format.

Java SDK (2015-03-23) Version 2.0.2

Updates:

Added the GeneratePostPolicy/calculatePostSignature interface, used to generate the Policy
string and Post signature for Post requests.
Support for Bucket Lifecycle.
Added the URL signature-based Put/GetObject overload interface.
Support for PutObject, UploadPart, and Chunked encoding data upload.
Fixed several bugs.

Java SDK (2015-01-15) Version 2.0.1

Updates:

Support for Cname, allowing users to specify which domain names are retained
Support for user ContentType and ContentMD5 specification during URI generation.
Addressed the problem where CopyObject requests did not support server-side encryption.

Object Storage Service SDK Reference

2

-

-

-

-

-

-

-

-

-

Changed the UserAgent format.
Expanded the Location constant.
Added some samples.

Java SDK Development Kit (2014-11-13) Version 2.0.0

Updates:

Upload Part Copy function.
OSS Java SDK source code.
Some sample codes.

This version is dependent on the version prior to modification. Using the previous SDK program
version with this Java SDK requires you to change the package name reference. The package names
com.aliyun.openservices.* and com.aliyun.openservices.oss.* should be changed to com.aliyun.oss.*.
For example:Using the previous Java SDK version

Using the 2.0.0 Java SDK version

Installation

Directly Using the JAR Package in Eclipse

Steps:

Download Open Service Java SDK from the official website.
Decompress the file.
Copy the file aliyun-sdk-oss-<versionId>.jar from the post-decompression folder and all files
in the lib folder to your project folder.

import com.aliyun.openservices.ClientConfiguration;
import com.aliyun.openservices.ClientException;
import com.aliyun.openservices.ServiceException;
import com.aliyun.openservices.oss.OSSClient;
import com.aliyun.openservices.oss.OSSErrorCode;
import com.aliyun.openservices.oss.OSSException;

import com.aliyun.oss.ClientConfiguration;
import com.aliyun.oss.ClientException;
import com.aliyun.oss.ServiceException;
import com.aliyun.oss.OSSClient;
import com.aliyun.oss.OSSErrorCode;
import com.aliyun.oss.OSSException;

Object Storage Service SDK Reference

3

-

-

-

In Eclipse, right-click on Project -> Properties -> Java Build Path -> Add JARs.
Select all the JAR files you copied.
After completing the steps above, you can use the OSS JAVA SDK in the project.

Using SDKs in Maven Projects

It is very easy to use the JAVA SDK in Maven projects. You just have to add the dependencies in the
pom.xml file. Using version 2.0.2 as an example, enter the following content in the dependencies tab:

Quick Start

In this chapter, you will learn how to use the basic functions of the OSS Java SDK.

Step-1. Initialize an OSSClient

SDK OSS operations are performed through OSSClients. The code below creates an OSSClient object:

In the above code, the variables accessKeyId and accessKeySecret are allocated to the user by the
system. They are called the ID pair and used to identify the user. They may be used to perform
signature verification when your AliCloud account or RAM account accesses OSS. For more

<dependency>
 <groupId>com.aliyun.oss</groupId>
 <artifactId>aliyun-sdk-oss</artifactId>
 <version>2.0.2</version>
</dependency>

import com.aliyun.oss.OSSClient;

public class Sample {

 public static void main(String[] args) {
 String accessKeyId = "<key>";
 String accessKeySecret = "<secret>";
 // Uses Hangzhou as an example
 String endpoint = "http://oss-cn-hangzhou.aliyuncs.com";

 // Initializes an OSSClient
 OSSClient client = new OSSClient(endpoint,accessKeyId, accessKeySecret);

 // The following is the calling code...
 ...
 }
}

Object Storage Service SDK Reference

4

information on the OSSClient, refer to OSSClient.

Step-2. Creating Buckets

Buckets are the OSS global namespace. They are equivalent to a data container and can store
numerous objects. You can create a bucket with the following code:

For bucket naming rules, refer to the naming rules in Bucket.

Step-3. Upload objects

Objects are the basic data elements in OSS. You can simply think of them as files. The code below will
upload an object:

The object is uploaded to OSS through InputStream form. In the above example, we can see that,
each time you upload an object, you must specify the ObjectMetadata associated with it.
ObjectMetaData is the user's description of the object, composed of a series of name-value pairs.

public void createBucket(String bucketName) {

 // Initializes an OSSClient
 OSSClient client = new OSSClient(endpoint,accessKeyId, accessKeySecret);

 // Creates a Bucket
 client.createBucket(bucketName);
}

public void putObject(String bucketName, String key, String filePath) throws FileNotFoundException {

 // Initializes an OSSClient
 OSSClient client = new OSSClient(endpoint,accessKeyId, accessKeySecret);

 // Retrieves specified file input stream
 File file = new File(filePath);
 InputStream content = new FileInputStream(file);

 // Creates Metadata for the object to upload
 ObjectMetadata meta = new ObjectMetadata();

 // You must set the ContentLength
 meta.setContentLength(file.length());

 // Uploads the object
 PutObjectResult result = client.putObject(bucketName, key, content, meta);

 // Prints the ETag
 System.out.println(result.getETag());
}

Object Storage Service SDK Reference

5

Here, ContentLength is a required setting, used to allow the SDK to correctly identify the size of the
object to be uploaded. In order to ensure the consistency of files uploaded to the server with the
version on the local disk, users can set ContentMD5. OSS will calculate the MD5 value for the upload
data and compare it with the MD5 value uploaded by the user. If they are inconsistent, the system
will return the InvalidDigest error code. For object naming rules, refer to the naming rules in Object.
For more information about uploading objects, refer to uploading objects in Object.

Step-4. Listing all objects

When you complete a series of uploads, you may need to view which objects are in a bucket. This can
be done with the following program:

The listObjects method returns the ObjectListing object. This contains the returned results for this
listObject request. Here, we can use the getObjectSummaries method in ObjectListing to retrieve all
object description information.

Step-5. Retrieving a specified object

You can refer to the code below to easily retrieve an object:

public void listObjects(String bucketName) {

 // Initializes an OSSClient
 OSSClient client = new OSSClient(endpoint,accessKeyId, accessKeySecret);

 // Retrieves information for all objects in the specified bucket
 ObjectListing listing = client.listObjects(bucketName);

 // Traverses all objects
 for (OSSObjectSummary objectSummary : listing.getObjectSummaries()) {
 System.out.println(objectSummary.getKey());
 }
}

public void getObject(String bucketName, String key) throws IOException {

 // Initializes an OSSClient
 OSSClient client = new OSSClient(endpoint,accessKeyId, accessKeySecret);
 // Retrieves an object; the returned result is an OSSObject object
 OSSObject object = client.getObject(bucketName, key);
 // Retrieves an object input stream
 InputStream objectContent = object.getObjectContent();
 // Processes the object
 ...
 // Closes the stream
 objectContent.close();
}

Object Storage Service SDK Reference

6

When you call the OSSClient's getObject method, it returns an OSSObject object, containing various
object information. Using the OSSObject's getObjectContent method, you can retrieve the returned
object input stream and obtain the object content by reading it. When you have finished the
operation, close the stream.

OSSClient

The OSSClient is the Java client of OSS services. It provides a series of functions to be called for
interaction with OSS services.

Creating the OSSClient

It is very easy to create an OSSClient, as shown in the code below:

It is critical that the user import the AccessKey and access the bucket endpoint. If the user wishes to
use HTTPS protocol, the endpoint must start with https://.

Configuring the OSSClient

To configure detailed parameters for the OSSClient, you can import a ClientConfiguration object
when creating the OSSClient. ClientConfiguration is the OSS service configuration type. It allows you
to configure a proxy for the client, the maximum number of connections, and other parameters.

Using a Proxy

The code below allows the client to use a proxy to access the OSS service:

String key = "<key>";
String secret = "<secret>";
// Uses Hangzhou as an example
String endpoint = "http://oss-cn-hangzhou.aliyuncs.com";

OSSClient client = new OSSClient(endpoint, accessKeyId, accessKeySecret);

// Creates a ClientConfiguration instance
ClientConfiguration conf = new ClientConfiguration();

// Configures the proxy for the local port 8080
conf.setProxyHost("127.0.0.1");
conf.setProxyPort(8080);

// Creates the OSSClient
client = new OSSClient(endpoint, accessKeySecret, accessKeySecret, conf);

Object Storage Service SDK Reference

7

The code above enables all operations on the client to be executed by proxy through port 8080 at
127.0.0.1. For proxies that authenticate users, you can configure the usernames and passwords:

Setting Network Parameters

We can use ClientConfiguration to set some network parameters:

Using ClientConfiguration we can set the following parameters:

// Creates a ClientConfiguration instance
ClientConfiguration conf = new ClientConfiguration();

// Configures the proxy for the local port 8080
conf.setProxyHost("127.0.0.1");
conf.setProxyPort(8080);

//Sets the username and password
conf.setProxyUsername("username");
conf.setProxyPassword("password");

ClientConfiguration conf = new ClientConfiguration();

// Sets the maximum number of HTTP connections to 10
conf.setMaxConnections(10);

// Sets TCP connection timeout to 5000 milliseconds
conf.setConnectionTimeout(5000);

// Sets the maximum number of retries to 3
conf.setMaxErrorRetry(3);

// Sets the Socket data transmission time out to 2,000 milliseconds
conf.setSocketTimeout(2000);

Parameter Description

UserAgent The user proxy, specifies the HTTP User-Agent
header. The default value is "aliyun-sdk-java"

ProxyHost The proxy's host address

ProxyPort The proxy's port

ProxyUsername The username verified by the proxy

ProxyPassword The password verified by the proxy

ProxyDomain The Windows domain name to access the
NTLM verified proxy

ProxyWorkstation The name of the Windows workstation for the
NTLM proxy

MaxConnections The maximum number of HTTP connections
that can be enabled. The default value is 1024

Object Storage Service SDK Reference

8

-

-

-

Bucket

OSS uses buckets as the namespaces of user files and also as the management objects for advanced
functions such as charging, permission control, and log recording. The bucket name must be globally
unique in the entire OSS and cannot be changed. Every object stored on the OSS must be included in
a bucket. One application, such as an image sharing website, can correspond to one or more buckets.
A user can create a maximum of 10 buckets, but there is no limit on the number of objects in each
bucket. Each bucket can store up to 2 PB of data.

Naming Rules

The bucket naming rules are as follows:

It can only contain lower-case letters, numbers, and dashes (-).
It must start with a lower-case letter or number.
The length must be 3-63 bytes

Creating Buckets

We can use the code below to create a bucket:

Because bucket names are globally unique, do your best to ensure your bucket names are not the
same as other people's.

SocketTimeout
The time out of enabling connections for data
transmission (unit: milliseconds). The default
value is 50000 milliseconds

ConnectionTimeout
The connection establishment timeout time
(unit: milliseconds).The default value is 50000
milliseconds

MaxErrorRetry The maximum number of times failed
requests can be retried. The default value is 3

String bucketName = "my-bucket-name";

// Initializes an OSSClient
OSSClient client = ...;

// Creates a Bucket
client.createBucket(bucketName);

Object Storage Service SDK Reference

9

Listing all Buckets of a User

The code below will list all the buckets of the user:

CNAME Access

After a user directs his own domain name's CNAME to the domain name of one of his buckets, he can
access OSS through his domain name:

Users just need to change the endpoint originally expected to be entered in the bucket to the post-
CNAME domain name when creating an OSSClient instance. At the same time, users must note that,
when using this OSSClient instance for subsequent operations, the bucket name can only be filled by
the indicated bucket name.

If a VPC user wishes to access OSS through a domain name that does not end with aliyuncs.com,
he can use the setCnameExcludeList in the ClientConfiguration to set an endpoint and avoid
using the CNAME method to access OSS.

Determining If a Bucket Exists

To determine if a bucket exists, we can use the following code:

// Retrieves the user's bucket list
List<Bucket> buckets = client.listBuckets();

// Traverses buckets
for (Bucket bucket : buckets) {
 System.out.println(bucket.getName());
}

// For example, your domain name is "http://cname.com" and you direct the CNAME to your bucket domain name
"mybucket.oss-cn-hangzhou.aliyuncs.com"
OSSClient client = new OSSClient("http://cname.com/", /* accessKeyId */, /* accessKeySecret */);

PutObjectResult result = client.putObject("mybucket", /* key */, /* input */, /* metadata */);

String bucketName = "your-bucket-name";

// Gets information on existing buckets
boolean exists = client.doesBucketExist(bucketName);

// Outputs results
if (exists) {
 System.out.println("Bucket exists");
} else {

Object Storage Service SDK Reference

10

Setting Bucket ACL

To set the bucket ACL, we can use the following code:

Retrieving Bucket ACL

To retrieve the bucket ACL, we can use the following code:

Retrieving Bucket Addresses

To retrieve the bucket address, we can use the following code:

Deleting Buckets

The following code deletes a bucket:

You must note that, if the bucket is not empty (the bucket contains objects), it cannot be deleted. You
must delete all objects in a bucket before deleting the bucket.

 System.out.println("Bucket not exists");
}

String bucketName = "your-bucket-name";

//Uses a bucket with private permission as an example
client.setBucketAcl(bucketName,CannedAccessControlList.Private);

String bucketName = "your-bucket-name";
AccessControlList accessControlList = client.getBucketAcl(bucketName);

//You can print the results or confirm them on the console
System.out.println(accessControlList.toString());

String bucketName = "your-bucket-name";

// Retrieves the bucket address
String location = client.getBucketLocation(bucketName);
System.out.println(location);

String bucketName = "your-bucket-name";

// Deletes the bucket
client.deleteBucket(bucketName)

Object Storage Service SDK Reference

11

-

-

-

-

Object

In OSS, objects are the basic data units for user operation. The maximum size of a single object may
vary depending on the data uploading mode. The size of an object cannot exceed 5 GB in the Put
Object mode or 48.8 TB in the multipart upload mode. An object includes the key, meta, and data.
The key is the object name; meta is the user's description of the object, composed of a series of
name-value pairs; and data is the object data.

Naming Rules

Object naming rules:

It uses UTF-8 encoding
The length must be 1-1023 bytes
It cannot start with "/" or "\"
It cannot contain "\r" or "\n" line breaks

Uploading Objects

Simplest Upload

The code is as follows:

The object is uploaded to OSS in InputStream form. In the above example, we can see that, each time
you upload an object, you must specify the ObjectMetadata associated with the object.

public void putObject(String bucketName, String key, String filePath) throws FileNotFoundException {
 // Initializes an OSSClient
 OSSClient client = ...;
 // Retrieves specified file input stream
 File file = new File(filePath);
 InputStream content = new FileInputStream(file);
 // Creates Metadata for the object to upload
 ObjectMetadata meta = new ObjectMetadata();
 // You must set the ContentLength
 meta.setContentLength(file.length());

 // Uploads the object
 PutObjectResult result = client.putObject(bucketName, key, content, meta);

 // Prints the ETag
 System.out.println(result.getETag());
}

Object Storage Service SDK Reference

12

ObjectMetaData is the user's description of the object, composed of a series of name-value pairs.
Here, ContentLength is required for the SDK to correctly identify the size of the object to be
uploaded. In order to ensure the consistency between files uploaded to the server and local files,
users can set up ContentMD5. OSS will calculate and compare the MD5 value for the upload data
with the MD5 value uploaded by the user. If they are inconsistent, the system will return the
InvalidDigest error code.

Creating Simulated Folders

The OSS service does not use folders. All elements are stored as objects. However, users can create
simulated folders using the following code:

To create simulated folders in the OSS Console, you can create an object with a size of 0. This object
can still be uploaded and downloaded. The console will display any object ending with "/" as a folder.
Therefore, users can create simulated folders this way. For accessing folders, refer to the folder
simulation function

Setting the Object's Http Header

The OSS service allows users to customize the object Http Header. The following code sets the
expiration time for the object:

String bucketName = "your-bucket-name";
//The name of the folder to be created, which must satisfy the object naming rules and end with "/"
String objectName = "folder_name/";
OSSClient client = new OSSClient(OSS_ENDPOINT, ACCESS_ID, ACCESS_KEY);
ObjectMetadata objectMeta = new ObjectMetadata();
/*Here, the size is 0. Note that OSS does not use folders. Instead, you can simulate a folder using an object with a
size of 0, but the dataStream may still have data
 */
byte[] buffer = new byte[0];
ByteArrayInputStream in = new ByteArrayInputStream(buffer);
objectMeta.setContentLength(0);
try {
 client.putObject(bucketName, objectName, in, objectMeta);
} finally {
 in.close();
}

// Initializes an OSSClient
OSSClient client = ...;

// Initializes the upload input stream
InputStream content = ...;

// Creates Metadata for the object to upload
ObjectMetadata meta = new ObjectMetadata();

Object Storage Service SDK Reference

13

The Java SDK supports four types of Http Headers: Cache-Control, Content-Disposition, Content-
Encoding, and Expires. For details on the headers, please see RFC2616.

User-Defined Metadata

The OSS allows users to define metadata to describe the object. For example:

In the above code, the user has defined a metadata with its name as "name" and its value as "my-
data". When downloading this object, users will also obtain the metadata. A single object can have
multiple similar parameters, but the total size of all user meta cannot exceed 2 KB.

NOTE: The user meta name is not case sensitive. For instance, when a user uploads an object and
defines the metadata name as "Name", the parameter stored in the header will be: "x-oss-meta-
name". Therefore, when accessing the object, just use parameters named "name". However, if the
stored parameter is "name", no information can be found for the parameter and the system will
return "Null"

Upload Through Chunked Encoding

When the length of the content to be uploaded is unknown (e.g. SocketStream is being received and
uploaded at the same time as the data source for uploading until the Socket ends), chunked
encoding applies.

Chunked adopts the following encoding method:

// Sets the ContentLength to 1000
meta.setContentLength(1000);

// Sets the object to expire after 1 hour
Date expire = new Date(new Date().getTime() + 3600 * 1000);
meta.setExpirationTime(expire);
client.putObject(bucketName, key, content, meta);

// Sets the custom metadata name value as my-data
meta.addUserMetadata("name", "my-data");

// Uploads the object
client.putObject(bucketName, key, content, meta);

Chunked-Body = *chunk
"0" CRLF
footer
CRLF
chunk = chunk-size [chunk-ext] CRLF
chunk-data CRLF

hex-no-zero = <HEX excluding "0">

chunk-size = hex-no-zero * HEX

Object Storage Service SDK Reference

14

The code contains several chunks, ending with a chunk marked with a length of 0. Each chunk is
composed of two parts. The first part indicates the length of the chunk and the unit of the length
(generally not specified). The second part contains the content of the indicated length. Each part is
separated by CRLF. The last chunk with a length of 0 contains something called footer, which is a
blank header.

putobject chunked encoding When explicitly setting the ContentLength attribute in the
ObjectMetadata instance, the normal upload method applies (with the request body length
determined by the Content-Length request header). Otherwise, the chunked encoding method
applies.

Append Object

OSS allows users to directly append content to the end of an object using the Append Object
method. This requires the object type to be Appendable. Use the Append Object operation when the
created Object type is Appendable Object and the Put Object upload method for Normal Objects.

chunk-ext = *(";" chunk-ext-name ["=" chunk-ext-value])
chunk-ext-name = token
chunk-ext-val = token | quoted-string
chunk-data = chunk-size(OCTET)

footer = *entity-header

OSSClient client = new OSSClient(endpoint, accessId, accessKey);

FileInputStream fin = new FileInputStream(new File(filePath));
// If content-length is not specified, chunked encoding is the default value.
PutObjectResult result = client.putObject(bucketName, key, fin, new ObjectMetadata());

// Creates an OSSClient instance
OSSClient client = new OSSClient(ENDPOINT, ACCESS_ID, ACCESS_KEY);

// Initiates the first Append Object request; note that the first append operation requires the append location to be
set to 0
final String fileToAppend = "<file to append at first time>";
AppendObjectRequest appendObjectRequest = new AppendObjectRequest(bucketName, key, new
File(fileToAppend));

// Sets content-type; note that you can only set object meta for objects created using Append
ObjectMetadata meta = new ObjectMetadata();
meta.setContentType("image/jpeg");
appendObjectRequest.setMetadata(meta);

// Sets the append location to 0 and sends the Append Object request
appendObjectRequest.setPosition(0L);
AppendObjectResult appendObjectResult = client.appendObject(appendObjectRequest);

// Initiates the second Append Object request. The append location is set to the object length after the first append
final String fileToAppend2 = "<file to append at second time>";

Object Storage Service SDK Reference

15

When using the Append upload method, the user must set the Position parameter correctly. When
the user creates an Appendable Object, the append location is 0. When appending content to an
Appendable Object, the append location is the object's current length. There are two methods to get
the object length: One is to obtain it from the returned content following the append upload, as
shown in the code above. The other is to use the getObjectMetadata operation described below to
get the object's current length.

Object meta settings only apply when Append Object is used to create an object. Subsequently,
the Object meta can be changed by using the copy object interface described below (with the
source and destination set as the same object).

Multipart Upload

OSS allows users to split an object into several requests for uploading to the server. Concerning the
block upload content, refer to the Multipart Upload section in MultipartUpload.

List Bucket Objects

Listing Objects

appendObjectRequest = new AppendObjectRequest(bucketName, key, new File(fileToAppend2));

// Sets the append location as the size of the previously appended file and sends the Append object request
appendObjectRequest.setPosition(appendObjectResult.getNextPosition());
appendObjectResult = client.appendObject(appendObjectRequest);

OSSObject o = client.getObject(bucketName, key);
// The current size of this object is the total size of the two previously appended files
System.out.println(o.getObjectMetadata().getContentLength());
// The next append location is the total size of the two previously appended files
System.err.println(appendObjectResult.getNextPosition().longValue());

public void listObjects(String bucketName) {

 // Initializes an OSSClient
 OSSClient client = ...;

 // Retrieves information for all objects in the specified bucket
 ObjectListing listing = client.listObjects(bucketName);

 // Traverses all objects
 for (OSSObjectSummary objectSummary : listing.getObjectSummaries()) {
 System.out.println(objectSummary.getKey());
 }
}

Object Storage Service SDK Reference

16

The listObjects method returns the ObjectListing object, which contains the returned results for this
listObject request. Here, we can use the getObjectSummaries method in ObjectListing to retrieve all
object description information (List<OSSObjectSummary>).

NOTE: By default, if a bucket contains more than 100 objects, the first 100 will be returned and
the IsTruncated parameter in the returned results will be true. The returned NextMarker can be
used as the start point for next data access. The number of object entries returned can be
increased by modifying the MaxKeys parameter or using the Marker parameter for separate
access.

Extended Parameters

Generally, the ListObjectsRequest parameter provides more powerful functions. For example:

In the above code, we called the listObjects overload method and used the incoming
ListObjectsRequest to complete the request. Setting the parameters in ListObjectsRequest creates
many extended functions. The table below lists the names and actions of ListObjectsRequest
parameters:

// Constructs the ListObjectsRequest request
ListObjectsRequest listObjectsRequest = new ListObjectsRequest(bucketName);

// Sets parameters
listObjectsRequest.setDelimiter("/");
listObjectsRequest.setMarker("123");
...

ObjectListing listing = client.listObjects(listObjectsRequest);

Name Function

Delimiter

Used to group object name characters. All
objects whose names contain the specified
prefix and that appear between the Delimiter
characters for the first time are used as a
group of elements: CommonPrefixes.

Marker
Sets up the returned results to begin from the
first entry after the Marker in alphabetical
order.

MaxKeys

Limits the maximum number of objects
returned for one request. If not specified, the
default value is 100. The MaxKeys value
cannot exceed 1000.

Prefix

requires the returned object key to be
prefixed with prefix. Note that the keys
returned from queries using a prefix will still
contain the prefix.

Object Storage Service SDK Reference

17

Multiple iterations must be performed to traverse a whole batch of over 1,000 objects. During each
iteration, the final object key of the last iteration can be used as the Marker in the current iteration.

Folder Function Simulation

We can use a combination of Delimiter and Prefix to simulate folder functions. Combinations of
Delimiter and Prefix serve the following purposes: Setting Prefix as the name of a folder enumerates
the files starting with this prefix, recursively returning all files and subfolders in this folder. When the
Delimiter is set as "/", the returned values will enumerate the files in the folder and the subfolders will
be returned in the CommonPrefixes section. Recursive files and folders in subfolders will not be
displayed. If the bucket contains 4 files: oss.jpg, fun/test.jpg, fun/movie/001.avi, and
fun/movie/007.avi. We use the "/" symbol as the separator for folders.

List All Bucket Files

To retrieve all files in a bucket, write the following:

Output:

Recursively List All Files in a Directory
We can set the Prefix parameter to retrieve all the files under a directory:

// Constructs the ListObjectsRequest request
ListObjectsRequest listObjectsRequest = new ListObjectsRequest(bucketName);

// List Objects
ObjectListing listing = client.listObjects(listObjectsRequest);

// Traverses all objects
System.out.println("Objects:");
for (OSSObjectSummary objectSummary : listing.getObjectSummaries()) {
 System.out.println(objectSummary.getKey());
}

// Traverse all CommonPrefix
System.out.println("CommonPrefixs:");
for (String commonPrefix : listing.getCommonPrefixes()) {
 System.out.println(commonPrefix);
}

Objects:
fun/movie/001.avi
fun/movie/007.avi
fun/test.jpg
oss.jpg

CommonPrefixs:

Object Storage Service SDK Reference

18

Output:

List Files and Subdirectories in a Directory

Using Prefix and Delimiter together, we can list the files and subdirectories under a directory:

// Constructs the ListObjectsRequest request
ListObjectsRequest listObjectsRequest = new ListObjectsRequest(bucketName);

// Recursively lists all files in the fun directory
listObjectsRequest.setPrefix("fun/");

ObjectListing listing = client.listObjects(listObjectsRequest);

// Traverses all objects
System.out.println("Objects:");
for (OSSObjectSummary objectSummary : listing.getObjectSummaries()) {
 System.out.println(objectSummary.getKey());
}

// Traverse all CommonPrefix
System.out.println("\nCommonPrefixs:");
for (String commonPrefix : listing.getCommonPrefixes()) {
 System.out.println(commonPrefix);
}

Objects:
fun/movie/001.avi
fun/movie/007.avi
fun/test.jpg

CommonPrefixs:

// Constructs the ListObjectsRequest request
ListObjectsRequest listObjectsRequest = new ListObjectsRequest(bucketName);

// "/" is the folder separator
listObjectsRequest.setDelimiter("/");

// Lists all files and folders in the fun directory
listObjectsRequest.setPrefix("fun/");

ObjectListing listing = client.listObjects(listObjectsRequest);

// Traverses all objects
System.out.println("Objects:");
for (OSSObjectSummary objectSummary : listing.getObjectSummaries()) {
 System.out.println(objectSummary.getKey());
}

// Traverse all CommonPrefix

Object Storage Service SDK Reference

19

Output:

In the returned results, the ObjectSummaries list contains the files in the fun directory. The
CommonPrefixs list shows all subfolders in the fun directory. Obviously, the files fun/movie/001.avi
and fun/movie/007.avi are not listed, because they are in the movie directory under the fun folder.

Retrieving Objects

Simply Getting Object

The following code can be used to get and input an object into a stream:

OSSObject contains various object information, including the object's bucket, object name, metadata,
and an input stream. The input stream can be used to get and store the object content into an object
or the memory. ObjectMetadata contains the ETag, Http Header, and custom metadata defined when
the object was uploaded.

System.out.println("\nCommonPrefixs:");
for (String commonPrefix : listing.getCommonPrefixes()) {
 System.out.println(commonPrefix);
}

Objects:
fun/test.jpg

CommonPrefixs:
fun/movie/

public void getObject(String bucketName, String key) throws IOException {

 // Initializes an OSSClient
 OSSClient client = ...;

 // Retrieves an object; the returned result is an OSSObject object
 OSSObject object = client.getObject(bucketName, key);

 // Retrieves ObjectMeta
 ObjectMetadata meta = object.getObjectMetadata();

 // Retrieves an object input stream
 InputStream objectContent = object.getObjectContent();

 // Processes the object
 ...

 // Closes the stream
 objectContent.close();
}

Object Storage Service SDK Reference

20

Using GetObjectRequest to Retrieve Objects

For more functions, we can use GetObjectRequest to retrieve objects.

We can use the setRange method in getObjectRequest to return the object range. We can use this
function for multipart download and resumable data transfer. GetObjectRequest can set the following
parameters:

ResponseHeaderOverrides provides a series of modifiable parameters which customize the headers
returned by OSS. This is shown in the table below:

// Initializes an OSSClient
OSSClient client = ...;

// Creates GetObjectRequest
GetObjectRequest getObjectRequest = new GetObjectRequest(bucketName, key);

// Retrieves 0-100 bytes of data
getObjectRequest.setRange(0, 100);

// Retrieves an object; the returned result is an OSSObject object
OSSObject object = client.getObject(getObjectRequest);

Parameter Description

Range Specifies the range of file transfer.

ModifiedSinceConstraint

If the specified time is earlier than the actual
modification time, the file is transmitted
normally. Otherwise, the system throws the
304 Not Modified exception.

UnmodifiedSinceConstraint

If the specified time is the same as or later
than the actual modification time, the file is
transmitted normally. Otherwise, the system
throws the 412 precondition failed exception

MatchingETagConstraints

Enters an ETag group. If the entered expected
ETag matches the object's ETag, the file is
transmitted normally.Otherwise, the system
throws the 412 precondition failed exception

NonmatchingEtagConstraints

Enters an ETag group. If the entered expected
ETag does not match the object's ETag, the
file is transmitted normally.Otherwise, the
system throws the 304 Not Modified
exception.

ResponseHeaderOverrides Customizes some headers in the OSS return
request.

Parameter Description

ContentType OSS returns the requested content-type
header

Object Storage Service SDK Reference

21

Directly Downloading Objects to Files

We can use the code below to directly download objects to a specified file:

When the above method is used to download objects to files, the ObjectMetadata object is returned.

Only Retrieve ObjectMetadata

The getObjectMetadata method can be used only to get the ObjectMetadata, instead of the object
entity. The code is as follows:

Deleting Objects

The following code deletes an object:

Copying Objects

ContentLanguage OSS returns the requested content-language
header

Expires OSS returns the requested expires header

CacheControl OSS returns the requested cache-control
header

ContentDisposition OSS returns the requested content-
disposition header

ContentEncoding OSS returns the requested content-encoding
header

// Creates GetObjectRequest
GetObjectRequest getObjectRequest = new GetObjectRequest(bucketName, key);

// Downloads the object to the file
ObjectMetadata objectMetadata = client.getObject(getObjectRequest, new File("/path/to/file"));

ObjectMetadata objectMetadata = client.getObjectMetadata(bucketName, key);

public void deleteObject(String bucketName, String key) {
 // Initializes an OSSClient
 OSSClient client = ...;

 // Deletes the object
 client.deleteObject(bucketName, key);
}

Object Storage Service SDK Reference

22

Copying One Object

Using the copyObject method, we can copy a single object. The code is as follows:

The copyObject returns one CopyObjectResult object. This contains the ETag of the new object and
the modification time. The objects copied with this method must be smaller than 1 GB. Otherwise the
system will report an error. If the object is larger than 1 GB, use the Upload Part Copy method given
below

Using CopyObjectRequest to Copy Objects

We can also use the CopyObjectRequest to copy objects:

CopyObjectRequest allows users to modify the destination object's ObjectMeta. The method provides
ModifiedSinceConstraint, UnmodifiedSinceConstraint, MatchingETagConstraints, and
NonmatchingEtagConstraints. These parameters are used similarly to those of GetObjectRequest. For
details, refer to the parameters of GetObjectRequest.

NOTE: Copying data can modify the meta information of an existing object. If the copied source
object address is the same as the destination object address, the source object's meta information
will be replaced regardless of the x-oss -metadata -directive value

public void copyObject(String srcBucketName, String srcKey, String destBucketName, String destKey) {
 // Initializes an OSSClient
 OSSClient client = ...;

 // Copies the object
 CopyObjectResult result = client.copyObject(srcBucketName, srcKey, destBucketName, destKey);

 // Prints the results
 System.out.println("ETag: " + result.getETag() + " LastModified: " + result.getLastModified());
}

// Initializes an OSSClient
OSSClient client = ...;

// Creates a CopyObjectRequest object
CopyObjectRequest copyObjectRequest = new CopyObjectRequest(srcBucketName, srcKey, destBucketName,
destKey);

// Sets new metadata
ObjectMetadata meta = new ObjectMetadata();
meta.setContentType("text/html");
copyObjectRequest.setNewObjectMetadata(meta);

// Copies the object
CopyObjectResult result = client.copyObject(copyObjectRequest);

System.out.println("ETag: " + result.getETag() + " LastModified: " + result.getLastModified());

Object Storage Service SDK Reference

23

POST Method File Uploads

Back-end services are required to provide the Policy and Signature form fields for the front-end.

Generating POST Policy

The policy form field requested by POST is used to verify the validity of the request. As a JSON text
segment encoded in UTF-8 and base64, policy indicates the conditions the POST request must satisfy.
Although the post form field is optional for uploading public-read-write buckets, we strongly suggest
using this field to limit POST requests. For details on the policy json string generation rules, see Post
Policy in the API documentation Post Object.

Below is an example of policy string configuration:

We can use the following code to generate the json string described above:

After generating the policy string, note that the policy in the POST form field must be based on

{"expiration":"2015-02-25T14:25:46.000Z",
"conditions":[
 {"bucket":"oss-test2"},
 ["eq","$key","user/eric/${filename}"],
 ["starts-with","$key","user/eric"],
 ["starts-with","$x-oss-meta-tag","dummy_etag"],
 ["content-length-range",1,1024]
]
}

OSSClient client = new OSSClient(endpoint, accessId, accessKey);

Date expiration = DateUtil.parseIso8601Date("2015-02-25T14:25:46.000Z");
PolicyConditions policyConds = new PolicyConditions();
policyConds.addConditionItem("bucket", bucketName);
// The exact match condition “$” must be followed by braces
policyConds.addConditionItem(MatchMode.Exact, PolicyConditions.COND_KEY, "user/eric/\\${filename}");
// Adds a prefix match condition
policyConds.addConditionItem(MatchMode.StartWith, PolicyConditions.COND_KEY, "user/eric");
policyConds.addConditionItem(MatchMode.StartWith, "x-oss-meta-tag", "dummy_etag");
// Adds a range match condition
policyConds.addConditionItem(PolicyConditions.COND_CONTENT_LENGTH_RANGE, 1, 1024);

// Generates the Post Policy string
String postPolicy = client.generatePostPolicy(expiration, policyConds);
System.out.println(postPolicy);

// Calculates the policy's Base64 encoding
byte[] binaryData = postPolicy.getBytes("utf-8");
String encodedPolicy = BinaryUtil.toBase64String(binaryData);
System.out.println(encodedPolicy);

Object Storage Service SDK Reference

24

-

-

-

-

Base64 encoding.

Generating Post Signature

Moreover, for POST uploading, a Post Signature must be generated to verify the request's validity.
Refer to the following code.

Multipart Upload

Besides using the putObject interface to upload files to OSS, the OSS also provides a Multipart
Upload mode.You can apply the Multipart Upload mode in the following scenarios (but not limited to
the following):

Where breakpoint uploads are needed.
Uploading an object larger than 100MB.
In poor network conditions, when the connection with the OSS server is frequently broken.
When, before uploading the file, you cannot determine its size.

Below, we will give a step-by-step introduction to Multipart Upload.

Step-By-Step Multipart Upload

Initializing Multipart Upload

We use the initiateMultipartUpload method to initialize a multipart upload task:

//Imports the original Post Policy json string to generate the postSignature
String postSignature = client.calculatePostSignature(postPolicy);
System.out.println(postSignature);

String bucketName = "your-bucket-name";
String key = "your-key";

// Initializes an OSSClient
OSSClient client = ...;
// Starts Multipart Upload
InitiateMultipartUploadRequest initiateMultipartUploadRequest = new
InitiateMultipartUploadRequest(bucketName, key);
InitiateMultipartUploadResult initiateMultipartUploadResult =
client.initiateMultipartUpload(initiateMultipartUploadRequest);
// Prints UploadId
System.out.println("UploadId: " + initiateMultipartUploadResult.getUploadId());

Object Storage Service SDK Reference

25

-

We use InitiateMultipartUploadRequest to specify the name and bucket of the object to upload. In
InitiateMultipartUploadRequest, you can also set the ObjectMetadata, but are not required to specify
the ContentLength. The initiateMultipartUpload returned result includes the UploadId. This is the
unique identifier of a multipart upload task. We will use this in subsequent operations.

Next, we can use two methods for uploading parts: use Upload Part to upload from the local disk or
use Upload Part copy to get a copy of an object from a bucket.

Upload Part Local Upload

Next, we will multipart upload the local file. Let us assume that there is one file in the path
/path/to/file.zip. Because it is large, we want to multipart upload it to OSS.

The main idea of this program is to call the uploadPart method to upload each part. However, you
must note the following:

In the uploadPart method, all parts except the last one must be larger than 100KB.However,

// Sets each part to 5M
final int partSize = 1024 * 1024 * 5;
File partFile = new File("/path/to/file.zip");
// Calculates the number of parts
int partCount = (int) (partFile.length() / partSize);
if (partFile.length() % partSize != 0){
 partCount++;
}
// Creates a list to save the ETag and PartNumber of each part after it is uploaded
List<PartETag> partETags = new ArrayList<PartETag>();
for(int i = 0; i < partCount; i++){
 // Retrieves the file stream
 FileInputStream fis = new FileInputStream(partFile);
 // Skips to the start of each part
 long skipBytes = partSize * i;
 fis.skip(skipBytes);
 // Calculates the size of each part
 long size = partSize < partFile.length() - skipBytes ?
 partSize : partFile.length() - skipBytes;
 // Creates an UploadPartRequest and performs multipart upload
 UploadPartRequest uploadPartRequest = new UploadPartRequest();
 uploadPartRequest.setBucketName(bucketName);
 uploadPartRequest.setKey(key);
 uploadPartRequest.setUploadId(initiateMultipartUploadResult.getUploadId());
 uploadPartRequest.setInputStream(fis);
 uploadPartRequest.setPartSize(size);
 uploadPartRequest.setPartNumber(i + 1);
 UploadPartResult uploadPartResult = client.uploadPart(uploadPartRequest);
 // Saves the returned PartETags to the List.
 partETags.add(uploadPartResult.getPartETag());
 // Closes the file
 fis.close();
}

Object Storage Service SDK Reference

26

-

-

-

-

-

the Upload Part interface does not immediately verify the size of the uploaded part (because
it does not know whether the part is the last one). It verifies the size of the uploaded part
only when Multipart Upload is completed.
OSS will put the MD5 value of the part data received by the server in the ETag header and
return it to the user.
In order to ensure that the data transmitted over the network is free from errors, users can
set ContentMD5. OSS will calculate the MD5 value for the uploaded data and compare it
with the MD5 value uploaded by the user. If they are inconsistent, the system will return the
InvalidDigest error code.
The part number range is 1~10000. If the part number exceeds this range, the OSS will
return the InvalidArgument error code.
When each part is uploaded, it will take the stream to the location corresponding to the start
of the next part.
After each part is uploaded, the OSS returned results will include the PartETag object. This is
the combination of the ETag and PartNumber of the uploaded part. This will be used in
subsequent steps, so we need to save it. Generally, we will save these PartETag objects in the
List.

Upload Part Local Chunked Upload

Chunked encoding is also supported for multipart uploads

File file = new File(filePath);
// Sets each part to 5M
final int partSize = 5 * 1024 * 1024;
int fileSize = (int) file.length();
// Calculates the number of parts
final int partCount = (file.length() % partSize != 0) ? (fileSize / partSize + 1) : (fileSize / partSize);
List<PartETag> partETags = new ArrayList<PartETag>();

for (int i = 0; i < partCount; i++) {
 InputStream fin = new BufferedInputStream(new FileInputStream(file));
 fin.skip(i * partSize);
 int size = (i + 1 == partCount) ? (fileSize - i * partSize) : partSize;

 UploadPartRequest req = new UploadPartRequest();
 req.setBucketName(bucketName);
 req.setKey(key);
 req.setPartNumber(i + 1);
 req.setPartSize(size);
 req.setUploadId(uploadId);
 req.setInputStream(fin);
 req.setUseChunkEncoding(true); // Uses chunked encoding

 UploadPartResult result = client.uploadPart(req);
 partETags.add(result.getPartETag());

 fin.close();
}

Object Storage Service SDK Reference

27

In UploadPartRequest instances, we can set setUseChunkEncoding(true) to upload using chunked
encoding.

Upload Part Copy

Using Upload Part Copy, we copy data from an existing object to upload an object. When copying an
object larger than 500MB, we suggest using the Upload Part Copy method.

The above program calls the uploadPartCopy method to copy each part. The requirements are
basically the same as for UploadPart. You must use setBeginIndex to locate the position
corresponding to the start of the next part to upload. You must also specify the object to copy with
setSourceKey

Completing Multipart Uploads

Use the code below to complete a multipart upload:

ObjectMetadata objectMetadata = client.getObjectMetadata(sourceBucketName,sourceKey);

long partSize = 1024 * 1024 * 100;
// Obtains the size of the object to be copied
long contentLength = objectMetadata.getContentLength();

// Calculates the number of parts
int partCount = (int) (contentLength / partSize);
if (contentLength % partSize != 0) {
 partCount++;
}
System.out.println("total part count:" + partCount);
List<PartETag> partETags = new ArrayList<PartETag>();

long startTime = System.currentTimeMillis();
for (int i = 0; i < partCount; i++) {
 System.out.println("now begin to copy part:" + (i+1));
 long skipBytes = partSize * i;
// Calculates the size of each part
 long size = partSize < contentLength - skipBytes ? partSize : contentLength - skipBytes;
// Creates an UploadPartCopyRequest and performs multipart upload
 UploadPartCopyRequest uploadPartCopyRequest = new UploadPartCopyRequest();
 uploadPartCopyRequest.setSourceKey("/" + sourceBucketName + "/" + sourceKey);
 uploadPartCopyRequest.setBucketName(targetBucketName);
 uploadPartCopyRequest.setKey(targetKey);
 uploadPartCopyRequest.setUploadId(uploadId);
 uploadPartCopyRequest.setPartSize(size);
 uploadPartCopyRequest.setBeginIndex(skipBytes);
 uploadPartCopyRequest.setPartNumber(i + 1);
 UploadPartCopyResult uploadPartCopyResult = client.uploadPartCopy(uploadPartCopyRequest);
// Saves the returned PartETags to the List.
 partETags.add(uploadPartCopyResult.getPartETag());
 System.out.println("now end to copy part:" + (i+1));
}

Object Storage Service SDK Reference

28

In the code above, the partETags are saved in the partETag list during multipart upload. After OSS
receives the part list submitted by the users, it will verify the validity of each data part individually.
After all the data parts have been verified, OSS will combine these parts into a complete object.

Canceling Multipart Upload Tasks

We can use the abortMultipartUpload method to cancel multipart upload tasks.

Getting All Multipart Upload Tasks in the Bucket

We can use the listMultipartUploads method to retrieve all upload tasks in the bucket.

NOTE: Under normal conditions, if a bucket contains more than 1000 multipart upload tasks, the first
1000 will be returned and the IsTruncated parameter in the returned results will be false. The returned
NextKeyMarker and NextUploadMarker can be used as the next start point to continue reading the
data. If the user wishes to increase the number of multipart upload tasks returned, he can modify the
MaxUploads parameter or use the KeyMarker and UploadIdMarker parameters for segmented
reading.

CompleteMultipartUploadRequest completeMultipartUploadRequest =
 new CompleteMultipartUploadRequest(bucketName,key, initiateMultipartUploadResult.getUploadId(),
partETags);

// Completes multipart upload
CompleteMultipartUploadResult completeMultipartUploadResult =
 client.completeMultipartUpload(completeMultipartUploadRequest);

// Prints the object's ETag
System.out.println(completeMultipartUploadResult.getETag());

AbortMultipartUploadRequest abortMultipartUploadRequest =
 new AbortMultipartUploadRequest(bucketName, key, uploadId);

// Cancels the multipart upload
client.abortMultipartUpload(abortMultipartUploadRequest);

// Gets all upload tasks in the bucket
ListMultipartUploadsRequest listMultipartUploadsRequest=new ListMultipartUploadsRequest(bucketName);
MultipartUploadListing listing = client.listMultipartUploads(listMultipartUploadsRequest);

// Traverses all upload tasks
for (MultipartUpload multipartUpload : listing.getMultipartUploads()) {
 System.out.println("Key: " + multipartUpload.getKey() + " UploadId: " + multipartUpload.getUploadId());
}

Object Storage Service SDK Reference

29

Getting Information for All Uploaded Parts

We can use the listParts method to retrieve all the uploaded parts of an upload task.

NOTE: Under normal conditions, if a bucket contains more than 1000 multipart upload tasks, the first
1000 will be returned and the IsTruncated parameter in the returned results will be false. The returned
NextPartNumberMarker can be used as the next start point to continue reading the data. If the user
wishes to increase the number of upload tasks returned, he can modify the MaxParts parameter or
use the PartNumberMarker parameters for segmented reading.

Anti-leech Settings

The OSS collects service fees based on use. To prevent users' data on OSS from being leeched, OSS
supports anti-leech based on the field referer in HTTP header.

Setting the Referer White List

We can use the following code to set the Referer white list:

The referer field supports the wildcards "*" and "?". For detailed rule configuration, refer to the
product documentation OSS Anti-leech

ListPartsRequest listPartsRequest = new ListPartsRequest(bucketName, key, uploadId);

// Gets information for all uploaded parts
PartListing partListing = client.listParts(listPartsRequest);

// Traverses all parts
for (PartSummary part : partListing.getParts()) {
 System.out.println("PartNumber: " + part.getPartNumber() + " ETag: " + part.getETag());
}

OSSClient client = new OSSClient(endpoint, accessId, accessKey);

List<String> refererList = new ArrayList<String>();
// Adds referer
refererList.add("http://www.aliyun.com");
refererList.add("http://www.*.com");
refererList.add("http://www.?.aliyuncs.com");
// Allows the referer field to be blank and sets the Bucket Referer List
BucketReferer br = new BucketReferer(true, refererList);
client.setBucketReferer(bucketName, br);

Object Storage Service SDK Reference

30

-

-

-

Retrieving the Referer White List

Clearing the Referer White List

The Referer white list cannot be cleared directly. You can only reset it to overwrite the previous rules.

Lifecycle Management

OSS provides the object lifecycle management capability to manage objects for users. The user can
configure the lifecycle of a bucket to define various rules for the bucket's objects. Currently, users can
use rules to delete matched objects. Each rule is composed of the following parts:

The object name prefix; this rule will only apply to objects with the matched prefix.
Operation; the operation the user wishes to perform on the matched objects.
Date or number of days; the user will execute the operation on the objects on the specified
date or a specified number of days after the object's last modification time.

Setting Lifecycles

The lifecycle configuration rules are expressed by an xml segment.

// Retrieves the Bucket Referer List
br = client.getBucketReferer(bucketName);
refererList = br.getRefererList();
for (String referer : refererList) {
 System.out.println(referer);
}

Sample output results:
http://www.aliyun.com
http://www.*.com"
http://www.?.aliyuncs.com

OSSClient client = new OSSClient(endpoint, accessId, accessKey);
// Allows the referer field and the referer white list name to be blank by default
BucketReferer br = new BucketReferer();
client.setBucketReferer(bucketName, br);

<LifecycleConfiguration>
 <Rule>
 <ID>delete obsoleted files</ID>

Object Storage Service SDK Reference

31

-

-

-

-

A single lifecycle Config can contain up to 1000 rules.

Explanations of each field:

The ID field is used to uniquely identify a rule (inclusion relations, such as abc and abcd,
cannot exist between IDs).
Prefix indicates the rules used for objects in the bucket with the specified prefix.
Status indicates the status of this rule. The statuses are Enabled and Disabled, indicating if
the rule is enabled or disabled.
In the Expiration node, Days indicates that an object will be deleted a specified number of
days after its last modification. Date indicates that objects will be deleted after the specified
absolute time (the absolute time follows the ISO8601 format).

Using the following code, we can set the above lifecycle rules.

We can use the following code to retrieve the above lifecycle rules.

 <Prefix>obsoleted/</Prefix>
 <Status>Enabled</Status>
 <Expiration>
 <Days>3</Days>
 </Expiration>
 </Rule>
 <Rule>
 <ID>delete temporary files</ID>
 <Prefix>temporary/</Prefix>
 <Status>Enabled</Status>
 <Expiration>
 <Date>2022-10-12T00:00:00.000Z</Date>
 </Expiration>
 </Rule>
</LifecycleConfiguration>

OSSClient client = new OSSClient(endpoint, accessId, accessKey);

SetBucketLifecycleRequest req = new SetBucketLifecycleRequest(bucketName);
// Adds a Lifecycle rule
req.AddLifecycleRule(new LifecycleRule("delete obsoleted files", "obsoleted/", RuleStatus.Enabled, 3));
req.AddLifecycleRule(new LifecycleRule("delete temporary files", "temporary/", RuleStatus.Enabled,
 DateUtil.parseIso8601Date("2022-10-12T00:00:00.000Z")));
// Sets Bucket Lifecycle
client.setBucketLifecycle(req);

OSSClient client = new OSSClient(endpoint, accessId, accessKey);

// Retrieves the above Bucket Lifecycle
List<LifecycleRule> rules = client.getBucketLifecycle(bucketName);
Assert.assertEquals(rules.size(), 2);

System.out.println("Rule1: ");
LifecycleRule r1 = rules.get(0);

Object Storage Service SDK Reference

32

-

-

Using the following code, we can delete the lifecycle rules in a bucket.

Authorized Access

Using STS Service Temporary Authorization

Introduction

Through the AliCloud STS service, OSS can temporarily grant authorized access.AliCloud STS is a web
service that provides a temporary access token to a cloud computing user. Using STS, you can grant
access credentials to a third-party application or federated user (you can manage the user IDs) with
customized permissions and validity periods. Third-party applications or federated users can use
these access credentials to directly call the AliCloud product APIs or use the SDKs provided by
AliCloud products to access the cloud product APIs.

You do not need to expose you long-term key (AccessKey) to a third-party application and
only need to generate an access token and send the access token to the third-party
application. You can customize the access permission and validity of this token.
You do not need to care about permission revocation issues. The access credential
automatically becomes invalid when it expires.

Using an App as an example, the interaction process is shown below:

System.out.println("ID: " + r1.getId());
System.out.println("Prefix: " + r1.getPrefix());
System.out.println("Status: " + r1.getStatus().toString());
System.out.println("ExpirationDays: " + r1.getExpriationDays());
System.out.println();

System.out.println("Rule2: ");
LifecycleRule r2 = rules.get(1);
System.out.println("ID: " + r2.getId());
System.out.println("Prefix: " + r2.getPrefix());
System.out.println("Status: " + r2.getStatus().toString());
System.out.println("ExpirationTime: " + DateUtil.formatIso8601Date(r2.getExpirationTime()));

OSSClient client = new OSSClient(endpoint, accessId, accessKey);

client.deleteBucketLifecycle(bucketName);

Object Storage Service SDK Reference

33

1.

2.

3.

4.

5.

The solution is described
in detail as follows:

Log in as the app user. App user IDs are managed by the client. Clients can customize the ID
management system and may also use external Web accounts or OpenID. For each valid
app user, the AppServer can precisely define the minimum access permission.
The AppServer requests a security token from the STS. Before calling STS, the AppServer
needs to determine the minimum access permission (described in policy syntax) of app
users and the expiration time of the authorization.Then, the security token is obtained by
calling the STS’ AssumeRole interface.
The STS returns a valid access credential to the AppServer, where the access credential
includes a security token, a temporary access key (AccessKeyId and AccessKeySecret), and
the expiry time.
The AppServer returns the access credential to the ClientApp. The ClientApp caches this
credential. When the credential becomes invalid, the ClientApp needs to request a new
valid access credential from the AppServer. For example, if the access credential is valid for
one hour, the ClientApp can request the AppServer to update the access credential every 30
minutes.
The ClientApp uses the access credential cached locally to request for AliCloud Service APIs.
The ECS is aware of the STS access credential, relies on STS to verify the credential, and
correctly responds to the user request.

Using STS Credentials to Construct Signed Requests

After obtaining the STS temporary credential, the user’s client generates an OSSClient using the
contained security token and temporary access key (AccessKeyId, AccessKeySecret). Using an object
upload as an example:

Using URL Signature to Authorize Access

String accessKeyId = "<accessKeyId>";
String accessKeySecret = "<accessKeySecret>";
String securityToken = "<securityToken>"
// Uses Hangzhou as an example
String endpoint = "http://oss-cn-hangzhou.aliyuncs.com";

OSSClient client = new OSSClient(endpoint, accessKeyId, accessKeySecret,securityToken);

Object Storage Service SDK Reference

34

Generating a Signed URL

You can provide users with a temporary access URL by generating a signed URL. During URL
generation, you can specify the URL expiration time to limit the duration of the user’s access.

Generating a Signed URL

The code is as follows:

Generated URLs use the GET access method by default. This way, users can directly use a browser to
access the relevant content.

Generating Other HTTP Method URLs

For users to temporarily use other operations (e.g. uploading or deleting objects), you may have to
sign a URL for another method. For example:

By importing the HttpMethod.PUT parameter, users can use generated URLs to upload objects.

Adding User-defined Parameters (UserMetadata)

If you want to generate a signed URL to upload objects and specify the information for
UserMetadata, Content-Type, and other headers, you can proceed as follows:

String bucketName = "your-bucket-name";
String key = "your-object-key";

// Sets the URL expiration time to 1 hour
Date expiration = new Date(new Date().getTime() + 3600 * 1000);

// Generates the URL
URL url = client.generatePresignedUrl(bucketName, key, expiration);

// Generates a PUT method URL
URL url = client.generatePresignedUrl(bucketName, key, expiration, HttpMethod.PUT);

// Creates request
GeneratePresignedUrlRequest generatePresignedUrlRequest = new GeneratePresignedUrlRequest(bucketName,
key);

// Sets HttpMethod to PUT
generatePresignedUrlRequest.setMethod(HttpMethod.PUT);

// Adds UserMetadata
generatePresignedUrlRequest.addUserMetadata("author", "baymax");

// Adds Content-Type
request.setContentType("application/octet-stream");

Object Storage Service SDK Reference

35

Please note that the above process only generates a signed URL. You still must add the meta
information in the request header. You can refer to the following code.

Using Signed URLs to Send Requests

Currently, the Java SDK supports the put object and get object URL signature requests.

Using the getobject URL Signature Method

Using the putobject URL Signature Method

// Generates signed URL
URL url = client.generatePresignedUrl(generatePresignedUrlRequest);

//The server generates the URL signature string
OSSClient Server = new OSSClient(endpoint, accessId, accessKey);
Date expiration = DateUtil.parseRfc822Date("Wed, 18 Mar 2015 14:20:00 GMT");
GeneratePresignedUrlRequest request = new GeneratePresignedUrlRequest(bucketName, key, HttpMethod.GET);
//Sets the expiration time
request.setExpiration(expiration);
// Generates the URL signature (HTTP GET request)
URL signedUrl = Server .generatePresignedUrl(request);
System.out.println("signed url for getObject: " + signedUrl);

//The client uses the URL signature string to send the request
OSSClient client = new OSSClient(endpoint, “”, “”);
Map<String, String> customHeaders = new HashMap<String, String>();
// Adds the GetObject request header
customHeaders.put("Range", "bytes=100-1000");
OSSObject object = client.getObject(signedUrl,customHeaders);

//The server generates the URL signature string
OSSClient Server = new OSSClient(endpoint, accessId, accessKey);
Date expiration = DateUtil.parseRfc822Date("Wed, 18 Mar 2015 14:20:00 GMT");
GeneratePresignedUrlRequest request = new GeneratePresignedUrlRequest(bucketName, key, HttpMethod.PUT);
//Sets the expiration time
request.setExpiration(expiration);
//Sets Content-Type
request.setContentType("application/octet-stream");
// Adds User Meta
request.addUserMetadata("author", "aliy");
// Generates the URL signature (HTTP PUT request)
URL signedUrl = Server.generatePresignedUrl(request);
System.out.println("signed url for putObject: " + signedUrl);

//The client uses the URL signature string to send the request
OSSClient client = new OSSClient(endpoint, “”, “”);
File f = new File(filePath);
FileInputStream fin = new FileInputStream(f);
// Adds the PutObject request header
Map<String, String> customHeaders = new HashMap<String, String>();

Object Storage Service SDK Reference

36

Cross-Origin Resource Sharing (CORS)

CORS allows web applications to access resources in other regions. OSS provides an interface to allow
developers to easily control cross-origin access permissions.

Setting CORS Rules

Using the setBucketCORS method, we can set a CORS rule for a specified bucket. If an original rule
exists, it will be overwritten. Parameters for specific rules are generally set through CORSRule. The
code is as follows:

customHeaders.put("Content-Type", "application/octet-stream");
// Adds User Meta
customHeaders.put("x-oss-meta-author", "aliy");
PutObjectResult result = client.putObject(signedUrl, fin, f.length(), customHeaders);

SetBucketCORSRequest request = new SetBucketCORSRequest();
request.setBucketName(bucketName);
ArrayList<CORSRule> putCorsRules = new ArrayList<CORSRule>();
//The CORS rule container, each bucket allows up to 10 rules

CORSRule corRule = new CORSRule();
ArrayList<String> allowedOrigin = new ArrayList<String>();
//Specifies allowed cross-origin request origins
allowedOrigin.add("http://www.b.com");
ArrayList<String> allowedMethod = new ArrayList<String>();
//Specifies the allowed cross-origin request methods (GET/PUT/DELETE/POST/HEAD)
allowedMethod.add("GET");
ArrayList<String> allowedHeader = new ArrayList<String>();
//Controls if the headers specified in the OPTIONS' prefetch command's Access-Control-Request-Headers are
allowed.
allowedHeader.add("x-oss-test");
ArrayList<String> exposedHeader = new ArrayList<String>();
//Specifies the response headers users are allowed to access from the application
exposedHeader.add("x-oss-test1");
corRule.setAllowedMethods(allowedMethod);
corRule.setAllowedOrigins(allowedOrigin);
corRule.setAllowedHeaders(allowedHeader);
corRule.setExposeHeaders(exposedHeader);
// Specifies the cache time for the returned results of browser prefetch (OPTIONS) requests to a specific resource,
unit: seconds.
corRule.setMaxAgeSeconds(10);
//Maximum of 10 rules allowed
putCorsRules.add(corRule);
request.setCorsRules(putCorsRules);
oss.setBucketCORS(request);

Object Storage Service SDK Reference

37

-

-

Here, you must note the following:

Each Bucket allows up to 10 rules.
The AllowedOrigins and AllowedMethods each supports up to one "*" wildcard. "*"
expresses that all origin regions or operations satisfy the condition. However,
AllowedHeaders and ExposeHeaders do not support wildcards.

Retrieving CORS Rules

We can refer to the bucket's CORS rules through the getBucketCORSRules method. The code is as
follows:

Deleting CORS Rules

Use this to disable CORS for the specified bucket and clear all rules.

ArrayList<CORSRule> corsRules;
//Retrieves list of CORS rules
corsRules = (ArrayList<CORSRule>) oss.getBucketCORSRules(bucketName);
for (CORSRule rule : corsRules) {
for (String allowedOrigin1 : rule.getAllowedOrigins()) {
 //Retrieves allowed cross-origin request origins
 System.out.println(allowedOrigin1);
 }
for (String allowedMethod1 : rule.getAllowedMethods()) {
 //Retrieves allowed cross-origin request methods
 System.out.println(allowedMethod1);
 }

 if (rule.getAllowedHeaders().size() > 0){
 for (String allowedHeader1 : rule.getAllowedHeaders()){
 //Retrieves the list of allowed headers
 System.out.println(allowedHeader1);
 }
 }

 if (rule.getExposeHeaders().size() > 0){
 for (String exposeHeader : rule.getExposeHeaders()){
 //Retrieves allowed headers
 System.out.println(exposeHeader);
 }
 }

 if (null != rule.getMaxAgeSeconds()){
 System.out.println(rule.getMaxAgeSeconds());
 }
}

// Clears the CORS rules in the bucket

Object Storage Service SDK Reference

38

-

-

-

-

In the same way, only the bucket owner can delete rules.

Exceptions

The OSS Java SDK has two exceptions: ClientException and OSSException. Both are derived, directly
or indirectly, from RuntimeException.

ClientException

ClientException indicates an internal SDK exception, such as no set BucketName, cannot connect to
the network, etc.

OSSException

OSSException indicates a server error, which is generated by parsing a server error message.
OSSExceptions generally have the following components:

Code: the error code OSS returns to users.
Message: the detailed error message provided by OSS.
RequestId: the UUID that uniquely identifies the request. When you cannot solve the
problem, you can seek help from OSS development engineers by providing this RequestId.
HostId: used to identify the accessed OSS cluster (currently unified as oss.aliyuncs.com)

The following are common OSS exceptions:

oss.deleteBucketCORSRules(bucketName);

Error Code Description

AccessDenied Access denied

BucketAlreadyExists The bucket already exists

BucketNotEmpty The bucket is not empty

EntityTooLarge The entity is too large

EntityTooSmall The entity is too small

FileGroupTooLarge The file group is too large

FilePartNotExist A file part does not exist

FilePartStale A file part has expired

InvalidArgument Parameter format error

InvalidAccessKeyId The Access Key ID does not exist

Object Storage Service SDK Reference

39

Python-SDK

Installation

The following introduces the complete process and demonstrates how to use for basic OSS bucket
and object operations on Windows and Linux platforms.

Environment Requirements

InvalidBucketName The bucket name is invalid

InvalidDigest The digest is invalid

InvalidObjectName The object name is invalid

InvalidPart A part is invalid

InvalidPartOrder The part order is invalid

InvalidTargetBucketForLogging The logging operation has an invalid target
bucket

InternalError Internal OSS error

MalformedXML Illegal XML format

MethodNotAllowed The method is not supported

MissingArgument A parameter is missing

MissingContentLength The content length is missing

NoSuchBucket The bucket does not exist

NoSuchKey The file does not exist

NoSuchUpload The Multipart Upload ID does not exist

NotImplemented The method cannot be processed

PreconditionFailed Preprocessing error

RequestTimeTooSkewed The request initiation time exceeds the server
time by 15 minutes

RequestTimeout Request timed out

SignatureDoesNotMatch Signature error

TooManyBuckets The user's bucket quantity exceeds the limit

Object Storage Service SDK Reference

40

-

-

-

1.

2.

3.

4.

5.

The following introduces the complete process and demonstrates how to use for basic OSS bucket
and object operations on Windows and Linux platforms.

After Python is installed:

Input Python in Linux shell and click the enter key to view the Python version. As shown
below:

Input Python in the Windows cmd environment and click the enter key to view the Python
version. As shown below:

As shown above, Python has been installed successfully.

Exceptions. E.g.: after entering python in the Windows cmd environment and clicking Enter,
the system prompts “Not an internal or external command”. In such a case, check the
configuration “Environment variables” - “Path” and add the Python installation path.

If Python is not installed, you can get its installation package from Python Official Website. The
website provides detailed instructions and guidance for installing and using Python.

Installing and Verifying SDK

The following teaches you how to install the Python SDK on Windows and Linux platforms, as well as
how to verify that it has been installed successfully.

Installing the SDK

Open your browser and enter oss.aliyun.com.
In “Product Help”-“Developer Resources”, find the Python SDK link.
Click on the link and choose to save the SDK installation package.
After downloading it, you can get the installation package, with a name similar to
OSS_Python_API_xxxxxxxx.tar.gz.
Go to the installation package’s directory and decompress the tar.gz package. Linux can
use the tar -zxvf OSS_Python_API_xxxxxxxx.tar.gz command to decompress the package.

Python 2.5.4 (r254:67916, Mar 10 2010, 22:43:17)
[GCC 4.1.2 20080704 (Red Hat 4.1.2-46)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>>

C:\Documents and Settings\Administrator>python
Python 2.7.5 (default, May 15 2013, 22:43:36) [MSC v.1500 32 bit (Intel)] on win
32
Type "help", "copyright", "credits" or "license" for more information.
>>>

Object Storage Service SDK Reference

41

6.

7.

-

-

Windows can use 7-Zip or another decompression tool.
After decompression, obtain the files and directories shown below

SDK installation for two platforms
Let us assume that the SDK has been decompressed on disk D on the Windows
platform. The install log will be as follows:

Let us assume that the SDK has been decompressed in the OSS directory on the
Linux platform. The install log will be as follows:

README
OSS_Python_SDK.pdf
setup.py
osscmd
oss/
oss_api.py
oss_util.py
oss_xml_handler.py
oss_sample.py

D:\>cd OSS_Python_API_20130712
D:\ OSS_Python_API_20130712 >python setup.py install
running install
running build
running build_py
creating build
creating build\lib
creating build\lib\oss
copying oss\oss_api.py -> build\lib\oss
copying oss\oss_sample.py -> build\lib\oss
copying oss\oss_util.py -> build\lib\oss
copying oss\oss_xml_handler.py -> build\lib\oss
copying oss\pkg_info.py -> build\lib\oss
copying oss__init__.py -> build\lib\oss
running install_lib
creating C:\Python27\Lib\site-packages\oss
copying build\lib\oss\oss_api.py -> C:\Python27\Lib\site-packages\oss
copying build\lib\oss\oss_sample.py -> C:\Python27\Lib\site-packages\oss
copying build\lib\oss\oss_util.py -> C:\Python27\Lib\site-packages\oss
copying build\lib\oss\oss_xml_handler.py -> C:\Python27\Lib\site-packages\oss
copying build\lib\oss\pkg_info.py -> C:\Python27\Lib\site-packages\oss
copying build\lib\oss__init__.py -> C:\Python27\Lib\site-packages\oss
byte-compiling C:\Python27\Lib\site-packages\oss\oss_api.py to oss_api.pyc
byte-compiling C:\Python27\Lib\site-packages\oss\oss_sample.py to oss_sample.pyc
byte-compiling C:\Python27\Lib\site-packages\oss\oss_util.py to oss_util.pyc
byte-compiling C:\Python27\Lib\site-packages\oss\oss_xml_handler.py to oss_xml_handler.pyc
byte-compiling C:\Python27\Lib\site-packages\oss\pkg_info.py to pkg_info.pyc
byte-compiling C:\Python27\Lib\site-packages\oss__init__.py to __init__.pyc
running install_egg_info
Writing C:\Python27\Lib\site-packages\oss-0.1.3-py2.7.egg-info

Object Storage Service SDK Reference

42

8. Uninstall SDK.
The SDK will be installed in different directories on different machines and platforms. To
uninstall it, you must go to the SDK install directory and delete the relevant installed
directories. For example, the ‘/usr/ali/lib/python2.5/site-packages/oss-0.1.3-py2.5.egg’
directory shown in the previous step.You also can use the following command to find the
relevant installed directories in the site-packages directory of the current Python version
and delete them to uninstall the SDK.

[oss@oss python]$ sudo python setup.py install
Password:
running install
running bdist_egg
running egg_info
writing oss.egg-info/PKG-INFO
writing top-level names to oss.egg-info/top_level.txt
writing dependency_links to oss.egg-info/dependency_links.txt
writing manifest file 'oss.egg-info/SOURCES.txt'
installing library code to build/bdist.linux-x86_64/egg
running install_lib
running build_py
creating build/bdist.linux-x86_64/egg
creating build/bdist.linux-x86_64/egg/oss
copying build/lib/oss/oss_util.py -> build/bdist.linux-x86_64/egg/oss
copying build/lib/oss/__init__.py -> build/bdist.linux-x86_64/egg/oss
copying build/lib/oss/pkg_info.py -> build/bdist.linux-x86_64/egg/oss
copying build/lib/oss/oss_xml_handler.py -> build/bdist.linux-x86_64/egg/oss
copying build/lib/oss/oss_sample.py -> build/bdist.linux-x86_64/egg/oss
copying build/lib/oss/oss_api.py -> build/bdist.linux-x86_64/egg/oss
byte-compiling build/bdist.linux-x86_64/egg/oss/oss_util.py to oss_util.pyc
byte-compiling build/bdist.linux-x86_64/egg/oss/__init__.py to __init__.pyc
byte-compiling build/bdist.linux-x86_64/egg/oss/pkg_info.py to pkg_info.pyc
byte-compiling build/bdist.linux-x86_64/egg/oss/oss_xml_handler.py to oss_xml_handler.pyc
byte-compiling build/bdist.linux-x86_64/egg/oss/oss_sample.py to oss_sample.pyc
byte-compiling build/bdist.linux-x86_64/egg/oss/oss_api.py to oss_api.pyc
creating build/bdist.linux-x86_64/egg/EGG-INFO
copying oss.egg-info/PKG-INFO -> build/bdist.linux-x86_64/egg/EGG-INFO
copying oss.egg-info/SOURCES.txt -> build/bdist.linux-x86_64/egg/EGG-INFO
copying oss.egg-info/dependency_links.txt -> build/bdist.linux-x86_64/egg/EGG-INFO
copying oss.egg-info/top_level.txt -> build/bdist.linux-x86_64/egg/EGG-INFO
zip_safe flag not set; analyzing archive contents...
oss.oss_sample: module references __file__
creating 'dist/oss-0.1.3-py2.5.egg' and adding 'build/bdist.linux-x86_64/egg' to it
removing 'build/bdist.linux-x86_64/egg' (and everything under it)
Processing oss-0.1.3-py2.5.egg
removing '/usr/ali/lib/python2.5/site-packages/oss-0.1.3-py2.5.egg' (and everything under it)
creating /usr/ali/lib/python2.5/site-packages/oss-0.1.3-py2.5.egg
Extracting oss-0.1.3-py2.5.egg to /usr/ali/lib/python2.5/site-packages
oss 0.1.3 is already the active version in easy-install.pth
Installed /usr/ali/lib/python2.5/site-packages/oss-0.1.3-py2.5.egg
Processing dependencies for oss==0.1.3
Finished processing dependencies for oss==0.1.3

Object Storage Service SDK Reference

43

-

-

-

-

Preface

Introduction

This document introduces the installation and use of the OSS Python SDK (for version 0.4.2 in
particular).This document assumes that you have already subscribed to the AliCloud OSS service and
created an Access Key ID and Access Key Secret.In the document, ID represents the Access Key ID and
KEY indicates the Access Key Secret. If you have not yet subscribed to or do not know about the OSS
service, please log into the OSS Product Homepage for more help.

Version Revisions

Python SDK Development Kit (2015-07-07) Version 0.4.0

Updates:

Supported STS function in osscmd

Python SDK Development Kit (2015-06-24) Version 0.3.9

Updates:

Added copylargefile command in osscmd to support the copying of large files

Python SDK Development Kit (2015-04-13) Version 0.3.8

Updates:

Fixed the invalid max_part_num specified for multiupload problem in osscmd
Added an md5 check for the part specified by upload_part in oss_api

Python SDK Development Kit (2015-01-29) Version 0.3.7

Updates:

>>> import sys
>>> print sys.path
['','/usr/ali/lib/python2.5/site-packages/httplib2-0.7.7-py2.5.egg', '/usr/ali/lib/python2.5/site-packages/oss-0.1.3-
py2.5.egg','/usr/ali/lib/python25.zip','/usr/ali/lib/python2.5', '/usr/ali/lib/python2.5/plat-
linux2','/usr/ali/lib/python2.5/lib-tk','/usr/ali/lib/python2.5/lib-dynload', '/usr/ali/lib/python2.5/site-packages']

Object Storage Service SDK Reference

44

-

-

-

-

-

-

-

-

-

-

-

Added the referer and lifecycle interfaces in oss_api.
Added referer and lifecycle commands in osscmd.
Fixed the invalid upload_id problem in osscmd.

Python SDK Development Kit (2014-12-31) Version 0.3.6

Updates:

Added the check_point function for the osscmd uploadfromdir command, using the --
check_point optional setting.
Added the --force function for the osscmd deleteallobject command, force deleting all files.
Added the --thread_num option in osscmd's multipart and uploadfromdir/downloadtodir
commands, allowing users to adjust the number of threads.
Added the file name-based Content-Type generation function in oss_api.
Added the --temp_dir option for the osscmd downloadtodir command, supporting
temporarily saving the downloaded file to the specified directory.
Added the --check_md5 option for osscmd, allowing md5 checks on upload files.

For a Quick Start Guide, refer to the README file in the SDK

Python SDK Development Kit (2014-05-09)

Updates:

Fixed the logger initialization error bug in oss_util.
Optimized the multi_upload_file upload interface in oss_api for certain situations, reducing
the number of re-uploads due to network exceptions.

Quick Start

In this chapter, you will learn how to use the basic functions of the OSS Python SDK.

Step-1. Initializing an OssAPI

SDK OSS operations are performed through the OssAPI class. The code below creates an OssAPI
object:

from oss.oss_api import *
#Using Hangzhou as an example
endpoint=”oss-hangzhou.aliyuncs.com”
accessKeyId, accessKeySecret=”your id”,”your secret”
oss = OssAPI(endpoint, accessKeyId, accessKeySecret)

Object Storage Service SDK Reference

45

In the above code, the variables accessKeyId and accessKeySecret are allocated to the user by the
system. They are called the ID pair and used to identify the user. They are used to perform signature
verification when accessing OSS. For a detailed introduction of the OssAPI class, refer to OssAPI.

Step-2. Creating Buckets

Buckets are the OSS global namespace. They are equivalent to a data container and can store
numerous objects. You can create a bucket with the following code:

Call the create_bucket method to return an HTTP Response class. For bucket naming rules, refer to
[Naming Rules] in Bucket.

Step-3. Uploading objects

Objects are the basic data elements in OSS. You can simply think of them as files. The code below will
upload an object:

For object naming rules, refer to the naming rules in Object. For more information on uploading
objects, refer to [Uploading Objects] in Object.

Step-4. Listing all objects

When you complete a series of uploads, you may need to view which objects are in a bucket. This can
be done with the following program:

from oss.oss_api import *
#Using Hangzhou as an example
endpoint=”oss-hangzhou.aliyuncs.com”
accessKeyId, accessKeySecret=”your id”,”your secret”
oss = OssAPI(endpoint, accessKeyId, accessKeySecret)
#Setting the bucket permission to private
res = oss.create_bucket(bucket,"private")
print "%s\n%s" % (res.status, res.read())

from oss.oss_api import *

oss = OssAPI(endpoint, accessKeyId, accessKeySecret)
res = oss.put_object_from_file(bucket, object, "test.txt")
print "%s\n%s" % (res.status, res.getheaders())

from oss.oss_api import *

oss = OssAPI(endpoint, accessKeyId, accessKeySecret)
res = oss.get_bucket("bucketname")
print "%s\n%s" % (res.status, res.read())

Object Storage Service SDK Reference

46

-

-

-

For more flexible parameter configurations, refer to the [List Bucket Objects] in Object.

Step-5. Retrieving a specified object

You can refer to the code below to easily retrieve an object:

You can read the object meta information from the response header.

Bucket

OSS uses buckets as the namespaces of user files and also as the management objects for advanced
functions such as charging, permission control, and log recording. The bucket name must be globally
unique in the entire OSS and cannot be changed. Every object stored on the OSS must be included in
a bucket. One application, such as an image sharing website, can correspond to one or more buckets.
A user can create a maximum of 10 buckets, but there is no limit on the number of objects in each
bucket. Each bucket can store up to 2 PB of data.

Naming Rules

The bucket naming rules are as follows:

It can only contain lower-case letters, numbers, and dashes (-).
It must start with a lower-case letter or number.
The length must be 3-63 bytes

Creating Buckets

from oss.oss_api import *

oss = OssAPI(endpoint, accessKeyId, accessKeySecret)
#Directly reading the object to a local file
res = oss.get_object_to_file(bucket, object, "/filepath/test.txt")
print "%s\n%s" % (res.status, res.getheaders())

from oss.oss_api import *
#Using Hangzhou as an example
endpoint=”oss-hangzhou.aliyuncs.com”
accessKeyId, accessKeySecret=”your id”,”your secret”
oss = OssAPI(endpoint, accessKeyId, accessKeySecret)

res = oss.create_bucket("bucketname","private") #Sets the bucket permission to private
print "%s\n%s" % (res.status, res.read())

Object Storage Service SDK Reference

47

To create a bucket you must enter the bucket name and ACL.Because bucket names are globally
unique, do your best to ensure your bucket names are not the same as other people’s.ACL currently
supports the values private, public-read, and public-read-write. For information on permissions,
please refer to OSS Access Control

Listing all Buckets of a User

This can be performed using the get_service or list_all_my_buckets methods. The two methods are
equivalent.

All bucket information exists in xml format in the HTTP response’s body. It can be parsed using
GetServiceXml in oss_xml_handler.

CNAME Access

After a user directs his own domain name’s CNAME to the domain name of one of his buckets, he
can access OSS through his domain name:

Users just need to change the endpoint originally expected to be entered in the bucket to the
CNAME domain name when creating an OssAPI instance. At the same time, users must note that
when using this OssAPI instance for subsequent operations, they can only operate on the bucket the
CNAME directs to.

from oss.oss_api import *
from oss import oss_xml_handler
#Using Hangzhou as an example
endpoint=”oss-hangzhou.aliyuncs.com”
accessKeyId, accessKeySecret=”your id”,”your secret”
oss = OssAPI(endpoint, accessKeyId, accessKeySecret)

res = oss.list_all_my_buckets()
buckets_xml=oss_xml_handler.GetServiceXml(res.read())
for bucket_info in buckets_xml.bucket_list:
print "--"
print "Location:"+bucket_info.location
print "Name:"+bucket_info.name
print "CreationDate:"+bucket_info.creation_date

from oss.oss_api import *
#Entering an endpoint as your bound domain name
endpoint=”cname.com”
accessKeyId, accessKeySecret=”your id”,”your secret”
oss = OssAPI(endpoint, accessKeyId, accessKeySecret)
#Uploading content to the bucket CNAME directs to
res=oss.put_object_from_string(“bucketname”,”objectname”,”conetnet”)

Object Storage Service SDK Reference

48

Setting Bucket ACL

When using the create_bucket or put_bucket method, if this bucket exists and belongs to the request
initiator, the request’s ACL settings will overwrite the original settings, thus setting the Bucket ACL.

ACL currently supports the values private, public-read, and public-read-write. For information on
permissions, please refer to OSS Access Control

Retrieving Bucket ACL

get_bucket_acl is used to obtain the ACL for this bucket

ACL information exists in xml format in the HTTP response’s body. The results are obtained by
parsing the required xml content using the GetBucketAclXml class in oss_xml_handler.

Retrieving Bucket Addresses

get_bucket_location is used to obtain the location for this bucket

Location information exists in xml format in the HTTP response’s body. It can be parsed using the
GetBucketLocationXml class in oss_xml_handler.

from oss.oss_api import *
from oss import oss_xml_handler
oss = OssAPI(endpoint, accessKeyId, accessKeySecret)

#Setting the bucket as already existing; sets the bucket acl as public-read
res = oss.create_bucket(bucket,"public-read")
print "%s\n%s" % (res.status, res.read())

from oss.oss_api import *
from oss import oss_xml_handler
oss = OssAPI(endpoint, accessKeyId, accessKeySecret)
#Retrieving Bucket ACL
res= oss.get_bucket_acl(bucket)
acl_xml=oss_xml_handler.GetBucketAclXml(res.read())
print acl_xml.grant

from oss.oss_api import *
from oss import oss_xml_handler
oss = OssAPI(endpoint, accessKeyId, accessKeySecret)
#Retrieving Bucket Addresses
res= oss.get_bucket_acl(bucket)
location_xml=oss_xml_handler.GetBucketLocationXml(res.read())
print location_xml.location

Object Storage Service SDK Reference

49

Deleting Buckets

Please note that if the bucket is not empty (i.e., bucket contains objects or multipart upload
fragments), it cannot be deleted. You must delete all objects and fragments in a bucket before
deleting the bucket.

OssAPI

The OssAPI class provides methods for operating on buckets and objects. Users can call these
methods to operate on OSS. Most of the interfaces provided in OssAPI directly return HTTP
responses. For HTTP response definitions, please refer to the descriptions in the official Python
documentation. In the example, we use res to represent an HTTP response instance. res.status
represents the OSS HTTP Server status code returned after the Python SDK sends an HTTP request to
OSS. See the OSS API documentation for the specific status codes. res.getheaders() indicates the OSS
HTTP Server response headers. res.read() indicates the HTTP response body. In some situations, the
body has no content.

Initializing OssAPI

Here, the endpoint must enter the corresponding value of the region of the bucket to be operated
on. For relevant endpoint details, refer here.

Configuring OssAPI

To configure detailed OssAPI parameters, you can use the following methods.

from oss.oss_api import *
oss = OssAPI(endpoint, accessKeyId, accessKeySecret)

res = oss. delete_bucket(bucket)
print "%s\n%s" % (res.status, res.read())

from oss.oss_api import *
#Using Hangzhou as an example
endpoint=”oss-hangzhou.aliyuncs.com”
accessKeyId, accessKeySecret=”your id”,”your secret”
oss = OssAPI(endpoint, accessKeyId, accessKeySecret)

Method Description Default Value

set_timeout Sets the timeout time 10

set_debug Sets the debug mode True

Object Storage Service SDK Reference

50

-

-

-

-

Object

In OSS, objects are the basic data units for user operation.The maximum size of a single object may
vary depending on the data uploading mode. The size of an object cannot exceed 5 GB in the Put
Object mode or 48.8 TB in the multipart upload mode. An object includes the key, meta, and data.
The key is the object name; meta is the user's description of the object, composed of a series of
name-value pairs; and data is the object data.

Naming Rules

Object naming rules:

It uses UTF-8 encoding
The length must be 1-1023 bytes
It cannot start with "/" or "\"
It cannot contain "\r" or "\n" line breaks

Uploading Objects

Simple Upload

The two methods below can both upload objects.

set_retry_times Sets the number of retries
when an error is encountered 3

set_send_buf_size Sets the buffer size when
sending data 8192

set_recv_buf_size Sets the buffer size when
receiving data 1024*1024*10

from oss.oss_api import *
oss = OssAPI(endpoint, accessKeyId, accessKeySecret)
#Directly uploading strings
res=oss.put_object_from_string(bucket,object,"string content")
print "%s\n%s" % (res.status, res.read())

from oss.oss_api import *
oss = OssAPI(endpoint, accessKeyId, accessKeySecret)
#Uploading local files
res=oss.put_object_from_file("bucketname","objectname","test.txt")
print "%s\n%s" % (res.status, res.read())

Object Storage Service SDK Reference

51

When uploading in this manner, the largest file cannot exceed 5G. For larger files, you can use
MultipartUpload.

Creating Simulated Folders

The OSS service does not use folders. All elements are stored as objects. However, users can create
simulated folders using the following code:

Creating a simulated folder is in fact creating an object with a size of 0. This object can also be
uploaded and downloaded. The console will display any object ending with "/" as a folder. Therefore,
users can create simulated folders this way. For accessing folders, refer to the [Folder Simulation
Function]

Setting the Object's Http Header

The OSS service allows users to customize the object Http Header. The following code sets the
expiration time for the object:

By importing dic-type parameter headers, you can set the upload header.

You can set the HTTP header to: Cache-Control, Content-Disposition, Content-Encoding, Expires, and
Content-MD5. For details on the headers, please see RFC2616. We suggest users add a Content-MD5
value when uploading. In this case, the OSS calculates the body's Content-MD5 and checks if the two
are the same.

Setting User Meta

The OSS allows users to define meta information to describe the object. For example:

from oss.oss_api import *
oss = OssAPI(endpoint, accessKeyId, accessKeySecret)
#Uploading a blank string and making the object end in "/"
res=oss.put_object_from_string("bucketname","folder_name/","")
print "%s\n%s" % (res.status, res.read())

from oss.oss_api import *
oss = OssAPI(endpoint, accessKeyId, accessKeySecret)
#Setting the expiretime
header={“Expires”:” Fri, 28 Feb 2012 05:38:42 GMT”}
#Uploading a local file with a header
res=oss.put_object_from_file(bucket,object,"test.txt",headers= header)
print "%s\n%s" % (res.status, res.read())

from oss.oss_api import *
oss = OssAPI(endpoint, accessKeyId, accessKeySecret)
#Setting user-meta

Object Storage Service SDK Reference

52

user meta is header information with the "x-oss-meta" prefix. As with uploading of http header, it is
imported using the dic-type headers parameters.A single object can have multiple similar parameters,
but the total size of all user meta cannot exceed 2 KB.

NOTE: The user meta name is not case sensitive. For instance, when a user uploads an object and
defines the meta name as "x-oss-meta-USER", the parameter stored in the header will be: "x-oss-
meta-user".

Multipart Upload

OSS allows users to split an object into several requests for uploading to the server. Concerning
multipart upload content, refer to the Object Multipart Upload section in MultipartUpload.

List Bucket Objects

Listing Objects

Object information exists in xml format in the HTTP response's body. It must be parsed using the
oss_xml_handler.GetBucketXml class.

Extended Parameters

We can use more parameters for more complex functions. For example:

headers={“x-oss-meta-user”:”baymax”}
#Uploading local files
res=oss.put_object_from_file(bucket, object,"test.txt",headers= headers)
print "%s\n%s" % (res.status, res.read())

from oss.oss_api import *
oss = OssAPI(endpoint, accessKeyId, accessKeySecret)

#Listing bucket objects
res= oss.list_bucket(bucket)
objects_xml=oss_xml_handler.GetBucketXml(res.read())
print objects_xml.show()

from oss.oss_api import *
oss = OssAPI(endpoint, accessKeyId, accessKeySecret)

#Listing bucket CommonPrefixes with the prefix "pic" and ending in "/"
res= oss.list_bucket(bucket,prefix=”pic”,delimiter=”/”)
objects_xml=oss_xml_handler.GetBucketXml(res.read())
print objects_xml.show()

Object Storage Service SDK Reference

53

-

The above code lists bucket CommonPrefixes with the prefix "pic" and ending in "/". For example,
"pic-people/". Settable parameter names and their functions:

Folder Function Simulation

We can use a combination of Delimiter and Prefix to simulate folder functions. Combinations of
Delimiter and Prefix serve the following purposes: Setting Prefix as the name of a folder enumerates
the files starting with this prefix, recursively returning all files and subfolders in this folder. When the
Delimiter is set as "/", the returned values will enumerate the files in the folder and the subfolders will
be returned in the CommonPrefixes section. Recursive files and folders in subfolders will not be
displayed. If the bucket contains 4 files: 'oss.jpg', 'fun/test.jpg', 'fun/movie/001.avi', and
'fun/movie/007.avi'. We use the "/" symbol as the separator for folders.

List bucket files

Name Function

delimiter

Character used to group object names. All
objects whose names contain the specified
prefix and that appear between the Delimiter
characters for the first time are used as a
group of elements: CommonPrefixes.

marker
Sets the returned results to begin from the
first entry after the marker in alphabetical
order.

maxkeys

Limits the maximum number of objects
returned for one request. If not specified, the
default value is 100. The maxkeys value
cannot exceed 1000.

prefix

Requires the returned object keys to be
prefixed with prefix. Note that the keys
returned from queries using a prefix will still
contain the prefix.

from oss.oss_api import *
oss = OssAPI(endpoint, accessKeyId, accessKeySecret)

#Listing bucket objects
res= oss.list_bucket(bucket)
objects_xml=oss_xml_handler.GetBucketXml(res.read())
#Formatting output results
print "Objects:"
for object_info in objects_xml.content_list:
 print object_info.key

print "CommonPrefixs:"
for prefix in objects_xml.prefix_list:
 print prefix

Object Storage Service SDK Reference

54

-

-

Recursively list all files in a directory

List files and subdirectories in a directory

Objects:
fun/movie/001.avi
fun/movie/007.avi
fun/test.jpg
oss.jpg

CommonPrefixs:

from oss.oss_api import *
oss = OssAPI(endpoint, accessKeyId, accessKeySecret)

#Listing all files in the bucket's "fun/" directory
res= oss.list_bucket(“bucketname”,prefix=”fun/”)
objects_xml=oss_xml_handler.GetBucketXml(res.read())
#Formatting output results
print "Objects:"
for object_info in objects_xml.content_list:
 print object_info.key

print "CommonPrefixs:"
for prefix in objects_xml.prefix_list:
 print prefix

Output:
Objects:
fun/movie/001.avi
fun/movie/007.avi
fun/test.jpg

CommonPrefixs:

from oss.oss_api import *
oss = OssAPI(endpoint, accessKeyId, accessKeySecret)
#Listing files and subdirectories in the bucket's "fun/" directory
res= oss.list_bucket(“bucketname”, prefix=”fun/”, delimiter=”/”)
objects_xml=oss_xml_handler.GetBucketXml(res.read())
#Formatting output results
print "Objects:"
for object_info in objects_xml.content_list:
 print object_info.key

print "CommonPrefixs:"
for prefix in objects_xml.prefix_list:
 print prefix

Object Storage Service SDK Reference

55

In the returned results, the Objects list contains the files in the fun directory.The CommonPrefixs list
shows all subfolders in the fun directory. Obviously, the files fun/movie/001.avi and
fun/movie/007.avi are not listed, because they are in the movie directory under the fun folder.

Retrieving Objects

Reading Objects

The object content is returned in the HTTP response body and can be obtained using the res.read()
method. Object header information can be obtained through res.getheaders(). It contains the ETag,
Http Header, and custom metadata. At the same time, you can add the following HTTP headers in the
request header for more detailed operations.

Objects:
fun/test.jpg

CommonPrefixs:
fun/movie/

from oss.oss_api import *
oss = OssAPI(endpoint, accessKeyId, accessKeySecret)
#Reading the file
res=oss.get_object("bucketname","object")
print "%s\n%s\n%s " % (res.status, res.read(),res.getheaders())

Parameter Description

Range Specifies the range of file transfer.

If-Modified-Since

If the specified time is earlier than the actual
modification time, the file is transmitted
normally. Otherwise, the system throws the
304 Not Modified exception.

If-Unmodified-Since

If the specified time is the same as or later
than the actual modification time, the file is
transmitted normally.Otherwise, the system
throws the 412 precondition failed exception

If-Match

Imports an ETag group. If the imported
expected ETag matches the object's ETag, the
file is transmitted normally.Otherwise, the
system throws the 412 precondition failed
exception

If-None-Match

Imports an ETag group. If the imported ETag
does not match the object's ETag, the file is
transmitted normally.Otherwise, the system
throws the 304 Not Modified exception.

Object Storage Service SDK Reference

56

We can set Range to return the object range. We can use this function for segmented file multipart
download and resumable data transfer.

Directly Downloading Objects to Files

We can use the code below to directly download objects to a specified file:

Only Retrieve ObjectMetadata

Using head_object, we can retrieve the object header information, including the objectmeta.

Deleting Objects

from oss.oss_api import *
oss = OssAPI(endpoint, accessKeyId, accessKeySecret)
#Setting the request header, and reading the content from 20-100 bytes
headers={"Range":"bytes=20-100"}
res=oss.get_object("bucketname","object",headers)
print "%s\n%s\n%s" % (res.status, res.read(),res.getheaders())

from oss.oss_api import *
oss = OssAPI(endpoint, accessKeyId, accessKeySecret)
#Downloading the object to "file_path"
res=oss.get_object_to_file("bucketname","object",”file_path”)
print "%s\n%s\n%s" % (res.status, res.read(),res.getheaders())

from oss.oss_api import *
oss = OssAPI(endpoint, accessKeyId, accessKeySecret)
#Getting the object header information
res=oss.head_object("bucketname","object")
print "%s\n%s" % (res.status,res.getheaders())

from oss.oss_api import *
oss = OssAPI(endpoint, accessKeyId, accessKeySecret)
#Deleting objects
res=oss.delete_object("bucketname","object")
print "%s\n%s" % (res.status,res.read())

from oss.oss_api import *
oss = OssAPI(endpoint, accessKeyId, accessKeySecret)
#Batch deleting 3 objects
objectlist=[“object1”,” object2”,” object3”,]
res=oss.batch_delete_objects ("bucketname", objectlist)
print "Is success?"
print res

Object Storage Service SDK Reference

57

batch_delete_objects() returns a bool value, indicating if deletion was successful or not.

Copying Objects

You can copy an object with operation permissions within the same region.

Copying One Object

Using the copyObject method, we can copy a single object. The code is as follows:

Note that the source and destination buckets must be in the same region.

At the same time, the user is allowed to modify the ObjectMeta of the destination object and can use
the following headers for more detailed operations.

from oss.oss_api import *
oss = OssAPI(endpoint, accessKeyId, accessKeySecret)
#Copying objects
res=oss. copy_object(“source_bucket”,”source_object”,”target_bucket”,”target_object”):
print "%s\n%s" % (res.status,res.getheaders())

Request Header Description

x-oss-copy-source-if-match

If the source object's ETAG value is the same
as the ETAG provided by the user, a copy
operation will be executed. Otherwise, the
system returns the 412 HTTP error code
(preprocessing failed)
Default value:none

x-oss-copy-source-if-none-match

If the source object has not been modified
after the time specified by the user, the
system performs a copy operation. Otherwise,
the system returns the 412 HTTP error code
(preprocessing failed)
Default value:none

x-oss-copy-source-if-unmodified-since

If the time specified by the received
parameter is the same as or later than the
modification time of the file, the system
transfers the file normally, and returns the 200
OK message; otherwise, the system returns
the 412 Precondition Failed message.
Default value:none

x-oss-copy-source-if-modified-since

If the source object has been modified after
the time specified by the user, the system
performs a copy operation. Otherwise, the
system returns the 412 HTTP error code
(preprocessing failed)
Default value:none

x-oss-metadata-directive If the parameter is set to COPY, the new
object's meta is all copied from the source

Object Storage Service SDK Reference

58

-

-

-

-

Modifying Object Meta

Copying data can modify the meta information of an existing object. If the address of the copied
source object is the same as the address of the destination object, the source object's meta
information will be replaced.

Multipart Upload

Besides using the putObject interface to upload files to OSS, the OSS also provides a Multipart
Upload mode.You can apply the Multipart Upload mode in the following scenarios (but not limited to
the following):

Where breakpoint uploads are needed.
Uploading an object larger than 100MB.
In poor network conditions, when the connection with the OSS server is frequently broken.
When, before uploading the file, you cannot determine its size.

Below, we will give a step-by-step introduction to Multipart Upload.

object. If the parameter is set to REPLACE, the
source object's meta is ignored, and the meta
values specified by the user in this request are
used. Other values will cause the system to
return an 400 HTTP error code. Note that
when the value is COPY, the source object's x-
oss-server-side-encryption meta value cannot
be copied.
Default value: COPY
Valid values:COPY, REPLACE

from oss.oss_api import *
oss = OssAPI(endpoint, accessKeyId, accessKeySecret)
#If the source ETag and provided ETag match, the copy operation is executed
headers={“x-oss-copy-source-if-match”:” 5B3C1A2E053D763E1B002CC607C5A0FE”}
res=oss. copy_object(“source_bucket”,”source_object”,”target_bucket”,”target_object”,headers):
print "%s\n%s" % (res.status,res.getheaders())

from oss.oss_api import *
oss = OssAPI(endpoint, accessKeyId, accessKeySecret)
#Setting the object's Content-Type
headers={“Content-Type”:”image/japeg”}
res=oss. copy_object(“bucketname”,”object”,”bucketname”,”object”,headers)
print "%s\n%s" % (res.status,res.getheaders())

Object Storage Service SDK Reference

59

Step-By-Step Multipart Upload

Initialization

Initializes a single multipart upload task

The upload id is saved in the returned HTTP response body in xml format. Use the provided parsing
method to obtain the upload id. UploadId is the unique identifier of a multipart upload task. We will
use this in subsequent operations.

Upload Part Local Upload

Next, we will multipart upload the local file. Let us assume that there is one file in the local path
'/path/to/file.zip'. Because it is large, we want to multipart upload it to OSS.

from oss.oss_api import *
from oss import oss_xml_handler
oss = OssAPI(endpoint, accessKeyId, accessKeySecret)
#Initializing a single multipart upload task
res=oss.init_multi_upload("bucketname","mutipartobject")
body = res.read()
if res.status == 200:
 #Using GetInitUploadIdXml to parse the xml and get the upload id
 h = oss_xml_handler.GetInitUploadIdXml(body)
 upload_id = h.upload_id
else:
 err = ErrorXml(body)
 raise Exception("%s, %s" %(res.status, err.msg))

from oss.oss_api import *
from oss import oss_util
from oss import oss_xml_handler

filename=”/path/to/file.zip”
max_part_num=20
filename = oss_util.convert_utf8(filename)
#Splitting the file and saving the information for each piece in the part_msg_list
part_msg_list = oss_util.split_large_file(filename, object, max_part_num)
uploaded_part_map = oss_util.get_part_map(oss, bucket, object, upload_id)
for part in part_msg_list:
#Extracting information for each piece
 part_number = str(part[0])
 partsize = part[3]
 offset = part[4]
 res = oss.upload_part_from_file_given_pos(bucket, object, filename, offset, partsize, upload_id, part_number)
#Saving etag
 etag = res.getheader("etag")
 if etag:
 uploaded_part_map[part_number] = etag

Object Storage Service SDK Reference

60

-

-

-

-

The main idea of this program is to call the uploadPart method to upload each part. However, you
must note the following:

In the uploadPart method, all parts except the last one must be larger than 100KB.
In order to ensure that the data transmitted over the network is free from errors, we strong
recommend that the user include meta: content-md5 in the request when uploading parts.
After the OSS receives data, it uses this MD5 value to verify the correctness of the uploaded
data. If it is not consistent, OSS returns the InvalidDigest error code.
The part number range is 1~10000. If the part number exceeds this range, the OSS will
return the InvalidArgument error code.
When each part is uploaded, it will take the stream to the location corresponding to the start
of the next part.

Completing Multipart Uploads

Canceling Multipart Upload Tasks

When a Multipart Upload event is aborted, you cannot use this Upload ID to perform any operations
and the uploaded parts of data will be deleted.

Getting All Multipart Upload Tasks in the Bucket

Converting the part_msg_list generated by oss_util.split_large_file() to xml format
part_msg_xml = oss_util .create_part_xml(part_msg_list)
res = oss.complete_upload(bucket,objectname, upload_id, part_msg_xml,)

from oss.oss_api import *
oss = OssAPI(endpoint, accessKeyId, accessKeySecret)
#Using upload id to cancel a multipart upload task
oss.cancel_upload(bucketname, objectname, upload_id)

from oss.oss_api import *
from oss import oss_util
from oss import oss_xml_handler
oss = OssAPI(endpoint, accessKeyId, accessKeySecret)
#Retrieving all multipart upload task information
res=oss.get_all_multipart_uploads(bucket)
#Parsing the results
res_xml= oss_xml_handler. GetMultipartUploadsXml(res.read())
for upload in res_xml.content_list
 print “--------------------------------------”
 print “key:”+upload.key
 print “uploaded:”+upload.upload_id

Object Storage Service SDK Reference

61

All the upload event information is saved in the returned HTTP response body in xml format. Use the
GetMultipartUploadsXml class to parse it.

Getting Information for All Uploaded Parts

All the part information is saved in the returned HTTP response body in xml format. Use the
GetPartsXml class to parse it.

Error Responses

Error Response Handling

If an error occurs when a user accesses the OSS, the OSS returns the error code and error message, so
that the user can locate the problem and handle it properly. When the returned status is not 2XX, the
error messages is saved in the response body in xml format. Refer to the processing of the following
code:

from oss.oss_api import *
from oss import oss_util
from oss import oss_xml_handler
oss = OssAPI(endpoint, accessKeyId, accessKeySecret)
#Retrieving all part information for each multipart upload task

res=oss.get_all_parts(bucket,object,upload_id)
#Parsing the results
res_xml= oss_xml_handler. GetPartsXml (res.read())
for part in res_xml.content_list
 print “--------------------------------------”
 print “partnumber:”+part. part_number
 print “lastmodified:”+ part. last_modified
 print “etag:”+ part. etag
 print “size:”+ part. size

from oss.oss_api import *
from oss import oss_xml_handler
oss = OssAPI(endpoint, accessKeyId, accessKeySecret)
#Using the object list as an example
res= oss.list_bucket(bucket)
if res.status/100 != 2:
 #Parsing the xml format error message
 err_msg=oss_xml_handler.ErrorXml(res.read())
 print 'Code:'+err_msg.code
 print 'Message:'+err_msg.msg
 print 'Request id:'+err_msg.request_id
else:

Object Storage Service SDK Reference

62

-

-

-

Among them:

Code: the error code OSS returns to users.
Message: the detailed error message provided by OSS.
RequestId: indicates a UUID of the request. If you cannot solve the problem, you can seek
help from OSS development engineers by providing this RequestId.

Common Error Codes

 objects_xml=oss_xml_handler.GetBucketXml(res.read())
 objects_xml.show()

Error Code Description

AccessDenied Access denied

BucketAlreadyExists The bucket already exists

BucketNotEmpty The bucket is not empty

EntityTooLarge The entity is too large

EntityTooSmall The entity is too small

FileGroupTooLarge The file group is too large

FilePartNotExist A file part does not exist

FilePartStale A file part has expired

InvalidArgument Parameter format error

InvalidAccessKeyId The Access Key ID does not exist

InvalidBucketName The bucket name is invalid

InvalidDigest The digest is invalid

InvalidObjectName The object name is invalid

InvalidPart A part is invalid

InvalidPartOrder The part order is invalid

InvalidTargetBucketForLogging The logging operation has an invalid target
bucket

InternalError Internal OSS error

MalformedXML Illegal XML format

MethodNotAllowed The method is not supported

MissingArgument A parameter is missing

MissingContentLength The content length is missing

NoSuchBucket The bucket does not exist

NoSuchKey The file does not exist

Object Storage Service SDK Reference

63

-

-

-

Lifecycle Management

OSS provides the object lifecycle management capability to manage objects for users. The user can
configure the lifecycle of a bucket to define various rules for the bucket's objects. Currently, users can
use rules to delete matching objects. Each rule is composed of the following parts:

The object name prefix; this rule will only apply to objects with the matched prefix.
Operation; the operation the user wishes to perform on the matched objects.
Date or number of days; the user will execute the operation on the objects on the specified
date or a specified number of days after the object's last modification time.

Setting Lifecycles

The lifecycle configuration rules are expressed by an xml segment.

NoSuchUpload Multipart Upload ID does not exist

NotImplemented The method cannot be processed

PreconditionFailed Preprocessing error

RequestTimeTooSkewed The request initiation time exceeds the server
time by 15 minutes

RequestTimeout Request timed out

SignatureDoesNotMatch Signature error

TooManyBuckets The user's bucket quantity exceeds the limit

<LifecycleConfiguration>
 <Rule>
 <ID>delete obsoleted files</ID>
 <Prefix>obsoleted/</Prefix>
 <Status>Enabled</Status>
 <Expiration>
 <Days>3</Days>
 </Expiration>
 </Rule>
 <Rule>
 <ID>delete temporary files</ID>
 <Prefix>temporary/</Prefix>
 <Status>Enabled</Status>
 <Expiration>
 <Date>2022-10-12T00:00:00.000Z</Date>
 </Expiration>
 </Rule>
</LifecycleConfiguration>

Object Storage Service SDK Reference

64

-

-

-

-

A single lifecycle Config can contain up to 1000 rules.

Explanations of each field:

The ID field is used to uniquely identify a rule (inclusion relations, such as abc and abcd,
cannot exist between IDs).
Prefix indicates the rules used for objects in the bucket with the specified prefix.
Status indicates the status of this rule. The statuses are Enabled and Disabled, indicating if
the rule is enabled or disabled.
In the Expiration node, Days indicates that an object will be deleted a specified number of
days after its last modification. Date indicates that objects will be deleted after the specified
absolute time (the absolute time follows the ISO8601 format).

Using the put_lifecycle() method, we can set a lifecycle rule for a specified bucket. If an original rule
exists, it will be overwritten. Parameters for specific rules are generally set by uploading xml format
strings. The code is as follows:

For setting lifecycle rules with xml format, refer to the API Documentation.

Retrieving Lifecycle Rules

We can refer to a bucket's lifecycle rules using the get_ lifecycle () method to retrieve them. The code
is as follows:

The read lifecycle rule information is saved in the response body in xml format and read by the read()
method.

Deleting Lifecycle Rules

Use this to disable lifecycle for the specified bucket and clear all rules.

from oss.oss_api import *

oss = OssAPI(endpoint, accessKeyId, accessKeySecret)
#Importing an xml string that sets lifecycle rules
res=oss.put_lifecycle(bucket,lifecycle_xml)
print res.status()

from oss.oss_api import *

oss = OssAPI(endpoint, accessKeyId, accessKeySecret)
#Retrieving CORS rule information
res=oss.get_cors(bucket)
#Saving the information in the response body in xml format
print res.read()

Object Storage Service SDK Reference

65

Cross-Origin Resource Sharing (CORS)

CORS allows web applications to access resources in other regions. OSS provides an interface to allow
developers to easily control cross-origin access permissions.

Setting CORS Rules

Using the put_cors() method, we can set a CORS rule for a specified bucket. If an original rule exists, it
will be overwritten. Parameters for specific rules are generally set by uploading xml format strings.
The code is as follows:

For setting CORS in xml format, refer to OSS API Documentation.

Retrieving CORS Rules

We can refer to the bucket's CORS rules through the get_cors() method. The code is as follows:

from oss.oss_api import *

oss = OssAPI(endpoint, accessKeyId, accessKeySecret)
#Clearing the lifecycle rules set for the bucket
res=oss.delete_lifecycle (bucket)
print res.status()

from oss.oss_api import *

oss = OssAPI(endpoint, accessKeyId, accessKeySecret)
#Importing an xml string that sets a CORS rule
res=oss.put_cors(bucket,cors_xml)
print res.status()

from oss.oss_api import *
from oss import oss_xml_handler

oss = OssAPI(endpoint, accessKeyId, accessKeySecret)
#Retrieving CORS rule information
res=oss.get_cors(bucket)
It is parsed using the provided CorsXml class
cors_xml=oss_xml_handler.CorsXml(res.read())
for rule in cors_xml.rule_list:
 print "----------------"
 rule.show()

Object Storage Service SDK Reference

66

The read CORS rule information is saved in the response body in xml format. Read the information
with the read() method and use the CorsXml class for parsing.

Deleting CORS Rules

Use this to disable CORS for the specified bucket and clear all rules.

Android-SDK

Preface

Description

This document introduces the methods for using the OSS Android SDK.

The OSS Android SDK is provided to help mobile developers more easily use the OSS cloud storage
service on Android terminals. It is a storage component implemented based on OSS RESTful
interfaces (AliCloud object storage service). By using this SDK, apps developed by developers can
directly perform data access, deletion, copy, and other operations on the OSS server from a terminal.
These operations provide two use modes: synchronous and asynchronous.

For more information on the API and some class structures, see the files in the SDK package doc/
directory.

You must note one thing: this SDK is a basic wireless terminal component developed based on OSS. It
aims to satisfy mobile terminal developers’ data storage needs. It provides capabilities that allow
mobile terminal applications to more easily access OSS data. It does not provide OSS Console
management functions, e.g., bucket application, bucket management, domain name binding, and
subscription to static website hosting.

About OSS

from oss.oss_api import *

oss = OssAPI(endpoint, accessKeyId, accessKeySecret)
#Clearing the CORS rules set for the bucket
res=oss.delete_cors(bucket)
print res.status()

Object Storage Service SDK Reference

67

-

-

-

-

Object Storage Service (OSS) is a cloud storage service provided by Alibaba Cloud, featuring massive
capacity, security, and high reliability. This SDK provides Android mobile developers a set of OSS API
interfaces tailor-made for the Android platform. Therefore, before using this SDK, you must first
subscribe to the OSS service on the Alibaba Cloud official site and learn the basics of using OSS.

OSS Manual: OSS API Manual

SDK download

Android SDK 2.3.0: aliyun_OSS_Android_SDK_20160915

GitHub: click here

Sample: click here

Javadoc: click here

Installation

1. Use in the OneSDK

Currently, OSS mobile SDKs have already become a standard component of Alibaba Cloud OneSDK.
You can use the OSS service by integrating OneSDK in an application. After integration, you just have
to follow the OneSDK installation instructions. You do not have to configure any additional settings
here, but can simply follow the steps in the following chapters to use the OSS service.

2. Direct Use in Eclipse

After downloading the OSS Android SDK zip package, follow the process below:

Download the OSS Android SDK from the official website
Decompress it and obtain the jar package
Copy the jar package to the lib directory in your Android project
In Eclipse, right-click Project -> Properties -> Java Build Path -> Add JARs to import the jar
package you just copied

3. Permission Setting
The following are the Android permissions needed by the OSS Android SDK. Please make sure these

Object Storage Service SDK Reference

68

permission are already set in your AndroidManifest.xml file. Otherwise, the SDK will not work
normally.

After completing the steps above, you can use the OSS Android SDK in the project.

Initialization

Before using the SDK, you must get the OSS Service in the SDK and then initialize some settings, e.g.,
implement the signature method, transfer the program Context, set the domain name of the default
data center, etc.

In the whole application lifecycle, you only have to initialize these items once before using the OSS
Android SDK.

1. Getting the OSS Service

The OSS Android SDK uses service IDs to provide various functions. The retrieval method is as
follows:

In the application’s lifecycle, you can get this ossService to use the OSS service multiple times.

2. Application Context Import

When the OSS Android SDK is working, it must use the application Context. Therefore, you must set
this during initialization. This action is completed through the OSSService interface. The code is as
follows:

It must be pointed out that this operation is only effective the first time. Subsequent attempts to
reset it will be ignored.

<uses-permission android:name="android.permission.INTERNET"></uses-permission>
<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE"></uses-permission>
<uses-permission android:name="android.permission.READ_PHONE_STATE"></uses-permission>
<uses-permission android:name="android.permission.ACCESS_WIFI_STATE"></uses-permission>
<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"></uses-permission>

OSSService ossService = OSSServiceProvider.getService();

ossService.setApplicationContext(getApplicationContext());

Object Storage Service SDK Reference

69

3. Setting the Data Center Domain Name

When creating a bucket on the OSS official site, you can choose a data center based on the unit price,
the distribution of request sources, and the response latency. When you create a bucket, if you do
not specify its data center, OSS will automatically allocate it a default data center. The current default
data center is oss-cn-hangzhou.

Therefore, when performing OSS data operations, you must use a domain name to specify the data
center of your bucket. This can be done through the following interface:

If you have not called this interface to set the domain name, the OSS Android SDK will set your hostId
to oss-cn-hangzhou.aliyuncs.com by default.

4. Token Generator Settings

For detailed information concerning token generator settings, refer to the [Access Control] chapter in
this document. For now, you only need to know that, during initialization, you must perform this
operation.

5. Custom Reference Time Setting

Because OSS token verification is time-sensitive, you may worry that incorrect system times of mobile
terminals may cause users to be unable to access the OSS service. We have prepared an interface that
allows you to set the SDK time. Over the network, you can get the current epoch time from the
business server and set it. Then, during SDK operations, the time will be synced with the server time:

Note that the time uses units of seconds.

6. Network-related Settings

The operations the OSS Android SDK performs on OSS resources all are completed through network

ossService.setGlobalDefaultHostId("oss-cn-qingdao.aliyuncs.com"); // Specifies that your bucket is placed in the
Qingdao data center

ossService.setAuthenticationType(AuthenticationType.ORIGIN_AKSK);
ossService.setGlobalDefaultTokenGenerator(new TokenGenerator() {
// Requires specific implementation
});

ossService.setCustomStandardTimeWithEpochSec(int currentEpochTimeInSec); // The epoch time is counted in
seconds from January 1, 1970 00:00:00 UTC

Object Storage Service SDK Reference

70

requests. Therefore, it is very likely that you will need to set the relevant network parameters. This can
be done using a ClientConfiguration, e.g.:

7. Initialization Overview

During initialization, if you configure these settings, the initialization code section may be as follows:

Access control

After subscribing to the OSS service on the Alibaba Cloud official site and creating your storage space
(bucket), you can use the OSS Android SDK to access data on a terminal. To ensure the security of
your data, OSS performs the appropriate security settings on the server. Accordingly, you need to
implement the corresponding authentication process so that you can smoothly access your data.

Currently, the OSS Android SDK provides two authentication methods: the original AK/SK
authentication and STS Token authentication. STS Token authentication is better suited to mobile
scenario authentication and it is the method we recommend.

1. Original AK/SK authentication

ClientConfiguration conf = new ClientConfiguration();
conf.setConnectTimeout(15 * 1000); // Sets the connection establishment timeout time, default: 30s
conf.setSocketTimeout(15 * 1000); // Sets the socket timeout time, default: 30s
conf.setMaxConnections(50); // Sets the global maximum number of concurrent connections, default: 50
conf.setMaxConcurrentTaskNum(10); // Sets the global maximum number of concurrent tasks, default: 10
ossService.setClientConfiguration(conf);

OSSService ossService = OSSServiceProvider.getService();

ossService.setApplicationContext(getApplicationContext());
ossService.setGlobalDefaultHostId("oss-cn-hangzhou.aliyuncs.com");
ossService.setAuthenticationType(AuthenticationType.ORIGIN_AKSK);
ossService.setGlobalDefaultTokenGenerator(new TokenGenerator() {
// Requires specific implementation
});
ossService.setCustomStandardTimeWithEpochSec(currentEpochTimeInSec); // The epoch time is counted in seconds
from January 1, 1970 00:00:00 UTC

ClientConfiguration conf = new ClientConfiguration();
conf.setConnectTimeout(15 * 1000); // Sets the connection establishment timeout time, default: 30s
conf.setSocketTimeout(15 * 1000); // Sets the socket timeout time, default: 30s
conf.setMaxConnections(50); // Sets the global maximum number of concurrent connections, default: 50
conf.setMaxConcurrentTaskNum(10); // Sets the global maximum number of concurrent tasks, default: 10
ossService.setClientConfiguration(conf);

Object Storage Service SDK Reference

71

When you register OSS, the system will assign you an Access Key ID and Access Key Secret pair, which
is called the ID pair and referred to in this document as ‘AK/SK’. This is used for signature
verification when you access OSS. For information on AK/SK usage, refer to User Signature
Authentication. Put simply, each request you initiate to OSS must carry the token obtained from
‘AK/SK’ signing the request content. After successful authentication, the OSS server will process
your request.

Because you are performing development on the terminals, the issues concerning secure storage of
the AK/SK are hard to ignore. Therefore, the OSS Android SDK will not ask for your ‘AK/SK’. Rather,
determined by your signature method, the SDK will call your signature method to generate a token
prior to initiating an OSS request.

When using this method, you must call the following interface to set the authentication type:

Then, implement your token generator and set it in the ossService:

TokenGenerator is an abstract object that contains an abstract method that you must implement. Its
parameters correspond exactly to the Authorization field calculation method in the OSS API Manual.
You just need to generate and return a Token by signing these parameters with AK/SK.

If we do not consider the security of the ‘AK/SK’, the sample code is as follows:

The tool functions used in the above code are already stored in the SDK, allowing you to use them for

ossService.setAuthenticationType(AuthenticationType.ORIGIN_AKSK);

ossService.setGlobalDefaultTokenGenerator(TokenGenerator tokenGen);

public abstract String generateToken(
String httpMethod,
String md5,
String type,
String date,
String ossHeaders,
String resource);

static final String accessKey = "Your accessKey"; // In actual use, the AK/SK is not stored in the code using clear text
static final String secretKey = "Your secretKey";
ossService.setGlobalDefaultTokenGenerator(new TokenGenerator() {
@Override
public String generateToken(String httpMethod, String md5, String type, String date, String ossHeaders,
String resource) {
String content = httpMethod + "\n" + md5 + "\n" + type + "\n" + date
+ "\n" + ossHeaders + resource;

return OSSToolKit.generateToken(accessKey, secretKey, content);
}
});

Object Storage Service SDK Reference

72

testing. For your reference, the ‘OSSToolKit.generateToken(…)’ implementation details are as
follows:

It must again be emphasized that the ‘AK/SK’ should not be stored in the code using clear text.
You should design a secure storage method for receiving the ‘AK/SK’.

A suggested model is shown below:

As shown in the figure, you can store the ‘AK/SK’ on your business server, and then implement the
‘generateToken()’ method in the ‘TokenGenerator’ to post these parameters to your business
server using an HTTP request. When your business server signs and returns the token, you then
return this token to the ‘TokenGenerator’. This method is only called during actual uploads,
downloads, and other operations. Therefore, you do not have to worry about implantation involving
network operations initiating the NetworkInMainThread exception. You just have to use a
synchronized HTTP request to post the relevant fields to your business server and receive the token.

Therefore, in the entire process, the ‘AK/SK’ will not be exposed on the terminal, effectively

public static String generateToken(String accessKey, String secretKey, String content) {
String signature = null;

try {
signature = OSSToolKit.getHmacSha1Signature(content, secretKey);
signature = signature.trim();
} catch (Exception e) {
OSSLog.logD(e.toString());
}

return "OSS " + accessKey + ":" + signature; // Note there is a space between "OSS" and accessKey!！！
}

Object Storage Service SDK Reference

73

avoiding the risk of leaks.

It is difficult to combine security, ease-of-use, and efficiency. Before deciding on an AK/SK storage
solution, please carefully weigh the risks and benefits.

2. STS token authentication

As described above, following the recommended security model and adopting the original AK/SK
signature requires the terminal to get a signature result from the business server each time it initiates
a request to the OSS service. When the terminal needs to access data frequently, the cost of this
method will be quite high because a network interaction occurs each time the terminal gets a
signature result.

In order to allow mobile terminals to conveniently and securely use the OSS service, Alibaba Cloud
developed the STS service to support the security requirements in mobile scenarios. For details, refer
to STS API Reference.

The OSS download package already contains STS Client SDKs for different programming languages,
allowing the user to conveniently call the STS service on the business server. For the relevant use
methods, refer to the demo in the package.

At the same time, we have provided a simple Android online storage demo based on STS. The source
code is hosted on github and provided for reference: sts-demo-simple-android-app

In STS, Security Tokens are a core concept. They represent one-time authorizations you, as an ISV,
can grant to terminal users. In fact, this authorization requires your original AK/SK (see Section 1 in
this chapter). This authorization specifies the permission range and validity period. In the validity
period, the Security Token can be used to directly sign requests in the permission range. This validity
period generally covers one lifecycle of the mobile application, completely solving the problem
described above. When required, it can also be updated.

The use of the original AK/SK to get the Security Token and the OSS Android SDK behaviors are
mutually independent. The SDK provides an interface for accepting the token, but it is not associated
with your actual retrieval of the token. You must call the following interface:

First set the ossService authentication method as Token. Then, set the STS token generator in the
ossService. The implementation of this token generator depends on your STS Token retrieval method.
This is the same as AK/SK authentication. The difference is that the STS Security Token can be used
throughout the validity period. Therefore, in the validity period, the SDK will continue to use this
token internally until it expires. Then, it will call this interface again to get another one. However,
when you call the ‘setGlobalDefaultStsTokenGetter()’ interface again, the cached token will be
forced to expire, allowing you to switch authorizations conveniently.

ossService.setAuthenticationType(AuthenticationType.FEDERATION_TOKEN); // Sets the signature method as STS
Token authentication
ossService.setGlobalDefaultStsTokenGetter(StsTokenGetter stsTokenGetter);

Object Storage Service SDK Reference

74

A suggested model is shown below:

As shown in the figure, the STS service provides servers with SDKs for multiple programming
languages. This allows you to conveniently get the STS Token from your business server and grant it
to mobile terminals.

Bucket Operations

1. Bucket settings

Buckets are the namespaces in OSS. They are also the management entities for billing, permission
control, logging, and other advanced functions. Naturally, prior to performing data-related
operations, you must first create a bucket instance and configure it. This lets you easily use this
bucket instance to specify data storage locations in subsequent data operations.

Creating a bucket is very simple:

Then, you can configure some optional settings.

1.1 Stating Bucket Access Permissions

ossService.setAuthenticationType(AuthenticationType.FEDERATION_TOKEN); // Sets the signature method as STS
FederToken authentication
ossService.setGlobalDefaultStsTokenGetter(new StsTokenGetter() {
// Write your code for getting a new STS Token here
// Under normal conditions, this token should be obtained through a network request to your business server
// Note that the returned OSSFederationToken must include four valid
fields:tempAK/tempSK/securityToken/expiration
// The expiration value is the token's expiration time, format: UNIX Epoch time. This is the number of seconds from
January 1, 1970 00:00:00 in coordinated universal time
});

OSSBucket sampleBucket = ossService.getOssBucket("oss-example");

Object Storage Service SDK Reference

75

When creating a bucket on the OSS official site, you can specify three access permissions:
PUBLIC_READ_WRITE, PUBLIC_READ, and PRIVATE. Therefore, in SDK, you also need to specify the
permissions set for the bucket you wish to access. This statement will not change your console
settings.

1.2 Setting the Data Center Domain Name or CNAME

This can simply specify the bucket's data center or sets the domain name already bound to the
bucket:

1.3 Setting CDN Domains

Buckets can simply set the CNAME domain name of the CDN domain they direct to. Because CDN
does not currently support nearest upload, if you wish to set this, it can only be used during
download. For example:

2. Initialization Overview

When initializing a bucket, if you configure all settings, the initialization code section may be as
follows:

Normally, buckets can be regarded as a global concept because, in most situations, all data
operations are associated with a bucket. Therefore, you should create these buckets during global
initialization. During subsequent data operations, you only need to import the corresponding bucket
to the specified data location.

sampleBucket.setBucketACL(AccessControlList.PRIVATE); // States the access permission for this bucket

sampleBucket.setBucketHostId("oss-cn-hangzhou.aliyuncs.com"); // Specifies the domain name of the bucket's data
center or the CNAME domain name already bound to the bucket

sampleBucket.setCdnAccelerateHostId("cname.to.cdn.domain.com"); // Sets the CNAME domain name for the CDN
domain directed to

OSSBucket sampleBucket = ossService.getOssBucket("oss-example");
sampleBucket.setBucketACL(AccessControlList.PRIVATE); // Indicates the access permission for this bucket
sampleBucket.setBucketHostId("oss-cn-hangzhou.aliyuncs.com"); // Specifies the domain name of the bucket's data
center or the CNAME domain name already bound to the bucket
// sampleBucket.setCdnAccelerateHostId("cname.to.cdn.domain.com"); // Sets the CNAME domain name for the
CDN domain directed to

Object Storage Service SDK Reference

76

3. List Objects

After setting a bucket, you can call the following interface to list the objects in the bucket:

ListObjectOption is an optional parameter, used to set the Max-Keys, Marker, Prefix, and Delimiter
parameters. The significance of these parameters is consistent with the descriptions in OSS API
Manual. ListObjectResult is the returned result from which you can extract the relevant information.
For example:

Note: This method is a sync method. During execution, it will send network requests, so do not
directly call in the main thread.

Data Storage

The OSS Android SDK performs data storage operations using 'OSSData'. Here, data indicates the
data in the memory when the application is running. Therefore, if you need to upload data in the
memory when the application is running or wish to download a line of data from OSS to the local
memory as a byte[] array to process it, you should perform an operation of this type.

When constructing an 'OSSData' instance, you must specify 'OSSBucket' and 'ObjectKey'. This

public ListObjectResult listObjectsInBucket(ListObjectOption opt);

ListObjectOption opt = new ListObjectOption();
opt.setDelimiter("/");
opt.setPrefix("prefixdir/");
opt.setMaxKeys(500);
opt.setMarker(“prefix187");

ListObjectResult result = sampleBucket.listObjectsInBucket(opt); // Calls the interface to list bucket objects

int objectNum = result.getObjectInfoList().size();
String nextMarkder = result.getNextMarker();
Boolean isTruncated = result.isTruncated();
List<ObjectInfo> objectList = result.getObjectInfoList(); // Retrieves the objects list from the returned results
List<String> commonPrefixes = result.getCommonPrefixList(); // When Delimiter is set, objects with matching
prefixes will be grouped together and recorded in the returned commonprefix

for (ObjectInfo ele : objectList) { // Traverses the returned objects list
 String objectKey = ele.getObjectKey();
 String lastModifiedTime = ele.getLastModified());
}

for (String prefix : commonPrefixes) {
 // doSomething with prefixes
}

Object Storage Service SDK Reference

77

-

-

-

indicates the data line in OSS to be operated on. Instance retrieval is as follows:

1. Data Downloads

After you construct an 'OSSData' instance, if the 'OSSBucket' and 'ObjectKey' you specify correspond
to data existing in OSS, you can download it. The code is as follows:

Here, you must note the following:

The above is just the simplified sample code. For actual applications, the download may fail
for various reasons, so you should write code to catch exceptions and then handle them. For
exception explanations, refer to the following chapter.
This is a synchronous method and may clog the thread until the method is returned.
When performing data operations, the OSS Android SDK must perform network interactions
with the OSS server. Therefore, this code is considered a time-consuming obstructive
operation. On Android platforms, most codes are run on the main thread (also called the UI
thread). If the main thread has a time-consuming, obstructive operation, your codes may not
run normally. Therefore, you should execute these codes on a non-UI thread. Or, you can use
the asynchronous 'getInBackgroud()' interface provided by the SDK. For details, please refer
to section 2 in this chapter.

In addition, if your file is in a folder, you just need to write the path in 'ObjectKey':

After the data download is completed, you can call the 'getMeta()' method to retrieve the metadata:

This method can only get results after the data download is completed (if it an asynchronous
download, after 'onSuccess()' is triggered). If you wish to directly retrieve metadata, please refer to
section 8.

2. Asynchronous Data Download Version

In fact, the OSS Android SDK provides an asynchronous version for all time-consuming methods,

OSSData ossData = ossService.getOssData(OSSBucket ossBucket, String ObjectKey);

OSSData ossData = ossService.getOssData(sampleBucket, "sample-data"); // Constructs an OSSData instance
byte[] data = ossData.get(); // A failed download will throw an exception

OSSData ossData = ossService.getOssData(sampleBucket, "fileFolder/sample-data"); // Constructs an OSSData
instance
byte[] data = ossData.get(); // A failed download will throw an exception

List<BasicNameValuePair> metaList = OSSData.getMeta();

Object Storage Service SDK Reference

78

allowing you to import your own implemented callback method. This performs the operation in a
new thread and asynchronously calls back your processing logic.

For data downloads, the asynchronous interface is used as follows:

When using the asynchronous interface, please be sure to import a callback method. If you do not
need a callback method, you can leave it blank.

It must be pointed out that, when you implement these callback methods, they will be called by the
OSS Android SDK in the task processing thread. This is to say that they will be executed in a non-UI
thread. In Android, non-UI threads cannot control UI elements. Therefore, if you need to control a UI
element in a callback method, you must do this through the message passing mechanism provided
by Android. There are already a good deal of reference materials for this process, so we will not
describe it again here.

The reason we do not first transfer the callback method to the UI thread for execution in SDK is that,
if this is done with all callback methods, it will severely restrict the flexibility of SDK usage scenarios.

3. Retrieving the Data Input Stream

When downloading data, you can also directly retrieve the data input stream to perform the
necessary processing:

OSSData ossData = ossService.getOssData(sampleBucket, "sample-data");
ossData.getInBackground(new GetBytesCallback() {
 @Override
 public void onSuccess(String objectKey, byte[] data) {
 // Here, the downloaded data is processed
 }

 @Override
 public void onProgress(String objectKey, int byteWirtten, int totalSize) {
 // Here, you can perform operations based on the download progress
 }

 @Override
 public void onFailure(String objectKey, OSSException ossException) {
 // When a download fails, you can get the exception information and perform exception handling here
 }
});

OSSData ossData = ossService.getOssData(sampleBucket, "sample-data"); // Constructs an OSSData instance
try {
 InputStream inputStream = ossData.getObjectInputStream(); // A failed retrieval will throw an exception
 // do something with inputStream
} catch (OSSException ossException) {

}

Object Storage Service SDK Reference

79

4. Data Uploads

If, when running an application, you must upload the data in the memory to OSS, you must first
specify the 'OSSBucket' and 'ObjectKey' to construct an 'OSSData' instance. Then, call the 'setData'
interface and specify the data to upload and its type. Finally, call the upload method to upload the
data.

When uploading, you can select whether or not the MD5 check is enabled.

The code is as follows:

After the upload is completed, the bucket corresponding to 'sampleBucket' on OSS will have a new
line of data, named 'sampleData'. Its content is the 'data' you uploaded.

Likewise, data upload also has an asynchronous version:

You can set a data stream as the data to be uploaded. However, when you do so, you must specify
the length of the upload data to read from the data stream. For example:

OSSData ossData = ossService.getOssData(sampleBucket, "sample-data");
ossData.setData(data, "raw"); // Specifies the data to upload and its type
ossData.enableUploadCheckMd5sum(); // Enables the upload MD5 check
ossData.upload(); // Failed uploads will throw an exception

OSSData ossData = ossService.getOssData(sampleBucket, "sample-data");
ossData.setData(data, "raw"); // Specifies the data to upload and its type
ossData.enableUploadCheckMd5sum(); // Enables the upload MD5 check
ossData.uploadInBackground(new SaveCallback() {
 @Override
 public void onSuccess(String objectKey) {

 }

 @Override
 public void onProgress(String objectKey, int byteCount, int totalSize) {

 }

 @Override
 public void onFailure(String objectKey, OSSException ossException) {

 }
});

OSSData ossData = ossService.getOssData(sampleBucket, "sample-data");

File fileToUpload = new File("<path/to/file>");
InputStream in = new FileInputStream(fileToUpload);

ossData.setInputstream(in, (int) fileToUpload.length(), "raw");

Object Storage Service SDK Reference

80

5. Data Deletion

After you construct an 'OSSData' instance representing the data corresponding to the specified
'OSSBucket' and 'ObjectKey', you can call the delete method to delete this line of data. The code is as
follows:

Likewise, there is an asynchronous version:

The delete operation has no progress status. You do not need a callback method for the
implementation progress. The copy method below is similar.

6. Data Copying

ossData.enableUploadCheckMd5sum(); // Enables the upload MD5 check

// ossData.upload(); // Failed synchronous uploads will throw an exception

ossData.uploadInBackground(new SaveCallback() {
 @Override
 public void onSuccess(String objectKey) {

 }

 @Override
 public void onProgress(String objectKey, int byteCount, int totalSize) {

 }

 @Override
 public void onFailure(String objectKey, OSSException ossException) {

 }
});

OSSData ossData = ossService.getOssData(sampleBucket, "sample-data"); // Constructs an OSSData instance
ossData.delete(); // Failed deletions will throw an exception

OSSData ossData = ossService.getOssData(sampleBucket, "sample-data"); // Constructs an OSSData instance
data.deleteInBackground(new DeleteCallback() {
 @Override
 public void onSuccess(String objectKey) {

 }

 @Override
 public void onFailure(String objectKey, OSSException ossException) {

 }
});

Object Storage Service SDK Reference

81

You can construct an 'OSSData' instance not existing in OSS for the specified 'OSSBucket' and
'ObjectKey'. Then, call the copy method to copy other existing OSS data to it. The copy source can be
data in the same or a different bucket.

The code is as follows:

//Or:

Asynchronous version:

//Or:

7. Specifying a Range During Downloads

Before downloading data, you can set 'Range' to specify the download range:

OSSData ossData = ossService.getOssData(sampleBucket, "sample-data");
ossData.copyFrom("sourceData"); // Copies from the same bucket

ossData.copyFrom("sourceBucket", "sourceData"); // Copies from a different bucket

OSSData ossData = ossService.getOssData(sampleBucket, "sample-data");
ossData.copyFromInBackgroud("sourceData", new CopyCallback() {
 @Override
 public void onSuccess(String objectKey) {

 }

 @Override
 public void onFailure(String objectKey, OSSException ossException) {

 }
});

ossData.copyFromInBackgroud("sourceBucket", "sourceData", new CopyCallback() {
 @Override
 public void onSuccess(String objectKey) {

 }

 @Override
 public void onFailure(String objectKey, OSSException ossException) {

 }
});

ossData.setRange(222, 888)); // This is only valid for a download operation and, to be effective, must be called prior

Object Storage Service SDK Reference

82

8. Adding Custom Meta Attributes During Uploads

Data in OSS has its own meta attributes. Besides being automatically added by the system, you can
also specify custom attributes using the "x-oss-meta-" prefix. For details, please refer to the OSS
product documentation.

The attributes you specify at the time of upload can be individually retrieved through the retrieve
meta attributes method in the SDK. For details, refer to the [Only Retrieve Meta] chapter in this
document.

The code for adding custom meta attributes prior to upload is as follows:

Note: If you add meta attributes without the "x-oss-meta-" prefix, they will be ignored. Also, we do
not suggest adding information in Chinese in meta. Otherwise, you must manually perform a codec
operation. This means you must encode it before uploading, and manually decode it after
downloading.

9. Generating Data URLs

After constructing the data for the specified 'OSSBucekt' and 'objectKey', you can call the
'getResourceURL()' interface to generate an access URL. This can be used to authorize URL access by
third-parties. If the data's bucket does not have 'Public-Read' permission, you must import an
'accessKey' and a validity period for this interface. This URL will expire after the end of the validity
period. If you are using the STS authentication model, this 'accessKey' can import any value.

If your bucket has the 'Public-Read' permission, you just have to call:

to the download
ossData.setRange(222, Range.INFINITE); // Sets the download range as 222 to the end of the object
OSSData.setRange(Range.INFINITE, 20); // Indicates a download of the last 20 bytes of the object

ossData.addXOSSMetaHeader("x-oss-meta-key1", "value1"); // This is only valid for upload operations and, to be
effective, must be called prior to the upload
ossData.addXOSSMetaHeader("x-oss-meta-key2", "value2"); // Custom meta attributes must have the "x-oss-meta-
" prefix
ossData.addXOSSMetaHeader("x-oss-meta-key3", "value3"); // Meta attribute key-value pairs of the same name are
not supported

OSSData.getResourceURL(String accessKey, int availablePeriodInSeconds); // The generated URL will expire in
availablePeriodInSeconds seconds

OSSData.getResourceURL(); // Because the Bucket has Public-Read permission, you do not need to import an
accessKey or validity period

Object Storage Service SDK Reference

83

10. Canceling Asynchronous Upload/Download Tasks

For mobile terminals, and especially those that use a 2G/3G network, upload and download
operations for large files may take a long time. In the middle of processing such a task, you may have
to discard it for some reason. Therefore, the OSS Android SDK provides a cancel function for data
asynchronous upload/download and file asynchronous upload/download interfaces for these
scenarios. After starting an asynchronous task, the interface will return a 'TaskHandler', where you can
call the 'cancel()' interface to cancel this task. If the task is successfully canceled, it will enter
'onFailure()' and throw an 'InterruptIOException' exception.

File Operations

In the OSS Android SDK, file operations are collected in 'OSSFile'. This is generally used in the same
way as 'OSSData'. In fact, the differences concern the fact that 'OSSData' can be used to retrieve data
in the memory, while 'OSSFile' is used to directly upload local files on the terminal and download OSS
data to local files.

If the upload file is large and takes a long time, an exception may occur during the process, causing
the upload to fail. Therefore, the OSS Android SDK provides a breakpoint resumption interface for
large file uploads.

1. Downloading to Files

The file download operation is similar to the data download operation. This only difference is that,
during the download, you must specify the destination file path. The download method will not
return data.

Asynchronous version:

TaskHandler tHandler = OSSData.getInBackground(new GetBytesCallback() {...}); // Starts an asynchronous
download task
// doSomething
tHandler.cancel(); // The task must be canceled for some reason

OSSFile ossFile = ossService.getOssFile(sampleBucket, "sample-data");
ossFile.downloadTo("/path/to/file"); // Failed downloads will throw an exception

ossFile.downloadToInBackground("/path/to/file", new GetFileCallback() {
 @Override
 public void onSuccess(String objectKey, String filePath) {

 }

Object Storage Service SDK Reference

84

As you can see, the asynchronous interface's 'onSuccess' callback method no longer has a byte[] array
parameter. It is replaced by the file save path after successful download.

3. Retrieving a File Input Stream

Likewise, when downloading an object, you can also directly retrieve the input stream to perform the
necessary processing:

3. Uploading From Files

The upload from file interface has also changed. Before the upload, you must specify the upload file's
path.

Asynchronous version:

 @Override
 public void onProgress(String objectKey, int byteCount, int totalSize) {

 }

 @Override
 public void onFailure(String objectKey, OSSException ossException) {

 }
});

OSSFile ossFile = ossService.getOssFile(sampleBucket, "sample-data"); // Constructs an OSSFile instance
try {
 InputStream inputStream = ossFile.getObjectInputStream(); // A failed retrieval will throw an exception
 // do something with inputStream
} catch (OSSException ossException) {

}

OSSFile ossFile = ossService.getOssFile(sampleBucket, "sample-data");
ossFile.setUploadFilePath("/path/to/file", "content type"); // Specifies the path of the file to be uploaded and the file
content type. If the file does not exist, the system will throw an exception
ossFile.enableUploadCheckMd5sum(); // Enables the upload MD5 check
ossFile.upload(); // Failed uploads will throw an exception

ossFile.uploadInBackground(new SaveCallback() {
 @Override
 public void onSuccess(String objectKey) {

 }

Object Storage Service SDK Reference

85

4. Other Common Operations

The two sections above have already described the differences between 'OSSFile' and 'OSSData'. As
you can see, from the perspective of OSS, there is no difference between them, as they are both data
segments stored in OSS. Therefore, except for the differences of the upload/download interfaces
concerning the data format, the usage of the other interfaces is the same. This includes copying,
deleting, specifying a download range, adding custom meta attributes, generating URLs, and
canceling jobs.

Thus, we will not describe them here.

5. Breakpoint Downloads

Because large file downloads are time-consuming, there is a high risk that the process will fail.
Therefore, the OSS Android SDK provides a breakpoint download interface. When you use this
interface to download files, if the download fails midway through for some reason, you can specify
the same 'OSSbucket' and 'ObjectKey' for the next download, without changing the file save path.
Then, the next download will continue from where the previous download failed.

At the same time, when you call this interface, it will return a task 'handler'. During the download
process, you can use this 'handler' to cancel the download task at any time. After the task fails, it will
enter the 'onFailure()' logic.

This interface only has an asynchronous version. The sample code is as follows:

 @Override
 public void onProgress(String objectKey, int byteCount, int totalSize) {

 }

 @Override
 public void onFailure(String objectKey, OSSException ossException) {

 }
});

OSSFile ossFile = ossService.getOssFile(sampleBucket, "test.jpg");
TaskHandler tk = ossFile.ResumableDownloadToInBackground("/path/to/file", new GetFileCallback() {
 @Override
 public void onSuccess(String objectKey, String filePath) {
 // TODO Auto-generated method stub
 }

 @Override
 public void onProgress(String objectKey, int byteCount, int totalSize) {
 // TODO Auto-generated method stub
 }

 @Override

Object Storage Service SDK Reference

86

You can specify some settings for breakpoint downloads, including the recorded file storage path,
maximum number of concurrent threads, and number of auto retries. If you do not set these options,
they will take their default values.

6. Resuming From Breakpoints

Likewise, the OSS Android SDK also provides a breakpoint resumption interface. When you use this
interface to upload files, if the upload fails midway through for some reason, you can specify the
same 'OSSbucket' and 'ObjectKey' for the next upload, without changing the file to upload. Then, the
next upload will continue from where the previous upload failed.

At the same time, when you call this interface, it will return a task 'handler'. During the upload
process, you can use this 'handler' to cancel the upload task at any time. After the task fails, it will
enter the 'onFailure()' logic.

This interface only has an asynchronous version. The sample code is as follows:

 public void onFailure(String objectKey, OSSException ossException) {
 // TODO Auto-generated method stub
 }
});

tk.cancel(); // During the download task execution, you can discard the download at any time

OSSFile ossFile = ossService.getOssFile(sampleBucket, "test.jpg");

ResumableTaskOption option = new ResumableTaskOption();
option.setThreadNum(2); // Default: 3, maximum: 5
option.setRecordFileDirectory("record/file/dir"); // Stored in the application data directory by default
option.setAutoRetryTime(1); // Default: 2, maximum: 3

TaskHandler tk = ossFile.ResumableDownloadToInBackground("/path/to/file", option, new GetFileCallback() {
 @Override
 public void onSuccess(String objectKey, String filePath) {
 // TODO Auto-generated method stub
 }

 @Override
 public void onProgress(String objectKey, int byteCount, int totalSize) {
 // TODO Auto-generated method stub
 }

 @Override
 public void onFailure(String objectKey, OSSException ossException) {
 // TODO Auto-generated method stub
 }
});

OSSFile ossFile = ossService.getOssFile(sampleBucket, "large.data");
ossFile.setUploadFilePath("/path/to/file", "file content type"); // Specifies the path of the file to be uploaded and the

Object Storage Service SDK Reference

87

Likewise, you can specify some settings for breakpoint resumption tasks. These settings are the same
as for breakpoint downloads in the previous chapter.

Retrieving Meta
You can use OSSMeta to independently retrieve data's meta attributes. The collection of retrieved
meta attributes are returned to you in the List<BasicNameValuePair> format.

file content type
TaskHandler tk = ossFile.ResumableUploadInBackground(new SaveCallback() {
 @Override
 public void onSuccess(String objectKey) {
 // TODO Auto-generated method stub
 }

 @Override
 public void onProgress(String objectKey, int byteCount, int totalSize) {
 // TODO Auto-generated method stub
 }

 @Override
 public void onFailure(String objectKey, OSSException ossException) {
 // TODO Auto-generated method stub
 }
});

tk.cancel(); // During the upload task execution, you can discard the upload at any time

OSSFile ossFile = ossService.getOssFile(sampleBucket, "test.jpg");

ResumableTaskOption option = new ResumableTaskOption();
option.setThreadNum(2); // Default: 3, maximum: 5
option.setRecordFileDirectory("record/file/dir"); // Stored in the application data directory by default
option.setAutoRetryTime(1); // Default: 2, maximum: 3

TaskHandler tk = ossFile.ResumableUploadInBackground(option, new SaveCallback() {
 @Override
 public void onSuccess(String objectKey) {
 // TODO Auto-generated method stub
 }

 @Override
 public void onProgress(String objectKey, int byteCount, int totalSize) {
 // TODO Auto-generated method stub
 }

 @Override
 public void onFailure(String objectKey, OSSException ossException) {
 // TODO Auto-generated method stub
 }
});

Object Storage Service SDK Reference

88

The sample code is as follows:

Asynchronous version:

Independent Multipart Uploads

If breakpoint uploads do not meet your needs, the SDK provides an independent multipart upload
interface, allowing you to control your upload parts. There are five interfaces associated with
multipart uploads: get UploadId, upload a single part, complete upload, list uploaded parts, and
cancel upload. These interfaces are used through 'OSSMultipart'. When carrying out a multipart
upload task, you can continue using a 'OSSMultipart' object, or call different 'OSSMultipart' objects
when calling each interface. For example:

OSSMeta meta = ossService.getOssMeta(sampleBucket, "sample-data");
List<BasicNameValuePair> namevalue = meta.getMeta();

OSSMeta meta = ossService.getOssMeta(sampleBucket, "sample-data");
meta.getMetaInBackground(new GetMetaCallback() {
 @Override
 public void onSuccess(String objectKey, List<BasicNameValuePair> meta) {

 }

 @Override
 public void onFailure(String objectKey, OSSException ossException) {

 }
});

String asPartFile = "<path/to/file>"; // Splits the large file to be uploaded into two upload parts
String objectkey = "bigFile.dat";
OSSMultipart multipart = ossService.getOssMultipart(bucket, objectkey);
multipart.setContentType("binary/raw");

String uploadId = multipart.initiateMultiPartUpload();

File file = new File(asPartFile);
InputStream inputStream = new FileInputStream(file);
multipart.setUploadpart(1, inputStream, 128 * 1024); // The first part uploads the first 128kb
multipart.uploadPart();

byte[] data = ToolKit.readFullyToByteArray(inputStream);
multipart.setUploadpart(2, data); // The second part uploads the remaining data
multipart.uploadPart();

List<UploadPartInfo> info = multipart.listParts(); // If needed, this shows which parts have been uploaded

Object Storage Service SDK Reference

89

As you can see, when setting the data to be uploaded for a single part, it can be read from the data
stream or you can directly set a byte array as the data. In addition, if you need to use a different
'OSSMultipart' object for each stage to meet your special needs, you must save the information from
the previous stage as the upload ID of the next stage. For example:

It must be emphasized that these interfaces are all time-consuming network call operations. They can
clog the current thread and may throw an OSSException. For exception handling, refer to the
exception handling chapter below

Complete Examples
For complete examples, please refer to the Demo project in the SDK package.

multipart.completeMultipartUpload();

String asPartFile = "<path/to/file>"; // Splits the large file to be uploaded into two upload parts
String objectkey = "bigFile.dat";
OSSMultipart multipart1 = ossService.getOssMultipart(bucket, objectkey);
multipart1.setContentType("binary/raw");

uploadId = multipart1.initiateMultiPartUpload();

List<UploadPartResult> list = new ArrayList<>();

OSSMultipart multipart2 = ossService.getOssMultipart(bucket, objectkey);
multipart2.designateUploadId(uploadId); // The necessary upload ID, specifies the corresponding upload task

file = new File(asPartFile);
inputStream = new FileInputStream(file);
multipart2.setUploadpart(1, inputStream, 128 * 1024);
result1 = multipart2.uploadPart();
list.add(result1);

OSSMultipart multipart3 = ossService.getOssMultipart(bucket, objectkey);
multipart3.designateUploadId(uploadId); // The necessary upload ID, specifies the corresponding upload task

byte[] data = ToolKit.readFullyToByteArray(inputStream);
multipart3.setUploadpart(2, data);
result2 = multipart3.uploadPart();
list.add(result2);

// If needed, this shows which parts have been uploaded
OSSMultipart multipart4 = ossService.getOssMultipart(bucket, objectkey);
multipart4.designateUploadId(uploadId); // Specifies the corresponding upload task
List<UploadPartInfo> info = multipart4.listParts();

OSSMultipart multipart5 = ossService.getOssMultipart(bucket, objectkey);
multipart5.designateUploadId(uploadId); // Specifies the corresponding upload task
multipart5.designatePartList(list); // Specifies the information of the locally saved parts that have been uploaded
multipart5.completeMultipartUpload();

Object Storage Service SDK Reference

90

Exception Handling

The OSS Android SDK has many interfaces that must perform network interaction with the OSS
server. Each request must be authenticated independently or involves operations on local files, etc.
These actions may encounter exceptions. Therefore, SDK provides a specialized OSSException,
responsible for collecting exception information and feedback.

All exceptions will be packaged in OSSException. When using synchronous interfaces, exceptions are
thrown. When using asynchronous interfaces, exceptions will be transmitted to the callback method
onFailure(String objectKey, OSSException ossException) which must be executed upon failure for
processing.

Exceptions are classified as follows: local exceptions and OSS exceptions. The former indicates that
the system encountered an exception, e.g., network connection failure, IO exception, file exception,
parameter exception, or status exception. The later indicates that the OSS system could not process a
request, e.g., non-existent resource, authentication failed, or an object too is large.

Before processing exceptions, you should determine the exception type.

1. Local Exceptions

If you have caught an ossException, you can retrieve the exception information and perform the
relevant processing as follows:

2. OSS Exceptions

If you have caught an ossException, you can retrieve the exception information and perform the
relevant processing as follows:

try {
//...
} catch (OSSException ossException） {
//Before processing, you must determine the exception type, otherwise the processing method may not be
applicable to the type
if (ossException.getExceptionType() == ExceptionType.LOCAL_EXCEPTION) {
String objectKey = ossException.getObjectKey(); // Retrieves the ObjectKey for this task
String mesString = ossException.getMessage(); // The exception information
String info = ossException.toString();
Exception localException = ossException.getLocalException(); // Gets the original exception
localException.printStackTrace(); // Prints the stack
}
}

Object Storage Service SDK Reference

91

This exception information is constructed and processed based on the standard error responses in
the OSS API Documentation file.

iOS-SDK

Preface

Description

This document introduces the methods of using the OSS iOS SDK.

A storage component based on OSS RESTful interfaces (AliCloud object storage service), the OSS iOS
SDK is provided to help mobile developers more easily use the OSS cloud storage service on iOS
terminals. By using this SDK, apps developed by developers can directly perform data access,
deletion, copy, and other operations on the OSS server from a terminal. These operations work in two
modes: synchronous and asynchronous.

Please note that this SDK is a basic wireless terminal component developed based on OSS. It aims to
satisfy mobile terminal developers’ data storage needs. It provides capabilities to facilitate the
access to OSS data by mobile terminal applications. It does not provide OSS Console management
functions, e.g. bucket application, bucket management, virtual hosting, and activating static website

try {
//...
} catch (OSSException ossException） {
//Before processing, you must determine the exception type, otherwise the processing method may not be
applicable to the type
if (ossException.getExceptionType() == ExceptionType.OSS_EXCEPTION) {
String objectKey = ossException.getObjectKey(); // Retrieves the ObjectKey for this task
OSSResponseInfo resp = ossException.getOssRespInfo(); // Retrieves the data structure based on the construction
of the OSS response content
int statusCode = resp.getStatusCode(); // The OSS response's http status code
Document dom = resp.getResponseInfoDom(); // The file structure obtained by parsing the OSS response content.
You can use this to get more detailed information
String errorCode = resp.getCode(); // The error code fed back by OSS
String requestId = resp.getRequestId(); // The request ID for this task
String hostId = resp.getHostId(); // The request host for this task
String message = resp.getMessage(); // The error message fed back by OSS
String info = ossException.toString(); // The information summary for this exception
ossException.printStackTrace(); // Prints the stack
}
}

Object Storage Service SDK Reference

92

-

-

-

-

hosting. Nor does the SDK support global browsing of bucket data. The mapping relationships
between data must be maintained by the developer.

About OSS

Object Storage Service (OSS) is a cloud storage service provided by AliCloud, featuring massive
capacity, security, and high reliability. This SDK provides iOS mobile developers with a set of OSS API
interfaces tailor-made for the iOS platform. Therefore, before using this SDK, you must activate the
OSS service on the AliCloud official site and learn the basics about OSS usage.

OSS Manual: OSS API Manual

SDK download

iOS SDK 2.5.2: aliyun_OSS_iOS_SDK_20160828.zip
GitHub地址：https://github.com/aliyun/aliyun-oss-ios-sdk
Pod dependency: pod 'AliyunOSSiOS', '~> 2.5.2'
demo: https://github.com/alibaba/alicloud-ios-demo

Installation

We provide this SDK in Static Library format.

1. Direct Use in Xcode

Select Your Projects -> TARGETS -> Your Items -> General -> Linked Frameworks and Libraries ->
Click “+” -> add other -> the directory containing the framework -> select the framework file ->
open

2. Introducing Header Files

Initialization

Before using the SDK, you must get the OSS Service in the SDK and the initialize some settings, such

#import <ALBB_OSS_IOS_SDK/OSSService.h>

Object Storage Service SDK Reference

93

as the signature method and the domain name of the default data center.

In the whole application lifecycle, you only have to initialize these items once before using the OSS
iOS SDK.

1. Getting the OSS Service

The OSS iOS SDK uses service IDs to provide various functions. The retrieval method is as follows:

In the application’s lifecycle, you can get this ossService to use the OSS service multiple times.

2. Setting the Data Center Domain Name

When creating a bucket on the OSS official site, you can choose a data center based on the unit price,
the distribution of request sources, and the response latency. When you create a bucket, if you do
not specify its data center, OSS will automatically allocate it a default data center. The current default
data center is oss-cn-hangzhou.

Therefore, when performing OSS data operations, you must use a domain name to specify the data
center of your bucket. This can be done through the following interface:

If you have not called this interface to set the domain name, the OSS iOS SDK will set your hostId to
‘oss-cn-hangzhou.aliyuncs.com’ by default.

3. Token Generator Settings

For detailed information concerning token generator settings, refer to the [Access Control] chapter in
this document. For now, you only need to know that, during initialization, you must perform this
operation.

4. Custom Reference Time Setting

id<ALBBOSSServiceProtocol> ossService = [ALBBOSSServiceProvider getService];

[ossService setGlobalDefaultBucketHostId:@"oss-cn-qingdao.aliyuncs.com"]; // Specifies that your bucket is placed
in the Qingdao data center

[ossService setAuthenticationType:ORIGIN_AKSK];
[ossService setGenerateToken:^(NSString *method, NSString *md5, NSString *type, NSString *date, NSString *xoss,
NSString *resource){
// Requires specific implementation
}];

Object Storage Service SDK Reference

94

Because OSS token verification is time-sensitive, you may worry that incorrect system times of mobile
terminals may cause users to be unable to access the OSS service. We have prepared an interface that
allows you to set the SDK time. Over the network, you can get the current epoch time from the
business server and set it. Then, during SDK operations, the time will be synced with the server time:

Note that the time uses units of seconds.

Access control

1. Original AK/SK authentication

After activating the OSS service on the Alibaba Cloud official site and creating your storage space
(bucket), you can use the OSS iOS SDK to access data on a terminal. To ensure the security of your
data, the OSS has made the server reliably secure. Accordingly, you need to implement a
corresponding authentication process before you can successfully access your data.

When you register OSS, the system will assign you an Access Key ID and Access Key Secret pair, which
is called the ID pair and referred to in this document as ‘AK/SK’. This is used for signature
verification when you access OSS. For details on AK/SK usage, refer to User Signature Authentication.
Simply put, each request you initiate to the OSS must carry the token derived from the ‘AK/SK’
signature for the requested content. After successful authentication, the OSS server will process your
request.

Because you are performing development on a terminal, the AK/SK must be securely stored.
Therefore, the OSS iOS SDK will not ask for your ‘AK/SK’. Rather, the SDK will call your own
signature method to generate a token before sending a request to the OSS.

You must call the following method:

Note: The sample code below does not repeat the capability of getting ossService

tokenGenerator is a block that must be activated by the user. Its parameters correspond exactly to
the Authorization field calculation method in the OSS API Manual. You just need to generate and
return a Token by signing these parameters with AK/SK.

NSTimeInterval currentEpochTimeInSec = 1429605946.0;
[ossService setCustomStandardTimeWithEpochSec:currentEpochTimeInSec]; // The epoch time is counted in
seconds from January 1, 1970 00:00:00 UTC

id<ALBBOSSServiceProtocol> ossService = [ALBBOSSServiceProvider getService];
[ossService setAuthenticationType:ORIGIN_AKSK]; // Sets the authentication type
[ossService setGenerateToken:tokenGenerator];

Object Storage Service SDK Reference

95

If we do not consider the security of the ‘AK/SK’, a sample code is as follows:

The ‘AK/SK’ should not be stored in the code using clear text. You should design a secure storage
method for receiving the ‘AK/SK’.

A suggested programming model is shown below:

As shown in the figure, you can store the ‘AK/SK’ on your business server and then implement the
authorized signature method in the ‘TokenGenerator’ to post these parameters to your business
server using an HTTP request. When your business server signs and returns the token, you then
return this token to the ‘TokenGenerator’.

Therefore, in the entire process, the ‘AK/SK’ will not be exposed on the terminal, effectively
avoiding the risk of leaks.

It is difficult to deliver security, ease-of-use, and efficiency at the same time. Before deciding on an
AK/SK storage solution, please carefully assess the related risks and benefits.

@property (nonatomic, strong)NSString * (^generateToken)(NSString *, NSString *, NSString *, NSString *, NSString
*, NSString *);

id<ALBBOSSServiceProtocol> ossService = [ALBBOSSServiceProvider getService];
NSString *accessKey = @"<your accessKey>"; // In actual use, the AK/SK is not stored in the code using plain text
NSString *secretKey = @"<your secretKey>";
[ossService setGenerateToken:^(NSString *method, NSString *md5, NSString *type, NSString *date, NSString *xoss,
NSString *resource) {
NSString *signature = nil;
NSString *content = [NSString stringWithFormat:@"%@\n%@\n%@\n%@\n%@%@", method, md5, type, date,
xoss, resource];
signature = [OSSTool calBase64Sha1WithData:content withKey:secretKey];
signature = [NSString stringWithFormat:@"OSS %@:%@", accessKey, signature];
NSLog(@"Signature: %@", signature);
return signature;
}];

Object Storage Service SDK Reference

96

2. Federation token authentication

As described above, following the recommended security model and adopting the original AK/SK
signature requires the terminal to get a signature result from the business server each time it initiates
a request to the OSS service. When the terminal needs to access data frequently, the cost of this
method will be quite high because a network interaction occurs each time the terminal gets a
signature result.

For mobile terminals to conveniently and securely use the OSS service, Alibaba Cloud has developed
the STS service to support the security requirements in mobile scenarios. For details, refer to STS API
Reference.

The OSS download package already contains STS Client SDKs for different programming languages,
allowing the user to conveniently call the STS service on the business server. For the relevant usage,
refer to the demo in the package.

In addition, we have provided a simple Android network disk demo based on STS. The source code is
hosted on github and provided for reference: sts-demo-simple-android-app

In STS, Federation Token is a core concept. It represents one-time authorization you, as an ISV, can
grant to terminal users. In fact, this authorization process requires your original AK/SK (see section
one in this chapter).This authorization specifies the permission range and validity period. In the
validity period, the Security Token can be used to directly sign requests in the permission range. This
validity period generally covers the entire lifecycle of a mobile application, helping completely solve
the problem described above. When required, it can also be updated.

The use of the original AK/SK to get the Federation Token and the OSS iOS SDK behavior are
independent from each other. The SDK provides an interface for accepting the token, but it is
independent of token details. You must call the following interface:

First set the ossService authentication method as Federation Token. Then, set the STS token
generator in the ossService. The implementation of this token generator depends on your STS Token
retrieval method. This is the same as AK/SK authentication. The difference is that the STS Federation
Token can be used throughout the validity period. Therefore, in the validly period, the SDK will
continue to use this token internally until it expires. Then, it will call this interface again to get another
one.

[ossService setAuthenticationType:FEDERATION_TOKEN];
[ossService setFederationTokenGetter:(OSSFederationToken *(^)())tokenGetter];

[ossService setAuthenticationType:FEDERATION_TOKEN];
[ossService setFederationTokenGetter:^{
// Write your code for getting a new STS Federation Token here
// Under normal conditions, this token should be obtained through a network request to your business server
// Note that the returned OSSFederationToken must include four valid
fields:tempAK/tempSK/securityToken/expiration
// The expiration value is the FederationToken's expiration time, which takes the format of UNIX Epoch time. This is

Object Storage Service SDK Reference

97

A suggested model is shown below:

As shown in the figure, the STS service provides servers with SDKs in multiple programming
languages. This allows you to conveniently get the Federation Token from your business server and
grant it to mobile terminals.

Bucket Operations

1. Bucket settings

Buckets are the namespaces in OSS. They are also the management entities for billing, permission
control, logging, and other advanced functions. Before performing data-related operations, you must
create and configure a bucket instance. This allows you to easily use this bucket instance to specify
data storage locations in subsequent data operations.

Creating a bucket is very simple:

Then, configure some optional settings.

1.1 Stating Bucket Access Permissions

When creating a bucket on the OSS official site, you can specify three access permissions:
PUBLIC_READ_WRITE, PUBLIC_READ, and PRIVATE. Therefore, in the SDK, you also need to specify the
permissions for the bucket you wish to access. This statement will not change your console settings.

1.2 Setting the Data Center Domain Name or CNAME
This can specify the bucket's data center separately or define the domain name already bound to the

the number of seconds from January 1, 1970 00:00:00 in coordinated universal time
}];

OSSBucket *ossBucket = [serviceProvider getBucket:@"oss-example"];

[sampleBucket setAcl:PRIVATE]; // States the access permission for this bucket

Object Storage Service SDK Reference

98

bucket:

1.3 Setting CDN Domains

Buckets can separately define the CNAME of the CDN domain they are directed to.Because CDN does
not currently support nearest upload, if you wish to set this, it can only be used during download. For
example:

2. Initialization Overview

If you configure all settings when initializing a bucket, the code may be as follows:

Normally, buckets are global because, in most cases, all data operations may be associated with a
bucket. Therefore, you should create these buckets during global initialization. During subsequent
data operations, you only need to import the corresponding bucket and specify the data location.

3. List Objects

After setting a bucket, you can call the following interface to list the objects in the bucket:

ListObjectOption is an optional parameter, used to set the Max-Keys, Marker, Prefix, and Delimiter
parameters. The significance of these parameters is consistent with the descriptions in OSS API
Manual. ListObjectResult is the returned result from which you can get the relevant information. For
example:

[sampleBucket setOssHostId:@"oss-cn-hangzhou.aliyuncs.com"]; // Specifies the domain name of the bucket's data
center or the CNAME domain name already bound to the bucket

[sampleBucket setCdnAccelerateHostId:@"cname.to.cdn.domain.com"]; // Sets the CNAME domain name for the
CDN domain directed to

OSSBucket *ossBucket = [serviceProvider getBucket:@"oss-example"];
[sampleBucket setAcl:PRIVATE]; // Specifies the access permission for this bucket
[sampleBucket setOssHostId:@"oss-cn-hangzhou.aliyuncs.com"]; // Specifies the domain name of the bucket's data
center or the CNAME domain name already bound to the bucket
[sampleBucket setCdnAccelerateHostId:@"cname.to.cdn.domain.com"]; // Sets the CNAME domain name for the
CDN domain directed to

- (ListObjectResult *)listObjectsInBucket:(ListObjectOption *)opt error:(NSError **)error;

ListObjectOption *opt = [[ListObjectOption alloc] init];
[opt setDelimiter:@"/"];
[opt setPrefix:@"prefixdir/"];

Object Storage Service SDK Reference

99

Note: This method is a synchronous method. When executed, the method will send network requests.
Therefore, do not directly call it in the main thread.

Data Storage

The OSS iOS SDK performs data storage operations using 'OSSData'. Data here indicates the data in
the memory when an application is running. Therefore, if you need to upload a data segment in the
memory when the application is running or wish to download a piece of data from the OSS to the
local memory as 'NSData' for processing, you should perform such an operation.

When constructing an 'OSSData' instance, you must specify 'OSSBucket' and 'ObjectKey'. This
indicates the data item in the OSS you want to work on. The instance is obtained as follows:

1. Data Downloads

After you construct an 'OSSData' instance, you can download the instance if the 'OSSBucket' and
'ObjectKey' you specify correspond to data existing in the OSS. The code is as follows:

[opt setMaxKeys:500];
[opt setMarker:@"prefix187"];

NSError *error = nil;
ListObjectResult *result = [sampleBucket listObjectsInBucket:opt error:&error]; // Calls the interface to list bucket
objects

int objectNum = result.objectList.count;
NSString *nextMarkder = result.nextMarker;
BOOL isTruncated = result.isTruncated;
NSArray *objectList = result.objectList; // Gets the objects list from the returned results

for (ObjectInfo *ele in objectList) { // Traverses the returned objects list
 NSString *objectKey = ele.objectKey;
 NSString *lastModifiedTime = ele.lastModified;
}

NSMutableArray *commonPrefixs = result.commonPrefixList; // When Delimiter is specified, objects with the same
prefix will be grouped together and recorded in the returned commonprefix
for (NSString *Prefix in commonPrefixs) {
 // doSomething with prefixed
}

OSSData *ossData = [ossService getOSSDataWithBucket:ossBucket key:@"<objectName>"];

NSError *error = nil;
NSData *yourData = [ossData get:&error];//storage error message

Object Storage Service SDK Reference

100

-

-

To download a certain range of data, use the code below:

Here, you must note the following:

This is a synchronous return and may clog the thread until the method is returned.
During data operations, the OSS iOS SDK must interwork with the OSS server. Therefore, this
code is considered time-consuming and obstructive. However, we provide the asynchronous
interface 'getWithDataCallback: withProgressCallback:'. Please refer to the section below.

2. Asynchronous Data Download Version

In fact, the OSS iOS SDK provides an asynchronous version for all time-consuming methods, allowing
you to import your own implemented callback method. This performs the operation in a new thread
and asynchronously calls back your processing logic.

For data downloads, the asynchronous interface is used as follows:

If you need to specify a data range to download, use the code below:

NSError *error = nil;
[ossData setRangeFrom:1 to:40];
[ossData setRangeFrom:30 to:RANGE_INFINITE]; // Sets the download range between 30 and the end of the object
[ossData setRangeFrom:RANGE_INFINITE to:20]; // Indicates a download of the last 20 bytes of the object
NSData *yourData = [ossData get:&error]; // storage error message

OSSData *testData = [ossService getOSSBucketWithBucket:ossBucket key:@"<objectName>"];

[testData getWithDataCallBack:^(NSData *data, NSError *error) {
 if (error) {
 NSLog(@"Error: %@", error);
 return;
 }
 NSLog(@"Success, data length: %lu", (unsigned long)data.length);
} withProgressCallBack:^(float progress) {
 NSLog(@"Current progress: %f", progress);
}];

[testData setRangeFrom:1 to:40];

[testData getWithDataCallBack:^(NSData *data, NSError *error) {
 if (error) {
 NSLog(@"Error: %@", error);
 return;
 }
 NSLog(@"Success, data length: %lu", (unsigned long)data.length);
} withProgressCallBack:^(float progress) {
 NSLog(@"Current progress: %f", progress);
}];

Object Storage Service SDK Reference

101

When using the asynchronous interface, please be sure to import a callback method. If you do not
need a callback method, you can leave it blank.

3. Data Uploads

If, when running an application, you must upload the data in the memory to the OSS, you must first
specify the 'OSSBucket' and 'ObjectKey' to construct an 'OSSData' instance. Then, call the 'setData'
interface and specify the data to upload and its type. Finally, call the upload method again to upload
the data.

The code is as follows:

After the upload is complete, the bucket named 'sampleBucket' on the OSS will have a new data item
named 'sampleData', which contains the 'data' you have uploaded.

Likewise, data upload also has an asynchronous version:

4. Data Deletion

After you construct an 'OSSData' instance representing the data corresponding to the specified
'OSSBucket' and 'ObjectKey', you can call the delete method to delete this data item. The code is as
follows:

Likewise, there is an asynchronous version:

NSError *error = nil;
OSSData *testData = [ossService getOSSDataWithBucket:ossBucket key:key];
[testData enableUploadCheckMd5sum:YES]; // Enables the upload MD5 check
[testData setData:upData withType:@"<dataType>"];
[testData upload:&error];

[testData enableUploadCheckMd5sum:YES]; // Enables the upload MD5 check
[testData setData:upData withType:@"<dataType>"];
[testData uploadWithUploadCallback:^(BOOL isSuccess, NSError *error) {
 if (isSuccess) {
 NSLog(@"Upload success!");
 } else {
 NSLog(@"Error: %@", error);
 }
} withProgressCallback:^(float progress) {
 NSLog(@"Current progress: %f", progress);
}];

NSError *error = nil;
[testData delete:&error];

Object Storage Service SDK Reference

102

The delete operation shows no progress status. You do not need a callback method for the
implementation progress. The copy method below is similar.

5. Data Copying

You can copy data from an existing object to the object represented by testData. You just have to
specify the data's sourceOSSBucket and sourceObjectName.

The code is as follows:

Asynchronous version:

6. Generating Data URLs

After constructing the data for the specified 'OSSBucekt' and 'objectKey', you can call the
'getResourceURL' interface to generate an access URL. This can be used to authorize URL access by
third-parties. If the data's bucket does not have 'Public-Read' permission, you must import an
'accessKey' and validity period for this interface. This URL will expire at the end of the validity period.

If your bucket has the 'Public-Read' permission, you just have to call:

[testData deleteWithDeleteCallback:^(BOOL isSuccess, NSError *error) {
 if (isSuccess) {
 NSLog(@"Delete success!");
 } else {
 NSLog(@"Error: %@", error);
 }
}];

NSError *error = nil;
[testData copyFromBucket:@"<sourceOSSBucket>" key:@"<sourceObjectName>" error:&error];

[testData copyFromWithBucket:@"<sourceOSSBucket>" withKey:@"<sourceObjectName>"
withCopyCallback:^(BOOL isSuccess, NSError *error) {
 if (isSuccess) {
 NSLog(@"Copy success!");
 } else {
 NSLog(@"Error: %@", error);
 }
}];

NSString *url = [ossData getResourceURL:@"accessKey" andExpire:availablePeriodInSeconds]; // The generated URL
will expire in availablePeriodInSeconds seconds

NSString *url = [ossData getResourceURL]; // Because the Bucket has Public-Read permission, you do not need to
import an accessKey or validity period

Object Storage Service SDK Reference

103

7. Cancelling Asynchronous Uploads/Downloads

If, for some reason, you do not wish to continue an asynchronous upload/download operation, you
just need to call this interface to obtain a 'taskHandler' and then call '[taskHandler cancel]', as shown
below:

Note: The operation for cancelling asynchronous file uploads/downloads is similar and will not be
repeated in the following sections.

8. Adding Custom Meta Attributes During Uploads

Data in the OSS has its own meta attributes. In addition to attributes automatically added by the
system, you can specify custom attributes using the "x-oss-meta-" prefix. For details, please refer to
the OSS product documentation.

The attributes you specify at the time of upload can be individually obtained through the get meta
attributes method in the SDK. For details, refer to the [Only Retrieve Meta] section herein.

The code for adding custom meta attributes prior to upload is as follows:

Note: If you add meta attributes without the "x-oss-meta-" prefix, they will be ignored.

File Operations
In the OSS iOS SDK, the file operation set is put in the 'OSSFile' class. This class works largely the

TaskHandler * taskHandler = [testData getWithDataCallBack:^(NSData *data, NSError *error) {
 if (error) {
 NSLog(@"Error: %@", error);
 return;
 }
 NSLog(@"Success, data length: %lu", (unsigned long)data.length);
} withProgressCallBack:^(float progress) {
 NSLog(@"Current progress: %f", progress);
}];

[taskHandler cancel];

[ossData setMetaKey:@"x-oss-meta-key1" withMetaValue:@"value1"]; // This is only valid for upload operations
and takes effect when called prior to the upload

[ossData setMetaKey:@"x-oss-meta-key2" withMetaValue:@"value2"]; // Custom meta attributes must have the "x-
oss-meta-" prefix

[ossData setMetaKey:@"x-oss-meta-key3" withMetaValue:@"value3"]; // Meta attribute key-value pairs of the same
name are not supported

Object Storage Service SDK Reference

104

same way as 'OSSData'.In fact, the differences concern the fact that 'OSSData' can be used to retrieve
data in the memory, while 'OSSFile' is used to directly upload local files on the terminal and
download OSS data to local files.

As it takes time to upload a large file and the upload may fail halfway due to various exceptions, the
OSS iOS SDK provides an interface for resumable data transfer for the upload of large files.

1. Downloading to Files

Downloading to files is similar to data downloading, but requires you to specify the destination file
path. The download method will not return data.

The code used to specify a data range for download is as follows:

Asynchronous version:

Asynchronous version for specified data ranges:

NSError *error = nil;
OSSFile *testFile = [ossService getOSSFileWithBucket:ossBucket key:@"<objectName>"];
[testFile downloadTo:yourPath error:&error];

NSError *error = nil;
OSSFile *testFile = [ossService getOSSFileWithBucket:ossBucket key:@"<objectName>"];
[testFile setRangeFrom:1 to:0.];
[testFile downloadTo:yourPath error:&error];

[testFile downloadTo:toPath withDownloadCallback:^(BOOL isSuccess, NSError *error) {
 if (isSuccess) {
 NSLog(@"Download file success!");
 } else {
 NSLog(@"Error: %@", error);
 }
} withProgressCallback:^(float progress) {
 NSLog(@"Current progress: %f", progress);
}];

[testFile setRangeFrom:1 to:0.];
[testFile downloadTo:toPath withDownloadCallback:^(BOOL isSuccess, NSError *error) {
 if (isSuccess) {
 NSLog(@"Download file success!"];
 } else {
 NSLog(@"Error: %@", error);
 }
} withProgressCallback:^(float progress) {
 NSLog(@"Current progress: %f", progress);
}];

Object Storage Service SDK Reference

105

2. Uploading From Files

Before uploading, you must specify the path of the file to be uploaded and its content type.

Asynchronous version:

3. Remaining Common Operations

The two sections above have already described the differences between 'OSSFile' and 'OSSData'.
From the perspective of OSS, there is obviously no difference, as they both store data segments in
the OSS. Therefore, apart from the differences between the upload/download interfaces in data
format, other interfaces work in the same way, e.g. copying and deleting.

Thus, we will not describe them here.

4. Resumable Data Transfer

Because it takes much time to upload a large file, the uploading process is highly prone to failure.
Therefore, the OSS Android SDK provides an interface for resumable data transfer. The next call to
this interface will continue the upload from the breakpoint of the last operation. If the last upload is
successful, data will be uploaded again to overwrite the original target.

This interface is only available in an asynchronous version. The sample code is as follows:

Multipart upload:

NSError *error = nil;
OSSFile *testFile = [ossService getOSSFileWithBucket:ossBucket key:key];
[testData enableUploadCheckMd5sum:YES]; // Enables the upload MD5 check
[testFile setPath:@"your path" withContentType:@"<fileType>"];
[testFile upload:&error];

[testFile uploadWithUploadCallback:^(BOOL isSuccess, NSError *error) {
 if (isSuccess) {
 NSLog(@"Upload file success!");
 } else {
 NSLog(@"Error: %@", error);
 }
} withProgressCallback:^(float progress) {
 NSLog(@"Current progress: %f", progress);
}];

OSSFile *testFile = [ossService getOSSFileWithBucket:ossBucket key:key];
[testFile setPath:@"your path" withContentType:@"<fileType>"];
[testFile resumableUploadWithUploadCallback:^(BOOL isSuccess, NSError *error) {
 if (isSuccess) {

Object Storage Service SDK Reference

106

Retrieving Meta

You can use 'OSSMeta' to independently retrieve data's meta attributes. The collection of retrieved
meta attributes are returned to you in the 'NSDictionary' format.

The sample code is as follows:

Asynchronous version:

Independent Multipart Uploads

If breakpoint uploads do not meet your needs, the SDK provides an independent multipart upload
interface, allowing you to control your upload parts.There are five interfaces associated with multipart
uploads: get UploadId, upload a single part, complete upload, list uploaded parts, and cancel upload.
These interfaces are used through 'OSSMultipart'. During a multipart upload, you can continue using
an 'OSSMultipart' object, or call different 'OSSMultipart' objects when calling each interface. For
example:

 NSLog(@"Upload file success!");
 } else {
 NSLog(@"Error: %@", error);
 }
} withProgressCallback:^(float progress) {
 NSLog(@"Current progress: %f", progress);
}];

NSError *error = nil;
OSSMeta *meta = [ossService getOSSMetaWithBucket: ossBucket key:key];
NSDictionary *dic = [meta getMeta:&error];

[meta getWithMetaCallback:^(NSDictionary *head, NSError *error) {
 if (error) {
 NSLog(@"Error code: %ld", (long)[error code]);
 return;
 }
 NSLog(@"Get meta: %@", head);
}];

NSString * uploadObjectKey = @"multipartUploadDataKey";
NSError * error = nil;

OSSMultipart * multipart = [service getOSSMultipartWithBucket:bucket key:uploadObjectKey];

Object Storage Service SDK Reference

107

As you can see, when setting up the data to be uploaded for a single part, it can be accessed from
the data stream or you can directly set a byte array as the data. In addition, if you need to use a
different 'OSSMultipart' object at each stage to meet your special needs, you must save the
information from the previous stage as the upload ID of the next stage. For example:

NSString * uploadId = [multipart initiateMultiPartUploadWithError:&error];
NSLog(@"UploadId: %@", uploadId);

NSMutableArray * uploadPartResults = [[NSMutableArray alloc] init];
for (int i = 0; i < 2; i++) { // If you need to upload two parts
 NSData * data = <Data of each part>;
 [multipart setPartNumber:i + 1];
 [multipart setPartData:data];
 UploadPartResult * result = [multipart uploadPartWithError:&error];
 [uploadPartResults addObject:result];
}

NSArray * listPartResult = [multipart listPartsWithError:&error]; // If you need to list the parts that have been
uploaded
for (UploadPartInfo * info in listPartResult) {
 NSLog(@"UploadPartInfo : %d, %@", [info partNumber], [info etag]);
}

[multipart selfSetPartList:uploadPartResults];
[multipart completeMultipartUploadWithError:&error];

NSString * uploadObjectKey = @"multipartUploadData";
NSError * error = nil;
OSSMultipart * multipart1 = [service getOSSMultipartWithBucket:bucket key:uploadObjectKey];
NSString * uploadId = [multipart1 initiateMultiPartUploadWithError:&error];

NSLog(@"UploadId: %@", uploadId);

NSMutableArray * uploadPartResults = [[NSMutableArray alloc] init];
for (int i = 0; i < 2; i++) {
 OSSMultipart * multipart2 = [service getOSSMultipartWithBucket:bucket key:uploadObjectKey];
 [multipart2 selfSetUploadId:uploadId];
 NSData * data = <Data of each part>;
 [multipart2 setPartNumber:i + 1];
 [multipart2 setPartData:data];
 UploadPartResult * result = [multipart2 uploadPartWithError:&error];
 [uploadPartResults addObject:result];
}

OSSMultipart * multipart3 = [service getOSSMultipartWithBucket:bucket key:uploadObjectKey];
[multipart3 selfSetUploadId:uploadId];
NSArray * listPartResult = [multipart3 listPartsWithError:&error];
for (UploadPartInfo * info in listPartResult) {
 NSLog(@"UploadPartInfo : %d, %@", [info partNumber], [info etag]);
}

OSSMultipart * multipart4 = [service getOSSMultipartWithBucket:bucket key:uploadObjectKey];
[multipart4 selfSetUploadId:uploadId];
[multipart4 selfSetPartList:uploadPartResults];

Object Storage Service SDK Reference

108

It must be emphasized that all of these interfaces call time-consuming networking operations, and
may clog the current thread or cause an error. For error handling, refer to the exception handling
chapter below

Exception Handling

The OSS iOS SDK has many interfaces for communication with the OSS server. Each request must be
authenticated independently or involves operations on local files. These actions may experience
problems. Therefore, the SDK will encapsulate such information into NSError.

In the interface, NSError type parameters are used to store exception information.

Exceptions are classified as follows: local exceptions and OSS exceptions. The former indicates system
exceptions, such as network connection failure, IO, file, parameter, or status exceptions. The later
indicates that the OSS system could not process a request for reasons like the following: the
requested resource does not exist; authentication failed, or an object is too large.

If the NSError domain is marked with an ‘ossException’, an OSS exception occurs. Otherwise, a
local exception occurs.

1. Local Exceptions

If the NSError parameter is not null, you can obtain and handle the exception as follows:

2. OSS Exceptions

If the NSError parameter is not null, you can obtain and handle the exception in a similar way you do
with local exceptions:

This exception information is constructed and processed based on the standard error responses in

[multipart4 completeMultipartUploadWithError:&error];

NSString *errorDomain = [error domain]; // Gets the error domain. For local exceptions, the errorDomain is
@"localException"
NSInteger errorCode = [error code]; // Gets the error code
NSDictionary *errorInfo = error; // Gets the error message

NSString *errorDomain = [error domain]; // Gets the error domain. For OSS exceptions, the errorDomain is
@"ossException"
NSInteger errorCode = [error code]; // Gets the error code returned by the OSS server
NSDictionary *errorInfo = error; // Gets the error message returned by the OSS server

Object Storage Service SDK Reference

109

-

-

-

-

-

-

-

-

-

the OSS API Documentation file.

.NET-SDK

Preface

Introduction

This document introduces the installation and use of the OSS .NET SDK (.NET SDK Version 2015-05-
28 particularly).This document assumes that you have already subscribed to the AliCloud OSS service
and created an Access Key ID and Access Key Secret.In the document, ID represents the Access Key ID
and KEY indicates the Access Key Secret. If you have not yet subscribed to or do not know about the
OSS service, please log into the OSS Product Homepage for more help.

SDK download

SDK: aliyun_dotnet_sdk_2.3.0
GitHub: click here

Version Revisions

.NET SDK (2015-05-28)

Updates:

2015/05/28

Added Bucket Lifecycle support. Adding and removing Lifecycle rules allowed;
Added the DoesBucketExist and DoesObjectExist interfaces for determining the existence of
Bucket and Objects;
Added SwitchCredentials so as to be able to change user account information at runtime;
Added the ICredentialsProvider interface class to provide a policy for generating customized
Credentials through its implementation.
Added GeneratePostPolicy interface to generate Post Policy；
Added asynchronization interface (supporting Put/Get/List/Copy/PartCopy asynchronous
operations);
Added STS support.

Object Storage Service SDK Reference

110

-

-

-

-

-

-

-

-

-

●

●

●

-

●

-

●

-

●

-

-

-

-

-

-

-

Added custom time calibration function. It can be set through the Client configuration item -
SetCustomEpochTicks interface;
Added support for Chunked encoding transfer. The Content-Length item can be skipped
when uploading;
Fixed the bug of getting null results after setting the Expose Header attribute in Bucket
CORS;
Fixed the bug of SDK only getting the first Prefix out of multiple prefixes contained in
CommonPrefixs returned in an ListObjects request.
Fixed the bug of RequestId and HostId resolved to null in response to an OSS-related
exception;
Fixed the bug of encoding error due to the inclusion of Chinese characters in the source key
of the CopyObject/CopyPart interface;

.NET SDK (2015-01-15)

Environment requirements:

.NET Framework 4.0 and above
A registered user account on AliCloud.com

Assembly:Aliyun.OSS.dll

Version:1.0.5492.31618

Package structure:

bin
Aliyun.OSS.dll .NET assembly file
Aliyun.OSS.pdb debugging and project status information file
Aliyun.OSS.xml Assembly comments file

doc
Aliyun.OSS.chm Help file

src
SDK source code

sample
Sample code

Updates:

Removed OTS branch, assembly renamed to Aliyun.OSS.dll
.NET Framework version upgraded to 4.0 and above
OSS: Added interfaces for Copy Part, Delete Objects, Bucket Referer List, etc.
OSS: Added the ListBuckets pagination function
OSS: Added CNAME support
OSS: Fixed Put/GetObject flow interruption problem
OSS: Added samples

Object Storage Service SDK Reference

111

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

.NET SDK (2014-06-26)

Open Services SDK for .NET included OSS and OTS SDKs. .NETSDK used the same interface design as
Java SDK and made some improvements based on C#. (The latest version supports multipart uploads
to the OSS)

Environment requirements:

.NET Framework 3.5 SP1 or above
A registered user account on AliCloud.com, and a subscription to related services (OSS, OTS).

Updates:2014/06/26- OSS:

Added CORS functionality.

2013/09/02- OSS:

Fixed the bug of being unable to throw correct exceptions in some cases.
Optimized SDK performance.

2013/06/04- OSS:

Changed the default OSS service access method to a third-level domain name access
method.

2013/05/20- OTS:

Updated the default OTS service address to:http://ots.aliyuncs.com
Added Mono support.
Fixed some bugs in the SDK, so that it runs more stably.

2013/04/10- OSS:

Added Object Multipart Upload functionality.
Added Copy Object functionality.
Added the ability to generate pre-signed URLs.
Isolated the IOSS interface to be inherited by OssClient.

2012/10/10- OSS:

Updated the default OSS service address to:http://oss.aliyuncs.com

2012/09/05- OSS:

Resolved the problem of invalid parameters like Prefix for ListObjects.

2012/06/15- OSS:

Added OSS support for the first time. Included basic operations, such as create, modify, read
and delete, on OSS Bucket, ACL and Object.

Object Storage Service SDK Reference

112

-

-

-

-

-

-

-

-

-

OTS:
OTSClient.GetRowsByOffset supports reverse read.
Added an automatic error handling mechanism for special requests.
Added HTML help files.

Installation

Using the SDK Directly from within Visual Studio

Steps:

Download the OSS .NET SDK from the official website.
Decompress the file.
After decompression, copy all the files from the bin folder to your project folder.
Add reference in the Visual Studio project, and select the Aliyun.OSS.dll file that was copied
in the previous step.
After completing the steps above, you can use the OSS .NET SDK in the project.

Quick Start

In this chapter, you will learn how to use the basic functions of the OSS .NET SDK.

Step-1. Initialize an OSSClient

SDK OSS operations are performed through the OSSClient class. The code below creates an OSSClient
object:

In the above code, the variables accessKeyId and accessKeySecret are allocated to the user by the
system. They are called the ID pair and used to identify the user. They may be used to perform
signature verification when your AliCloud account or RAM account accesses OSS. For more

using Aliyun.OpenServices.OpenStorageService;

const string accessId = "<your access id>";
const string accessKey = "<your access key>";
//Using the Hangzhou node as an example
const string endpoint = "http://oss-cn-hangzhou.aliyuncs.com";
// Initialize OSSClient instance
var ossClient = new OssClient(endpoint, accessId, accessKey);

Object Storage Service SDK Reference

113

information on the OSSClient, refer to OSSClient.

Step-2. Create a bucket

Buckets are the OSS global namespace. They are equivalent to a data container and can store objects.
You can create a bucket with the following code:

For bucket naming rules, refer to the naming rules in Bucket.

Step-3. Upload objects

Objects are the basic data units in OSS. You can simply think of them as files. The code below can be
used to upload an object:

The object is uploaded to OSS in InputStream form. In the above example, we can see that, each time
you upload an object, you must specify the ObjectMetadata associated with it. ObjectMetaData is the
user's description of the object, composed of a series of name-value pairs. Here, ContentLength is
required for the SDK to correctly identify the size of the object to be uploaded. In order to ensure the
consistency between files uploaded to the server and local files, users can set up ContentMD5. OSS
will calculate and compare the MD5 value for the upload data with the MD5 value uploaded by the
user. If they are inconsistent, the system will return the InvalidDigest error code. For object naming

public void CreateBucket(string bucketName)
{
 var ossClient = new OssClient(endpoint, accessId, accessKey);
 try
 {
 ossClient.CreateBucket(bucketName);
 Console.WriteLine("Create bucket succeed.");
 }
 catch (OssException ex)
 {
 Console.WriteLine(“Create bucket failed, “ + ex.Message);
 }
}

public void PutObject(String bucketName, String key, String fileToUpload)
{
 using (var fs = File.Open(fileToUpload, FileMode.Open))
 {
 var metadata = new ObjectMetadata();
 metadata.UserMetadata.Add("key0", "val0");
 metadata.ContentLength = fs.Length;
 var result = client.PutObject(bucketName, key, fs, metadata);
 Console.WriteLine(result.Etag);
 }
}

Object Storage Service SDK Reference

114

rules, refer to the naming rules in Object. For more information on uploading objects, refer to
Uploading Objects in Object.

Step-4. List all objects

When you complete a series of uploads, you may need to view which objects are in a bucket. This can
be done with the following program:

Step-5. Retrieve a specified object

You can refer to the code below to easily retrieve an object:

When you call the OSSClient's getObject method, it returns an OSSObject object, containing various
object information. Using the OSSObject's getObjectContent method, you can retrieve the returned
object input stream and obtain the object content by reading it. When you are finished, close the
stream.

OssClient
The OSSClient is the C# client of OSS services. It provides a series of functions to be called for

public void ListObject(String bucketName)
{
 var listObjectsRequest = new ListObjectsRequest(bucketName);
 var result = ossClient.ListObjects(listObjectsRequest);
 foreach (var summary in result.ObjectSummaries)
 {
 Console.WriteLine(summary.Key);
 }
}

public void GetObject(String bucketName, string key)
{
 var object = ossClient.GetObject(bucketName, key);
 using (var requestStream = object.Content)
 {
 byte[] buf = new byte[1024];
 var fs = File.Open(fileToDownload, FileMode.OpenOrCreate);
 var len = 0;
 while ((len = requestStream.Read(buf, 0, 1024)) != 0)
 {
 fs.Write(buf, 0, len);
 }
 fs.Close();
}

Object Storage Service SDK Reference

115

interaction with OSS services.

Creating the OSSClient

It is very easy to create an OSSClient, as shown in the code below:

It is critical that the user import the AccessKey and access the bucket endpoint.

Configuring the OSSClient

To configure detailed parameters for the OSSClient, you can import a ClientConfiguration object
when creating the OSSClient. ClientConfiguration is the OSS service configuration type. It allows you
to configure a proxy for the client, the maximum number of connections, and other parameters.

Setting Network Parameters

We can use ClientConfiguration to set some network parameters:

Using a Proxy

The code below allows the client to use a proxy to access the OSS service:

const string accessId = "<your access id>";
const string accessKey = "<your access key>";
// Using Hangzhou OSS Endpoint as an example
const string endpoint = "http://oss-cn-hangzhou.aliyuncs.com";
// Initialize OSSClient instance
var ossClient = new OssClient(endpoint, accessId, accessKey);

conf.ConnectionLimit = 512; // Maximum number of concurrent HttpWebRequest connections
conf. MaxErrorRetry = 3; //Maximum number of retries upon a Set request error
conf. ConnectionTimeout = 300; //Connection timeout time
conf. SetCustomEpochTicks(customEpochTicks); //Set custom reference time

// Creates a ClientConfiguration instance
ClientConfiguration conf = new ClientConfiguration();

// Configures the proxy for the local port 8080
conf.ProxyHost = "127.0.0.1";
conf.ProxyPort = 8080;

// Creates the OSSClient
client = new OssClient(endpoint, accessKeySecret, accessKeySecret, conf);

Object Storage Service SDK Reference

116

-

-

-

Bucket

OSS uses buckets as namespaces for user files and also as the management entities for advanced
functions such as billing, permission control, and logging. The bucket name must be globally unique
in the entire OSS and cannot be changed. Every object stored on OSS must be included in a bucket.
One application, such as an image sharing website, corresponds to one or multiple buckets. A user
can create a maximum of 10 buckets, but there is no limit on the number of objects in each bucket.
Each bucket can store up to 2 PB of data.

Naming Rules

The bucket naming rules are as follows:

It can only contain lower-case letters, numbers, and dashes (-).
It must start with a lower-case letter or number.
The length must be 3-63 bytes

Creating Buckets

We can use the code below to create a bucket:

Because bucket names are globally unique, do your best to ensure your bucket names are not the
same as other people's.

Listing all Buckets of a User

The code below will list all the buckets of the user:

String bucketName = "my-bucket-name";
// Initialize OSSClient
var client = new OssClient(endpoint, accessId, accessKey);
// Creates a Bucket
client.CreateBucket(bucketName);

// Initialize OSSClient
var client = new OssClient(endpoint, accessId, accessKey);

var buckets = client.ListBuckets();
foreach (var bucket in buckets)
{
 Console.WriteLine(bucket.Name + ", " + bucket.Location + ", " + bucket.Owner);
}

Object Storage Service SDK Reference

117

CNAME Access

After a user directs his own domain name's CNAME to his bucket's domain name, he can access OSS
through his domain name:

Users just need to create an OSSClient class instance and change the endpoint originally entered in
the bucket to the post-CNAME domain name. At the same time, users must note that, when using
this OSSClient instance for subsequent operations, the bucket name can only be filled by the
indicated bucket name.

Determining If a Bucket Exists

To determine if a bucket exists, we can use the following code:

Setting Bucket ACL

To set the bucket ACL, we can use the following code:

Retrieving Bucket ACL

To retrieve the bucket ACL, we can use the following code:

// For example, your domain name is "http://my-cname.com" and you direct the CNAME to your bucket domain
name "mybucket.oss-cn-hangzhou.aliyuncs.com"
OssClient client = new OssClient("http://my-cname.com/", /* accessKeyId */, /* accessKeySecret */);
PutObjectResult result = client.putObject("mybucket", /* key */, /* input */, /* metadata */);

// Initialize OSSClient
var client = new OssClient(endpoint, accessId, accessKey);

String bucketName = “your-bucket”;
var exist = client.DoesBucketExist(bucketName);

Console.WriteLine("exist ? " + exist);

// Initialize OSSClient
var client = new OssClient(endpoint, accessId, accessKey);

String bucketName = “your-bucket”;
// Make bucket ACL as public read
client.SetBucketAcl(bucketName, CannedAccessControlList.PublicRead);

// Initialize OSSClient

Object Storage Service SDK Reference

118

-

-

-

-

Deleting Buckets

The following code deletes a bucket:

You must note that, if the bucket is not empty (the bucket contains objects), it cannot be deleted. You
must delete all objects in a bucket before deleting the bucket.

Object

In OSS, objects are the basic data units for user operation.The maximum size of a single object may
vary depending on the data uploading mode. The size of an object cannot exceed 5 GB in the Put
Object mode or 48.8 TB in the multipart upload mode. An object includes the key, meta, and data.
The key is the object name; meta is the user's description of the object, composed of a series of
name-value pairs; and data is the object data.

Naming Rules

Object naming rules:

It uses UTF-8 encoding
The length must be 1-1023 bytes
It cannot start with "/" or "\"
It cannot contain "\r" or "\n" line breaks

Uploading Objects

Simple Upload
Upload the specified string:

var client = new OssClient(endpoint, accessId, accessKey);

String bucketName = “your-bucket”;
var acl = client.GetBucketAcl(bucketName);

Console.WriteLine(acl.ToString());

// Initialize OSSClient
var client = new OssClient(endpoint, accessId, accessKey);

String bucketName = “your-bucket”;

client.DeleteBucket(bucketName);

Object Storage Service SDK Reference

119

Upload the specified local file

The largest file to upload using this method cannot exceed 5 GB. If the size limit is exceeded, you may
use multipartupload to upload instead.

Creating Simulated Folders

The OSS service does not use folders. All elements are stored as objects. However, users can create
simulated folders using the following code:

Creating a simulated folder is in fact creating an object with a size of 0. This object can still be
uploaded and downloaded. The console will display any object ending with "/" as a folder. Therefore,
users can create simulated folders this way. For accessing folders, refer to the folder simulation
function

Setting the Object's Http Header

The OSS service allows users to customize the object Http Header. The following code sets the
expiration time for the object:

// Initialize OSSClient
var client = new OssClient(endpoint, accessId, accessKey);

string str = "a line of simple text";
byte[] binaryData = Encoding.ASCII.GetBytes(str);
MemoryStream requestContent = new MemoryStream(binaryData);
client.PutObject(bucketName, key, requestContent);

// Initialize OSSClient
var client = new OssClient(endpoint, accessId, accessKey);

String fileToUpload = “your local file”;
client.PutObject(bucketName, key, fileToUpload);

// Initialize OSSClient
var client = new OssClient(endpoint, accessId, accessKey);

// Note: key treats as a folder and must end with a slash.
const string key = "yourfolder/";
// put object with zero bytes stream.
using (MemoryStream ms = new MemoryStream())
{
client.PutObject(bucketName, key, ms);
}

// Initialize OSSClient
var client = new OssClient(endpoint, accessId, accessKey);

Object Storage Service SDK Reference

120

The .NET SDK supports four types of Http Headers:Cache-Control, Content-Disposition, Content-
Encoding, and Expires.For details on the headers, please see RFC2616.

User-Defined Metadata

The OSS allows users to define metadata to describe the object. For example:

In the above code, the user has defined a metadata with its name as "name" and its value as "my-
data". When downloading this object, users will also obtain the metadata.A single object can have
multiple similar parameters, but the total size of all user meta cannot exceed 2 KB.

NOTE:The user meta name is not case sensitive. For instance, when a user uploads an object and
defines the metadata name as "Name", the parameter stored in the header will be: "x-oss-meta-
name". Therefore, when accessing the object, just use parameters named "name". However, if
the stored parameter is "name", and no information can be found for the parameter, the system
will return "Null"

Multipart Upload

OSS allows users to split an object into several requests for uploading to the server. Concerning the
multipart upload content, refer to the Object Multipart Upload section in MultipartUpload.

List Bucket Objects

Listing Objects

using (var fs = File.Open(fileToUpload, FileMode.Open))
{
 var metadata = new ObjectMetadata();
 metadata.ContentLength = fs.Length;
 metadata.ExpirationTime = DateTime.Parse("2015-10-12T00:00:00.000Z")
 client.PutObject(bucketName, key, fs, metadata);
}

// Initialize OSSClient
var client = new OssClient(endpoint, accessId, accessKey);

using (var fs = File.Open(fileToUpload, FileMode.Open))
{
 var metadata = new ObjectMetadata();
 metadata.UserMetadata.Add("name", "my-data");
 metadata.ContentLength = fs.Length;
 client.PutObject(bucketName, key, fs, metadata);
}

Object Storage Service SDK Reference

121

NOTE:By default, if a bucket contains more than 100 objects, the first 100 will be returned and
the IsTruncated parameter in the returned results will be true. The returned NextMarker can be
used as the start point for next data access.The number of object entries returned can be
increased by modifying the MaxKeys parameter or using the Marker parameter for separate
access.

Extended Parameters

Generally, the ListObjectsRequest parameter provides more powerful functions. For example:

Settable parameter names and their function:

// Initialize OSSClient
var client = new OssClient(endpoint, accessId, accessKey);

public void ListObject(String bucketName)
{
 var listObjectsRequest = new ListObjectsRequest(bucketName);
 var result = ossClient.ListObjects(listObjectsRequest);
 foreach (var summary in result.ObjectSummaries)
 {
 Console.WriteLine(summary.Key);
 }
}

// Initialize OSSClient
var client = new OssClient(endpoint, accessId, accessKey);

var listObjectsRequest = new ListObjectsRequest(bucketName)
{
 Delimiter = “/”,
 Marker = “abc”
};
result = ossClient.ListObjects(listObjectsRequest);

foreach (var summary in result.ObjectSummaries)
{
 Console.WriteLine(summary.Key);
}

Name Function

Delimiter

Used to group object name characters. All
names contain the specified prefix and the
object between the first Delimiter characters
acts as a group element: CommonPrefixes.

Marker
Sets up the returned results to begin from the
first entry after the Marker in alphabetical
order.

MaxKeys Limits the maximum number of objects
returned for one request. If not specified, the

Object Storage Service SDK Reference

122

Multiple iterations must be performed to traverse a whole batch of over 1,000 objects. During each
iteration, the final object key of the last iteration can be used as the Marker in the current iteration.

Folder Function Simulation

We can use a combination of Delimiter and Prefix to simulate folder functions.Combinations of
Delimiter and Prefix serve the following purposes:Setting Prefix as the name of a folder enumerates
the files starting with this prefix, recursively returning all files and subfolders in this folder.When the
Delimiter is set as "/", the returned values will enumerate the files in the folder and the subfolders will
be returned in the CommonPrefixes section. Recursive files and folders in subfolders will not be
displayed. If the bucket contains 4 files: oss.jpg, fun/test.jpg, fun/movie/001.avi, and
fun/movie/007.avi. We use the "/" symbol as the separator for folders.

List All Bucket Files

To retrieve all files in a bucket, write the following:

Output:

default value is 100. The MaxKeys value
cannot exceed 1000.

Prefix

requires the returned object key to be
prefixed with prefix. Note that the keys
returned from queries using a prefix will still
contain the prefix.

// Initialize OSSClient
var client = new OssClient(endpoint, accessId, accessKey);

ObjectListing result = null;
string nextMarker = string.Empty;
do
{
 var listObjectsRequest = new ListObjectsRequest(bucketName)
 {
 Marker = nextMarker,
 MaxKeys = 100
 };
 result = client.ListObjects(listObjectsRequest);
 foreach (var summary in result.ObjectSummaries)
 {
 Console.WriteLine(summary.Key);
 }
 nextMarker = result.NextMarker;
} while (result.IsTruncated);

Objects:
fun/movie/001.avi

Object Storage Service SDK Reference

123

Recursively List All Files in a Directory

We can set the Prefix parameter to retrieve all the files under a directory:

Output:

List Files and Subdirectories in a Directory

Using Prefix and Delimiter together, we can list the files and subdirectories under a directory:

fun/movie/007.avi
fun/test.jpg
oss.jpg

CommonPrefixs:

// Initialize OSSClient
var client = new OssClient(endpoint, accessId, accessKey);

var listObjectsRequest = new ListObjectsRequest(bucketName)
{
 Prefix = “fun/”
};
result = client.ListObjects(listObjectsRequest);
foreach (var summary in result.ObjectSummaries)
{
 Console.WriteLine(summary.Key);
}

Objects:
fun/movie/001.avi
fun/movie/007.avi
fun/test.jpg

CommonPrefixs:

// Initialize OSSClient
var client = new OssClient(endpoint, accessId, accessKey);

var listObjectsRequest = new ListObjectsRequest(bucketName)
{
 Prefix = “fun/”,
 Delimiter = “/”
};
result = client.ListObjects(listObjectsRequest);
Console.WriteLine("Objects:");
foreach (var summary in result.ObjectSummaries)
{
 Console.WriteLine(summary.Key);
}

Object Storage Service SDK Reference

124

Output:

In the returned results, the ObjectSummaries list contains the files in the fun directory.The
CommonPrefixs list shows all subfolders in the fun directory.Obviously, the files fun/movie/001.avi
and fun/movie/007.avi are not listed, because they are in the movie directory under the fun folder.

Retrieving Objects

Simply Getting Object

The following code can be used to get and input an object into a stream:

OSSObject contains various object information, including the object's bucket, object name, metadata,
and an input stream. The input stream can be used to get and store the object content into an object
or the memory.ObjectMetadata contains the ETag, Http Header, and custom metadata defined when
the object was uploaded.

Console.WriteLine("CommonPrefixes:");
foreach (var prefix in result.CommonPrefixes)
{
 Console.WriteLine(prefix);
}

Objects:
fun/test.jpg

CommonPrefixs:
fun/movie/

// Initialize OSSClient
var client = new OssClient(endpoint, accessId, accessKey);

public void GetObject(String bucketName, string key)
{
var o = client.GetObject(bucketName, key);
using (var requestStream = o.Content)
{
 byte[] buf = new byte[1024];
 var fs = File.Open(fileToDownload, FileMode.OpenOrCreate);
 var len = 0;
 while ((len = requestStream.Read(buf, 0, 1024)) != 0)
 {
 fs.Write(buf, 0, len);
 }
 fs.Close();
}
}

Object Storage Service SDK Reference

125

Using GetObjectRequest to Retrieve Objects

For more functions, we can use GetObjectRequest to retrieve objects.

We can use the setRange method in getObjectRequest to return the object range. We can use this
function for multipart downloads of files and resumable data transfer. GetObjectRequest can set the
following parameters:

// Initialize OSSClient
var client = new OssClient(endpoint, accessId, accessKey);

public void GetObject(String bucketName, string key)
{
 var getObjectRequest = new GetObjectRequest(bucketName, key);
 getObjectRequest.SetRange(20, 100);
 var o = client.GetObject(getObjectRequest);
 using (var requestStream = o.Content)
{
 byte[] buf = new byte[1024];
 var fs = File.Open(fileToDownload, FileMode.OpenOrCreate);
 var len = 0;
 while ((len = requestStream.Read(buf, 0, 1024)) != 0)
 {
 fs.Write(buf, 0, len);
 }
 fs.Close();
}
}

Parameter Description

Range Specifies the range of file transfer.

ModifiedSinceConstraint

If the specified time is earlier than the actual
modification time, the file is transmitted
normally.Otherwise, the system throws the
304 Not Modified exception.

UnmodifiedSinceConstraint

If the specified time is the same as or later
than the actual modification time, the file is
transmitted normally.Otherwise, the system
throws the 412 precondition failed exception

MatchingETagConstraints

Enters an ETag group. If the entered expected
ETag matches the object's ETag, the file is
transmitted normally.Otherwise, the system
throws the 412 precondition failed exception

NonmatchingEtagConstraints

Enters an ETag group. If the entered expected
ETag does not match the object's ETag, the
file is transmitted normally.Otherwise, the
system throws the 304 Not Modified
exception.

ResponseHeaderOverrides Customizes some headers in the OSS return
request.

Object Storage Service SDK Reference

126

Only Retrieve ObjectMetadata

The getObjectMetadata method can be used only to get the ObjectMetadata, instead of the object
entity. The code is as follows:

Deleting Objects

The following code deletes an object:

The following code batch deletes objects:

Copying Objects

Within the same region, you can copy an object on which you have operation permissions.We would
like to remind users that, when copying an object larger than 1G, we suggest using the Upload Part
Copy method.

// Initialize OSSClient
var client = new OssClient(endpoint, accessId, accessKey);

public void GetObjectMetadata(String bucketName, string key)
{
 var metadata = client.GetObjectMetadata(bucketName, key);
 …
}

// Initialize OSSClient
var client = new OssClient(endpoint, accessId, accessKey);

public void DeleteObject(String bucketName, string key)
{
 client.DeleteObject(bucketName, key);
 …
}

// Initialize OSSClient
var client = new OssClient(endpoint, accessId, accessKey);

var keys = new List<string>();
var listResult = client.ListObjects(bucketName);
foreach (var summary in listResult.ObjectSummaries)
{
 keys.Add(summary.Key);
}
var request = new DeleteObjectsRequest(bucketName, keys, false);
client.DeleteObjects(request);

Object Storage Service SDK Reference

127

-

-

-

-

Copying One Object

Using the copyObject method, we can copy a single object. The code is as follows:

Objects copied by using this method must be smaller than 1 GB, otherwise the system will return an
error. If the object is larger than 1 GB, use the Upload Part Copy method given below.

Modifying Object Meta

Copying data can modify the meta information of an existing object. If the address of the copied
source object is the same as the address of the destination object, the source object's meta
information will be replaced.

Multipart Upload

Besides using the putObject interface to upload files to OSS, the OSS also provides a Multipart
Upload mode.You can apply the Multipart Upload mode in the following scenarios (but not limited to
the following):

Where breakpoint uploads are needed.
Uploading an object larger than 100MB.
In poor network conditions, when the connection with the OSS server is frequently broken.
When, before uploading the file, you cannot determine its size.

// Initialize OSSClient
var client = new OssClient(endpoint, accessId, accessKey);

var metadata = new ObjectMetadata();
metadata.AddHeader("mk1", "mv1");
var req = new CopyObjectRequest(sourceBucket, sourceKey, targetBucket, targetKey)
{
 NewObjectMetadata = metadata
};
var ret = client.CopyObject(req);

// Initialize OSSClient
var client = new OssClient(endpoint, accessId, accessKey);

var metadata = new ObjectMetadata();
metadata.ContentType = “text/html”;
var req = new CopyObjectRequest(sourceBucket, sourceKey, sourceBucket, sourceKey)
{
 NewObjectMetadata = metadata
};
var ret = client.CopyObject(req);

Object Storage Service SDK Reference

128

Below, we will give a step-by-step introduction to Multipart Upload.

Step-By-Step Multipart Upload

Initializing Multipart Upload

We use the initiateMultipartUpload method to initialize a multipart upload task:

We use InitiateMultipartUploadRequest to specify the name and bucket of the object to upload.In
InitiateMultipartUploadRequest, you can also set the ObjectMetadata, but are not required to specify
the ContentLength. The initiateMultipartUpload returned result includes the UploadId. This is the
unique identifier of a multipart upload task. We will use this in subsequent operations.

Next, we can use two methods for uploading parts: use Upload Part to upload from the local disk or
use Upload Part copy to get a copy of an object from a bucket.

Upload Part Local Upload

Next, we will upload the local file part by part. Let us assume that there is one file in the path
/path/to/file.zip. Because it is large, we want to multipart upload it to OSS.

String bucketName = "your-bucket-name";
String key = "your-key";

// Initialize OSSClient
var client = new OssClient(endpoint, accessId, accessKey);
// Starts Multipart Upload
var request = new InitiateMultipartUploadRequest(bucketName, objectName);
var result = client.InitiateMultipartUpload(request);
// Prints UploadId
Console.WriteLine(result.UploadId);

// Initialize OSSClient
var client = new OssClient(endpoint, accessId, accessKey);

var fi = new FileInfo(fileToUpload);
var fileSize = fi.Length;
var partCount = fileSize / partSize;
if (fileSize % partSize != 0)
{
 partCount++;
}
var partETags = new List<PartETag>();
for (var i = 0; i < partCount; i++)
{
 using (var fs = File.Open(fileToUpload, FileMode.Open))
 {

Object Storage Service SDK Reference

129

-

-

-

-

-

-

The main idea of this program is to call the uploadPart method to upload each part. However, you
must note the following:

In the uploadPart method, all parts except the last one must be larger than 100KB.However,
the Upload Part interface does not immediately verify the size of the uploaded part (because
it does not know whether the part is the last one). It verifies the size of the uploaded part
only when Multipart Upload is completed.
OSS will put the MD5 value of the part data received by the server in the ETag header and
return it to the user.
In order to ensure that the data transmitted over the network is free from errors, users can
set ContentMD5. OSS will calculate the MD5 value for the uploaded data and compare it
with the MD5 value uploaded by the user. If they are inconsistent, the system will return the
InvalidDigest error code.
The part number range is 1~10000. If you exceed this range, OSS will return the
InvalidArgument error code.
When each part is uploaded, it will take the stream to the location corresponding to the start
of the next part.
After each part is uploaded, the OSS returned results will include the PartETag object. This is
the combination of the ETag and PartNumber of the uploaded part. This will be used in
subsequent steps, so we need to save it.Generally, we will save these PartETag objects in the
List.

Upload Part Copy

Using Upload Part Copy, we copy data from an existing object to upload an object.When copying an
object larger than 500MB, we suggest using the Upload Part Copy method.

 var skipBytes = (long)partSize * i;
 fs.Seek(skipBytes, 0);
 var size = (partSize < fileSize - skipBytes) ? partSize : (fileSize - skipBytes);
 var request = new UploadPartRequest(bucketName, objectName, uploadId)
 {
 InputStream = fs,
 PartSize = size,
 PartNumber = i + 1
 };
 var result = _ossClient.UploadPart(request);
 partETags.Add(result.PartETag);
 }
 }

// Initialize OSSClient
var client = new OssClient(endpoint, accessId, accessKey);

var metadata = client.GetObjectMetadata(sourceBucket, sourceObject);
var fileSize = metadata.ContentLength;

var partCount = (int)fileSize / partSize;

Object Storage Service SDK Reference

130

The above program calls the uploadPartCopy method to copy each part. The requirements are
basically the same as for UploadPart. You must use BeginIndex to locate the position corresponding
to the start of the next part to upload. You must also specify the object to copy with SourceKey

Completing Multipart Uploads

Use the code below to complete a multipart upload:

In the code above, the partETags are saved in the partETag list during multipart upload. After OSS
receives the part list submitted by the users, it will verify the validity of each data part individually.
After all the data parts have been verified, OSS will combine these parts into a complete object.

Canceling Multipart Upload Tasks

We can use the abortMultipartUpload method to cancel multipart upload tasks.

if (fileSize % partSize != 0)
{
 partCount++;
}

var partETags = new List<PartETag>();
for (var i = 0; i < partCount; i++)
{
 var skipBytes = (long)partSize * i;
 var size = (partSize < fileSize - skipBytes) ? partSize : (fileSize - skipBytes);
 var request = new UploadPartCopyRequest(targetBucket, targetObject, sourceBucket, sourceObject, uploadId)
 {
 PartSize = size,
 PartNumber = i + 1,
 BeginIndex = skipBytes
 };
 var result = client.UploadPartCopy(request);
 partETags.Add(result.PartETag);
}

// Initialize OSSClient
var client = new OssClient(endpoint, accessId, accessKey);

var completeMultipartUploadRequest = new CompleteMultipartUploadRequest(bucketName, objectName,
uploadId);
foreach (var partETag in partETags)
{
 completeMultipartUploadRequest.PartETags.Add(partETag);
}
var result = client.CompleteMultipartUpload(completeMultipartUploadRequest);

// Initialize OSSClient
var client = new OssClient(endpoint, accessId, accessKey);

Object Storage Service SDK Reference

131

Getting All Multipart Upload Tasks in the Bucket

We can use the listMultipartUploads method to retrieve all upload tasks in the bucket.

NOTE:Under normal conditions, if a bucket contains more than 1000 multipart upload tasks, the first
1000 will be returned and the IsTruncated parameter in the returned results will be false. The returned
NextKeyMarker and NextUploadMarker can be used as the next start point to continue reading the
data.If the user wishes to increase the number of multipart upload tasks returned, he can modify the
MaxUploads parameter or use the KeyMarker and UploadIdMarker parameters for segmented
reading.

Getting Information for All Uploaded Parts

We can use the listParts method to retrieve all the uploaded parts of an upload task.

CompleteMultipartUploadRequest request = new CompleteMultipartUploadRequest(bucketName, objectName,
uploadId);
client.CompleteMultipartUpload(request);

// Initialize OSSClient
var client = new OssClient(endpoint, accessId, accessKey);

// Gets all upload tasks in the bucket
var request = new ListMultipartUploadsRequest(bucketName);
var multipartUploadListing = client.ListMultipartUploads(request);
// Get event information
var multipartUploads = multipartUploadListing.MultipartUploads;
foreach (var mu : multipartUploads)
{
 Console.WriteLine(“Key:” + mu.Key + “, UploadId:“ + mu.UploadId);
}
var commonPrefixes = multipartUploadListing. CommonPrefixes;
foreach (var prefix : commonPrefixes)
{
 Console.WriteLine(“Prefix:” + prefix);
}

// Initialize OSSClient
var client = new OssClient(endpoint, accessId, accessKey);

var listPartsRequest = new ListPartsRequest(bucketName, objectName, uploadId);
var listPartsResult = client.ListParts(listPartsRequest);

// Traverses all parts
var parts = listPartsResult.Parts;
foreach (var part : parts)
{
 Console.WriteLine(“PartNumber:” + part. PartNumber + “, ETag:“ + part. Etag +”,Size:” + part.Size);

Object Storage Service SDK Reference

132

NOTE:Under normal conditions, if a bucket contains more than 1000 multipart upload tasks, the first
1000 will be returned and the IsTruncated parameter in the returned results will be false. The returned
NextPartNumberMarker can be used as the next start point to continue reading the data.If the user
wishes to increase the number of upload tasks returned, he can modify the MaxParts parameter or
use the PartNumberMarker parameters for segmented reading.

Anti-leech Settings

The OSS collects service fees based on use. To prevent users' data on OSS from being leeched, OSS
supports anti-leech based on the field referer in HTTP header.

Setting the Referer White List

We can use the following code to set the Referer white list:

The Referer parameter supports the wildcards "*" and "?". For detailed rule configuration, refer to the
product documentation OSS Anti-leech

Retrieving the Referer White List

}

var client = new OssClient(endpoint, accessId, accessKey);

var refererList = new List<string>();
// Adds referer
refererList.Add(" http://www.aliyun.com");
refererList.Add(" http://www.*.com");
refererList.Add(" http://www.?.aliyuncs.com");
// Allows the referer field to be blank and sets the Bucket Referer List
var request = new SetBucketRefererRequest(bucketName, refererList);
request. AllowEmptyReferer = true;

client.setBucketReferer(bucketName, br);

var rc = client.GetBucketReferer(bucketName);
Console.WriteLine("allow？" + (rc.AllowEmptyReferer ? "yes" : "no"));
if (rc.RefererList.Referers != null)
{
for (var i = 0; i < rc.RefererList.Referers.Length; i++)
 Console.WriteLine(rc.RefererList.Referers[i]);
}
else
{

Object Storage Service SDK Reference

133

-

-

-

Clearing the Referer White List

The Referer white list cannot be cleared directly. You can only reset it to overwrite the previous rules.

Lifecycle Management

OSS provides the object lifecycle management capability to manage objects for users. The user can
configure the lifecycle of a bucket to define various rules for the bucket's objects. Currently, users can
use rules to delete matched objects. Each rule is composed of the following parts:

The object name prefix; this rule will only apply to objects with the matched prefix.
Operation; the operation the user wishes to perform on the matched objects.
Date or number of days; the user will execute the operation on the objects on the specified
date or a specified number of days after the object's last modification time.

Setting Lifecycles

The lifecycle configuration rules are expressed by an xml segment.

 Console.WriteLine("Empty Referer List");
}

var client = new OssClient(endpoint, accessId, accessKey);
// Allows the referer field and the referer white list name to be blank by default
var request = new SetBucketRefererRequest(bucketName);
client.SetBucketReferer(request);

<LifecycleConfiguration>
 <Rule>
 <ID>delete obsoleted files</ID>
 <Prefix>obsoleted/</Prefix>
 <Status>Enabled</Status>
 <Expiration>
 <Days>3</Days>
 </Expiration>
 </Rule>
 <Rule>
 <ID>delete temporary files</ID>
 <Prefix>temporary/</Prefix>
 <Status>Enabled</Status>
 <Expiration>
 <Date>2022-10-12T00:00:00.000Z</Date>
 </Expiration>
 </Rule>
</LifecycleConfiguration>

Object Storage Service SDK Reference

134

-

-

-

-

A single lifecycle Config can contain up to 1000 rules.

Explanations of each field:

The ID field is used to uniquely identify a rule (inclusion relations, such as abc and abcd,
cannot exist between IDs).
Prefix indicates the rules used for objects in the bucket with the specified prefix.
Status indicates the status of this rule. The statuses are Enabled and Disabled, indicating if
the rule is enabled or disabled.
In the Expiration node, Days indicates that an object will be deleted a specified number of
days after its last modification. Date indicates that objects will be deleted after the specified
absolute time (the absolute time follows the ISO8601 format).

Using the following code, we can set the above lifecycle rules.

We can use the following code to retrieve the above lifecycle rules.

// Initialize OSSClient
var client = new OssClient(endpoint, accessId, accessKey);

var setBucketLifecycleRequest = new SetBucketLifecycleRequest(bucketName);
LifecycleRule lcr1 = new LifecycleRule()
{
 ID = "delete obsoleted files",
 Prefix = "obsoleted/",
 Status = RuleStatus.Enabled,
 ExpriationDays = 3
};
LifecycleRule lcr2 = new LifecycleRule()
{
 ID = "delete temporary files",
 Prefix = "temporary/",
 Status = RuleStatus.Enabled,
 ExpirationTime = DateTime.Parse("2022-10-12T00:00:00.000Z")
};
setBucketLifecycleRequest.AddLifecycleRule(lcr1);
setBucketLifecycleRequest.AddLifecycleRule(lcr2);

client.SetBucketLifecycle(setBucketLifecycleRequest);

var rules = client.GetBucketLifecycle(bucketName);
foreach (var rule in rules)
{
 Console.WriteLine("ID: {0}", rule.ID);
 Console.WriteLine("Prefix: {0}", rule.Prefix);
 Console.WriteLine("Status: {0}", rule.Status);
 if (rule.ExpriationDays.HasValue)
 Console.WriteLine("ExpirationDays: {0}", rule.ExpriationDays);
 if (rule.ExpirationTime.HasValue)
 Console.WriteLine("ExpirationTime: {0}", FormatIso8601Date(rule.ExpirationTime.Value));
}

Object Storage Service SDK Reference

135

-

-

1.

2.

Using the following code, we can delete the lifecycle rules in a bucket.

Authorized Access

Using STS Service Temporary Authorization

Introduction

Through the AliCloud STS service, OSS can temporarily grant authorized access.AliCloud STS is a web
service that provides a temporary access token to a cloud computing user. Using STS, you can grant
access credentials to a third-party application or federated user (you can manage the user IDs) with
customized permissions and validity periods. Third-party applications or federated users can use
these access credentials to directly call the AliCloud product APIs or use the SDKs provided by
AliCloud products to access the cloud product APIs.

You do not need to expose you long-term key (AccessKey) to a third-party application and
only need to generate an access token and send the access token to the third-party
application. You can customize the access permission and validity of this token.
You do not need to care about permission revocation issues. The access credential
automatically becomes invalid when it expires.

Using an App as an example, the interaction process is shown below:

The solution is described
in detail as follows:

Log in as the app user. App user IDs are managed by the client. Clients can customize the ID
management system and may also use external Web accounts or OpenID. For each valid
app user, the AppServer can precisely define the minimum access permission.
The AppServer requests a security token from the STS. Before calling STS, the AppServer
needs to determine the minimum access permission (described in policy syntax) of app

// Initialize OSSClient
var client = new OssClient(endpoint, accessId, accessKey);

var LifecycleRequest = new SetBucketLifecycleRequest(bucketName);
client.SetBucketLifecycle(LifecycleRequest);

Object Storage Service SDK Reference

136

3.

4.

5.

users and the expiration time of the authorization.Then, the security token is obtained by
calling the STS’ AssumeRole interface.
The STS returns a valid access credential to the AppServer, where the access credential
includes a security token, a temporary access key (AccessKeyId and AccessKeySecret), and
the expiry time.
The AppServer returns the access credential to the ClientApp. The ClientApp caches this
credential. When the credential becomes invalid, the ClientApp needs to request a new
valid access credential from the AppServer. For example, if the access credential is valid for
one hour, the ClientApp can request the AppServer to update the access credential every 30
minutes.
The ClientApp uses the access credential cached locally to request for AliCloud Service APIs.
The ECS is aware of the STS access credential, relies on STS to verify the credential, and
correctly responds to the user request.

The key is to obtain a valid access credential by simply calling the STS interface AssumeRole.The
method can also be called by using the STS DSK. Clicking to View Details

Using STS Credentials to Construct Signed Requests

After obtaining the STS temporary credential, the user’s client generates an OSSClient using the
contained SecurityToken and temporary access key (AccessKeyId, AccessKeySecret). Using an object
upload as an example:

Using URL Signature to Authorize Access

Generating a Signed URL

You can provide users with a temporary access URL by generating a signed URL. During URL
generation, you can specify the URL expiration time to limit the duration of the user’s access.

Generating a Signed URL

The code is as follows:

String accessKeyId = "<accessKeyId>";
String accessKeySecret = "<accessKeySecret>";
String securityToken = "<securityToken>"
// Uses Hangzhou as an example
String endpoint = "http://oss-cn-hangzhou.aliyuncs.com";

var ossClient = new OssClient(endpoint, accessKeyId, accessKeySecret,securityToken);

Svar req = new GeneratePresignedUriRequest(bucketName, key, SignHttpMethod.Get);
{

Object Storage Service SDK Reference

137

Generated URLs use the GET access method by default. This way, users can directly use a browser to
access the relevant content.

Generating Other HTTP Method URLs

For users to temporarily use other operations (e.g. uploading or deleting objects), you may have to
sign a URL for another method. For example:

Using Signed URLs to Send Requests

Currently, the .NET SDK supports the put object and get object URL signature requests.

Using the putobject URL Signature Method

Cross-Origin Resource Sharing (CORS)

CORS allows Web applications to access resources in other origins. OSS provides an interface to allow
developers to easily control cross-origin access permissions.

Setting CORS Rules

Using the setBucketCORS method, we can set a CORS rule for a specified bucket. If an original rule
exists, it will be overwritten. Parameters for specific rules are generally set through the CORSRule
class. The code is as follows:

Expiration = new DateTime().AddHours(1)
}
var uri = client.GeneratePresignedUri(req);

// Generates a PUT method URL
var req = new GeneratePresignedUriRequest(bucketName, key, SignHttpMethod.Put);
{
Expiration = new DateTime().AddHours(1),
ContentType = “text/html”
}
var uri = client.GeneratePresignedUri(req);

var generatePresignedUriRequest = new GeneratePresignedUriRequest(bucketName, key, SignHttpMethod.Put);
var signedUrl = client.GeneratePresignedUri(generatePresignedUriRequest);
var result = client.PutObject(signedUrl, fileToUpload);

// Initialize OSSClient

Object Storage Service SDK Reference

138

-

-

Here, you must particularly note the following:

Each Bucket allows up to 10 rules.
The AllowedOrigins and AllowedMethods each supports up to one "*" wildcard. "*" indicates
that all origins or methods are allowed. However, AllowedHeaders and ExposeHeaders do
not support wildcards.

Retrieving CORS Rules

We can refer to the bucket's CORS rules through the GetBucketCORSRules method. The code is as
follows:

Deleting CORS Rules

Use this to disable CORS for the specified bucket and clear all rules.

var client = new OssClient(endpoint, accessId, accessKey);

var req = new SetBucketCorsRequest(bucketName);
var r1 = new CORSRule();
//Specifies where cross-origin requests can originate from
r1.AddAllowedOrigin("http://www.a.com");
//Specifies the allowed cross-origin request methods (GET/PUT/DELETE/POST/HEAD)
r1.AddAllowedMethod("POST");
//Controls whether the headers specified by Access-Control-Request-Headers in the OPTIONS' prefetch command
are allowed.
r1.AddAllowedHeader("*");
//Specifies the response headers users are allowed to access from the application
r1.AddExposeHeader("x-oss-test");
req.AddCORSRule(r1);
client.SetBucketCors(req);

// Initialize OSSClient
var client = new OssClient(endpoint, accessId, accessKey);

foreach (var rule in rules)
{
 Console.WriteLine(“AllowedOrigins:” + rule. AllowedOrigins);
 Console.WriteLine(“AllowedMethods:” + rule. AllowedMethods);
 Console.WriteLine(“AllowedHeaders:” + rule. AllowedHeaders);
 Console.WriteLine(“ExposeHeaders:” + rule. ExposeHeaders);
Console.WriteLine(“MaxAgeSeconds:” + rule. MaxAgeSeconds);
}

// Initialize OSSClient
var client = new OssClient(endpoint, accessId, accessKey);

// Clears the CORS rules in the bucket
client.DeleteBucketCors(bucketName);

Object Storage Service SDK Reference

139

-

-

-

-

Exceptions

The OSS .NET SDK has two exceptions: ClientException and OSSException. Both are derived, directly
or indirectly, from RuntimeException.

ClientException

ClientException indicates an internal SDK exception, such as no set BucketName, cannot connect to
the network, etc.

OSSException

OSSException indicates a server error, which is generated by parsing a server error message.
OSSExceptions generally have the following components:

Code: the error code OSS returns to users.
Message: the detailed error message provided by OSS.
RequestId: the UUID that uniquely identifies the request. When you cannot solve the
problem, you can seek help from OSS development engineers by providing this RequestId.
HostId: used to identify the accessed OSS cluster (currently unified as oss.aliyuncs.com)

The following are common OSS exceptions:

Error Code Description

AccessDenied Access denied

BucketAlreadyExists The bucket already exists

BucketNotEmpty The bucket is not empty

EntityTooLarge The entity is too large

EntityTooSmall The entity is too small

FileGroupTooLarge The file group is too large

FilePartNotExist A file part does not exist

FilePartStale A file part has expired

InvalidArgument Parameter format error

InvalidAccessKeyId The Access Key ID does not exist

InvalidBucketName The bucket name is invalid

InvalidDigest The digest is invalid

InvalidObjectName The object name is invalid

Object Storage Service SDK Reference

140

-

●

PHP-SDK

OSS PHP SDK Documentation

Introduction

Introduction
The Object Storage Service (OSS) is a massive, secure, cost-effective and highly
reliable cloud storage service provided by AliCloud. Users can upload and
download data anytime, anywhere and on any Internet device through a simple
RESTful interface described herein. With the OSS, users can develop a diverse range
of massive data–based services such as multimedia sharing websites, online

InvalidPart A part is invalid

InvalidPartOrder The part order is invalid

InvalidTargetBucketForLogging The logging operation has an invalid target
bucket

InternalError Internal OSS error

MalformedXML Illegal XML format

MethodNotAllowed The method is not supported

MissingArgument A parameter is missing

MissingContentLength The content length is missing

NoSuchBucket The bucket does not exist

NoSuchKey The file does not exist

NoSuchUpload The Multipart Upload ID does not exist

NotImplemented The method cannot be processed

PreconditionFailed Preprocessing error

RequestTimeTooSkewed The request initiation time exceeds the server
time by 15 minutes

RequestTimeout Request timed out

SignatureDoesNotMatch Signature error

TooManyBuckets The user's bucket quantity exceeds the limit

Object Storage Service SDK Reference

141

●

●

●

●

●

●

●

●

●

●

●

●

-

●

●

●

-

●

●

●

●

storage, personal and corporate data backups.

ChangeHistory

2015.7.1

Added settings for response body conversion. The OSS currently supports xml,
array, and json formats. XML is the default format
Added the copy_upload_part method
Added support for STS
Changed the $options parameter location in the signature URL
Fixed the read_dir looping problem *2015.3.30
Added the referer and lifecycle interfaces. Added the content-md5 check option for
upload by file and multipart upload.
Added init_multipart_upload to directly obtain string type uploads
Adjusted the return value of the batch_upload_file function from the original blank
value to a boolean value; true indicates success and false indicates failure.

Adjusted the tool function location in tsdk.class.php, placing it in
util/oss_util.class.php. If you need to reference it, add OSSUtil:: and reference this
file.

Bug fixes:

Fixed the problem in the Copy object process where you could not edit the header.
Fixed the custom upload syntax error during upload part.
Fixed the problem where the mimetype of office2007 files could not be set correctly
during uploads.
Fixed the problem where the system would time out and quit when it encountered
an empty directory during the batch_upload_file operation.

Naming Rules

Bucket naming rules
It can only contain lower-case letters, numbers, and hyphens (-)
It must start with a lower-case letter or number
The length must be 3-63 bytes

Object naming rules
It uses UTF-8 encoding
The length must be 1-1023 bytes
It cannot start with "/" or "\"
It cannot contain "\r" or "\n" line breaks

Object Storage Service SDK Reference

142

-

●

●

-

●

-

●

Pre-dependency Check

PHP extension library detection
Before use, please check if the curl, mbstring, SimpleXML, json, iconv, and other
extension libraries are enabled. If not, please modify php.ini to enable the relevant
extension libraries

Initializing Resources

Normal ALIOSS initialization method

In normal conditions, initialization only requires you to provide your accessId,
accessKey, endPoint, and other information. Moreover, you need to complete the
required information

Using STS to initialize ALIOSS
To use the STS service, mobile developers only need to call the STS API during
initialization to generate a temporary accessId, accessKey, and securityToken.

Bucket-related Operations

Getting a bucket list
Sample Code

 $access_id = "Please enter the accessId";
 $access_key = "Please enter the accessKey";
 $end_point = "The endpoint of the operation cluster";
 $client = ALIOSS($access_id,$access_key,$end_point);

 //Determines whether shown in domain name format. If true, the data is displayed in domain name format, e.g.
http://bucket.domain/object,
 //If false, its format is http://domain/bucket/object
 $client->set_enable_domain_style(true);

 $access_id = "Calls the STS interface to get a temporary access_id";
 $access_key = "Calls the STS interface to get a temporary access_key";
 $end_point = "The endpoint of the operation cluster";
 $security_token = "Calls the STS interface to get a temporary security_token";
 $client = ALIOSS($access_id,$access_key,$end_point,$security_token);

 $options = null;
 $response = $client->list_bucket($options);

Object Storage Service SDK Reference

143

-

●

-

Parameter description

Response result

Creating a bucket
Sample Code

 $options: optional

 、
 Get the result by converting the resulting response to array. The same below
 Array(
 [status] => 200
 [header] => Array(
 [date] => Wed, 01 Jul 2015 09:21:15 GMT
 [content-type] => application/xml
 [content-length] => 6266
 [connection] => close
 [server] => AliyunOSS
 [x-oss-request-id] => 5593B10B58DB3AB752154A62
)
 [body] => Array(
 [ListAllMyBucketsResult] => Array(
 [Owner] => Array (
 [ID] => 128257
 [DisplayName] => 128257
)
 [Buckets] => Array(
 [Bucket] => Array(
 [0] => Array(
 [Location] => oss-cn-hangzhou
 [Name] => 33331111
 [CreationDate] => 2014-08-27T03:04:20.000Z
)
 [1] => Array (
 [Location] => oss-cn-qingdao
 [Name] => a-00000000000000000001
 [CreationDate] => 2015-05-22T05:30:40.000Z
)

)

)

)

)

)
 、

 $bucket_name = "bucket name";

Object Storage Service SDK Reference

144

-

-

-

●

-

-

Parameter description

Response result

Deleting a bucket
Sample Code

Parameter description

Response result

 $acl = ALIOSS::OSS_ACL_TYPE_PRIVATE;
 $options = null;
 $response = $client->create_bucket($bucket_name,$acl,$options);

 $bucket_name: a required parameter. It must comply with the bucket naming rules
 $acl: a required parameter. It must be any of these values: private, public-read, or public-read-write, which are
respectively mapped with the following constants
 ALIOSS::OSS_ACL_TYPE_PRIVATE,
 ALIOSS::OSS_ACL_TYPE_PUBLIC_READ,
 ALIOSS::OSS_ACL_TYPE_PUBLIC_READ_WRITE
 $options: optional

 Get the result by converting the resulting response to array. The same below
 Array(
 [status] => 200
 [header] => Array(
 [date] => Wed, 01 Jul 2015 09:55:18 GMT
 [content-length] => 0
 [connection] => close
 [server] => AliyunOSS
 [x-oss-request-id] => 5593B906031C87E546154CC1
)

 [body] =>
)

 $bucket_name = "bucket name";
 $options = null;
 $response = $client->delete_bucket($bucket_name,$options);

 $bucket_name: a required parameter. It must comply with the bucket naming rules
 $options: optional

 Get the result by converting the resulting response to array. The same below
 Array(
 [status] => 204

Object Storage Service SDK Reference

145

-

●

-

-

Getting a bucket ACL
Sample Code

Parameter description

Response result

 [header] => Array(
 [date] => Wed, 01 Jul 2015 10:08:45 GMT
 [content-length] => 0
 [connection] => close
 [server] => AliyunOSS
 [x-oss-request-id] => 5593BC2D58DB3AB752155156
)

 [body] =>
)

 $bucket_name = "bucket name";
 $options = null;
 $response = $client->get_bucket_acl($bucket_name,$options);

 $bucket_name: a required parameter. It must comply with the bucket naming rules
 $options: optional

 Get the result by converting the resulting response to array. The same below

 Array(
 [status] => 200
 [header] => Array(
 [date] => Wed, 01 Jul 2015 10:17:41 GMT
 [content-type] => application/xml
 [content-length] => 239
 [connection] => close
 [server] => AliyunOSS
 [x-oss-request-id] => 5593BE45031C87E54615500F
)

 [body] => Array(
 [AccessControlPolicy] => Array(
 [Owner] => Array(
 [ID] => 128257
 [DisplayName] => 128257
)

 [AccessControlList] => Array(
 [Grant] => public-read
)
)
)
)

Object Storage Service SDK Reference

146

-

●

-

-

-

●

-

Setting the bucket ACL
Sample Code

Parameter description

Response result

Object-related Operations

Getting the object list
Sample Code

Parameter description

 $bucket_name = "bucket name";
 $options = null;
 $response = $client->set_bucket_acl($bucket_name,$options);

 $bucket_name: a required parameter. It must comply with the bucket naming rules
 $options: optional

 Get the result by converting the resulting response to array. The same below
 Array(
 [status] => 200
 [header] => Array(
 [date] => Wed, 01 Jul 2015 11:08:31 GMT
 [content-length] => 0
 [connection] => close
 [server] => AliyunOSS
 [x-oss-request-id] => 5593CA2F031C87E5461557B5
)

 [body] =>
)

 $bucket_name = 'bucket name';
 $options = array(
 'delimiter' => '/',
 'prefix' => '',
 'max-keys' => 5,
 'marker' => '',
);

 $response = $client->list_object($$bucket_name,$options);

 $bucket_name: a required parameter. It must comply with the bucket naming rules

Object Storage Service SDK Reference

147

- Response result

 $options: optional, as described below
 Delimiter is a character used to group Object names. All objects whose names contain the specified prefix
and that appear between the Delimiter characters for the first time are used as a group of elements:
 CommonPrefixes.
 Prefix requires the returned object key to be prefixed with prefix. Note that when querying using prefix,
 the returned keys will still contain prefix
 max-keys limits the maximum number of objects returned for one request. If not specified, the default value
is 100. The max-keys value cannot exceed 1,000.
 Marker sets up the returned results to begin from the first entry after the Marker in alphabetical order.

 Get the result by converting the resulting response to array. The same below

 Array(
 [status] => 200
 [header] => Array(
 [date] => Thu, 02 Jul 2015 07:59:32 GMT
 [content-type] => application/xml
 [content-length] => 1466
 [connection] => close
 [server] => AliyunOSS
 [x-oss-request-id] => 5594EF64031C87E546160F24
)

 [body] => Array(
 [ListBucketResult] => Array(
 [Name] => common-bucket
 [Prefix] =>
 [Marker] =>
 [MaxKeys] => 5
 [Delimiter] => /
 [IsTruncated] => true
 [NextMarker] => metro_driver.dll
 [Contents] => Array(
 [0] => Array(
 [Key] => chrome_elf.dll
 [LastModified] => 2015-07-01T03:44:58.000Z
 [ETag] => "78CE940FD1CCDF6F743EE1A9AED8AAD8"
 [Type] => Normal
 [Size] => 133960
 [StorageClass] => Standard
 [Owner] => Array(
 [ID] => 128257
 [DisplayName] => 128257
)
)

 [1] => Array(
 [Key] => delegate_execute.exe
 [LastModified] => 2015-06-29T09:18:41.000Z
 [ETag] => "37C49C4E0EC4E0D96B6EBBA2190E8824"
 [Type] => Normal
 [Size] => 692040
 [StorageClass] => Standard

Object Storage Service SDK Reference

148

-

●

-

-

Creating a simulated folder
Sample Code

Parameter description

Response result

 [Owner] => Array(
 [ID] => 128257
 [DisplayName] => 128257
)
)
 }

 [CommonPrefixes] => Array(
 [0] => Array(
 [Prefix] => common-folder/
)

 [1] => Array(
 [Prefix] => common-folder2/
)
)
)
)
)

 $bucket_name = 'bucket name';
 $dir_name = 'directory name';
 $options = null;
 $response = $client->create_object_dir($bucket_name,$dir_name,$options);

 $bucket_name: a required parameter. Must comply with the bucket naming rules
 $dir_name: a required parameter. Must comply with the object naming rules
 $options: optional. You do not need to set a 'Header' header for simulated folders

 Get the result by converting the resulting response to array. The same below

 Array(
 [status] => 200
 [header] => Array(
 [date] => Thu, 02 Jul 2015 08:10:16 GMT
 [content-length] => 0
 [connection] => close
 [etag] => "D41D8CD98F00B204E9800998ECF8427E"
 [server] => AliyunOSS
 [x-oss-request-id] => 5594F1E8031C87E5461610B9
)

 [body] =>
)

Object Storage Service SDK Reference

149

-

●

-

-

Uploading files (directly specified content)
Sample Code

Parameter description

Response result

 $bucket_name = 'bucket name';
 $object_name = 'object name';
 $content = 'object content';
 $options = array(
 'content' => $content,
 'length' => strlen($content),
 ALIOSS::OSS_HEADERS => array(
 'Expires' => 'Fri, 28 Feb 2012 05:38:42 GMT',
 'Cache-Control' => 'no-cache',
 'Content-Disposition' => 'attachment;filename=oss_download.log',
 'Content-Encoding' => 'utf-8',
 'Content-Language' => 'zh-CN',
 'x-oss-server-side-encryption' => 'AES256',
),
);
 $response = $obj->upload_file_by_content($bucket_name,$object_name,$options);

 $bucket_name: a required parameter. Must comply with the bucket naming rules
 $object_name: a required parameter. It must comply with the object naming rules
 $options: a required parameter. It specifies the various information required for the upload. A detailed
description is given below
 content: the content of the object to upload
 length: the size of the object to upload
 ALIOSS::OSS_HEADERS: optional parameter; if specified, it indicates meta information for this object and the
following header information can be configured:
 Expires is the expiration time (in milliseconds)
 Cache-Control specifies the cache action of the web page when the object is downloaded
 Content-Disposition specifies the name of the object when downloaded
 Content-Encoding specifies the content encoding format when the object is downloaded
 Content-Language specifies the object language when downloaded
 x-oss-server-side-encryption specifies the server-side encryption algorithm used when the OSS creates an
object

 Get the result by converting the resulting response to array. The same below

 Array(
 [status] => 200
 [header] => Array(
 [date] => Thu, 02 Jul 2015 08:24:11 GMT
 [content-length] => 0
 [connection] => close
 [etag] => "9BA9EF6DDFBE14916FA2D3337B427774"
 [server] => AliyunOSS
 [x-oss-request-id] => 5594F52B031C87E5461612D1

Object Storage Service SDK Reference

150

-

●

-

-

Uploading files (with the file path specified)
Sample Code

Parameter description

Response result

)

 [body] =>
)

 $bucket_name = 'bucket name';
 $object_name = 'object name';
 $file_path = "upload file path";
 $options = array(
 ALIOSS::OSS_HEADERS => array(
 'Expires' => 'Fri, 28 Feb 2012 05:38:42 GMT',
 'Cache-Control' => 'no-cache',
 'Content-Disposition' => 'attachment;filename=oss_download.gz',
 'Content-Encoding' => 'utf-8',
 'Content-Language' => 'zh-CN',
 'x-oss-server-side-encryption' => 'AES256',

),
);
 $response = $obj->upload_file_by_file($bucket,$object,$file_path,$upload_file_options);

 $bucket_name: a required parameter. Must comply with the bucket naming rules
 $object_name: a required parameter. It must comply with the object naming rules
 $file_path: a required parameter. It indicates the path of the file
 $options: a required parameter. It specifies the various information required for the upload. A detailed
description is given below
 content: the content of the object to upload
 length: the size of the object to upload
 ALIOSS::OSS_HEADERS: optional parameter; if specified, it indicates meta information for this object and the
following header information can be configured:
 Expires is the expiration time (in milliseconds)
 Cache-Control specifies the cache action of the web page when the object is downloaded
 Content-Disposition specifies the name of the object when downloaded
 Content-Encoding specifies the content encoding format when the object is downloaded
 Content-Language specifies the object language when downloaded
 x-oss-server-side-encryption specifies the server-side encryption algorithm used when the OSS creates an
object

 Get the result by converting the resulting response to array. The same below

 Array(
 [status] => 200
 [header] => Array(
 [date] => Thu, 02 Jul 2015 08:41:10 GMT

Object Storage Service SDK Reference

151

-

●

-

Copying objects
Sample Code

Parameter description

 [content-length] => 0
 [connection] => close
 [etag] => "4B12FF064A3BBFE0AE5A1314E77FF0DF"
 [server] => AliyunOSS
 [x-oss-request-id] => 5594F91358DB3AB7521617CA
)

 [body] =>
)

 $from_bucket = 'copy from bucket';
 $from_object = 'copy from object';
 $to_bucket = 'copy to bucket';
 $to_object = 'copy to object';
 $options = array(
 ALIOSS::OSS_HEADERS => array(
 'x-oss-copy-source-if-match' => 'E024E425254F1EEDB237F69F854CE883',
 'x-oss-copy-source-if-none-match' => 'Thu, 18 Jun 2015 08:50:31 GMT',
 'x-oss-copy-source-if-unmodified-since' => 'Thu, 18 Jun 2015 08:50:31 GMT',
 'x-oss-copy-source-if-modified-since' => 'Thu, 18 Jun 2015 09:50:31 GMT',
 'x-oss-metadata-directive' => 'COPY',
 'x-oss-server-side-encryption' => 'AES256'
)
);

 $response = $obj->copy_object($from_bucket,$from_object,$to_bucket,$to_object,$options);

 $from_bucket: a required parameter. It indicates the source bucket and must comply with the bucket naming
rules
 $from_object: required parameter, the source object; must comply with the object naming rules
 $to_bucket: required parameter, the destination bucket; must comply with the bucket naming rules
 $to_object: required parameter, the destination object; must comply with the object naming rules
 $options: optional parameter; if specified, it can define the ALIOSS::OSS_HEADERS header parameter, which
has several options shown below
 x-oss-copy-source-if-match: If the source object's ETAG value is the same as the ETag provided by the user,
a copy operation will be executed.
 Otherwise, the system returns the 412 HTTP error code (preprocessing failed)
 x-oss-copy-source-if-none-match: If the source object has not been modified after the time specified by the
user, the system performs a copy operation.
 Otherwise, the system returns the 412 HTTP error code (preprocessing failed)
 x-oss-copy-source-if-unmodified-since: If the time in the parameter is the same as or later than the file's
actual modification time, the file is transmitted normally
 and the system returns 200 OK. Otherwise, the system throws the 412 precondition failed exception
 x-oss-copy-source-if-modified-since: If the source object has been modified after the time specified by the
user, the system performs a copy operation.
 Otherwise, the system returns the 412 HTTP error code (preprocessing failed)
 x-oss-metadata-directive: Values: COPY and REPLACE. If the parameter is set to COPY, the new object's meta
is all copied from the source object.

Object Storage Service SDK Reference

152

-

-

●

-

-

Response result

Getting Object MetaData
Sample Code

Parameter description

Response result

 If the parameter is set to REPLACE, the source object's meta is ignored and the meta values specified by the
user in this request are used. Other values may cause the system to return an 400 HTTP error code.
 Note that when the value is COPY, the source object's x-oss-server-side-encryption meta value cannot be
copied. The default value is COPY
 x-oss-server-side-encryption specifies the server entropy encryption algorithm used when the OSS creates
the destination object. The system currently only supports AES256

 Get the result by converting the resulting response to array. The same below

 Array(
 [status] => 200
 [header] => Array(
 [content-type] => application/xml
 [content-length] => 184
 [connection] => close
 [date] => Thu, 02 Jul 2015 09:26:28 GMT
 [etag] => "E024E425254F1EEDB237F69F854CE883"
 [server] => AliyunOSS
 [x-oss-request-id] => 559503C458DB3AB752161E83
 [x-oss-server-side-encryption] => AES256
)

 [body] => Array(
 [CopyObjectResult] => Array(
 [LastModified] => 2015-07-02T09:26:28.000Z
 [ETag] => "E024E425254F1EEDB237F69F854CE883"
)
)
)

 $bucket_name = 'bucket name';
 $object_name = 'object name';
 $options = null;
 $response = $client->get_object_meta($bucket_name,$object_name,$options);

 $bucket_name: a required parameter. Must comply with the bucket naming rules
 $object_name: a required parameter. It must comply with the object naming rules
 $options: optional

 Array(

Object Storage Service SDK Reference

153

-

●

-

-

Deleting a single object
Sample Code

Parameter description

Response result

 [status] => 200
 [header] => Array(
 [date] => Thu, 02 Jul 2015 09:03:40 GMT
 [content-type] => plain/text
 [content-length] => 10
 [connection] => close
 [accept-ranges] => bytes
 [cache-control] => no-cache
 [content-disposition] => attachment;filename=oss_download.log
 [content-encoding] => utf-8
 [content-language] => zh-CN
 [etag] => "9BA9EF6DDFBE14916FA2D3337B427774"
 [expires] => Fri, 28 Feb 2012 05:38:42 GMT
 [last-modified] => Thu, 02 Jul 2015 08:38:10 GMT
 [server] => AliyunOSS
 [x-oss-object-type] => Normal
 [x-oss-request-id] => 5594FE6C031C87E5461618B6
 [x-oss-server-side-encryption] => AES256
)

 [body] =>
)

 $bucket_name = 'bucket name';
 $object_name = 'object name';
 $options = null;
 $response = $client->delete_object($bucket_name,$object_name,$options);

 $bucket_name: a required parameter. Must comply with the bucket naming rules
 $object_name: a required parameter. It must comply with the object naming rules
 $options: optional

 Get the result by converting the resulting response to array. The same below

 Array(
 [status] => 204
 [header] => Array(
 [content-length] => 0
 [connection] => close
 [date] => Thu, 02 Jul 2015 10:01:00 GMT
 [server] => AliyunOSS
 [x-oss-request-id] => 55950BDC58DB3AB75216239D
)

Object Storage Service SDK Reference

154

-

●

-

-

Deleting multiple objects
Sample Code

Parameter description

Response result

 [body] =>
)

 $bucket_name = 'bucket name';
 $objects = array(
 'delete object 1',
 'delete object 2',
 ...
);

 $options = array(
 'quiet' => false,
);

 $response = $client->delete_objects($bucket_name,$objects,$options);

 $bucket_name: a required parameter. Must comply with the bucket naming rules
 $objects: a required parameter. The object in this parameter must comply with the object naming rules
 $options: an optional parameter. You can select the delete mode based on the actual situation. The quite
parameter has two values, true|false.
 true: the body of the message returned by OSS only contains results for objects which encountered an error
in the delete process. If all objects are deleted successfully, there is no message body.
 false: the body of the message returned by OSS contains results for each object deleted

 Get the result by converting the resulting response to array. The same below

 Array(
 [status] => 200
 [header] => Array(
 [content-type] => application/xml
 [content-length] => 188
 [connection] => close
 [date] => Thu, 02 Jul 2015 10:06:00 GMT
 [server] => AliyunOSS
 [x-oss-request-id] => 55950D0858DB3AB752162459
)

 [body] => Array(
 [DeleteResult] => Array(
 [Deleted] => Array(
 [0] => Array(
 [Key] => delegate_execute.exe
)

Object Storage Service SDK Reference

155

-

●

-

-

-

●

Downloading objects
Sample Code

Parameter description

Response result

MultipartUpload-related Operations

Initializing multipartUpload
Sample Code

 [1] => Array(
 [Key] => metro_driver.dll
)
)
)
)

 $bucket_name = 'download bucket';
 $object_name = 'download object';

 $options = array(
 ALIOSS::OSS_FILE_DOWNLOAD => "download path",
 ALIOSS::OSS_RANGE => '0-1',
);

 $response = $client>get_object($bucket_name,$object_name,$options);

 $bucket_name: a required parameter. Must comply with the bucket naming rules
 $object_name: a required parameter. It must comply with the object naming rules
 $options: a required parameter. This parameter must provide the ALIOSS::OSS_FILE_DOWNLOAD and
ALIOSS::OSS_RANGE options based on the actual situation.
 Otherwise, all content is downloaded by default

 Get the result by converting the resulting response to array. The same below

 Array(
 [status] => 206
 [header] => Array(
)

 [body] =>
)

 $bucket_name = 'bucket name';
 $object_name = 'object name';

Object Storage Service SDK Reference

156

-

-

Parameter description

Response result

 $options = array(
 ALIOSS::OSS_HEADERS => array(
 'Expires' => 'Fri, 28 Feb 2012 05:38:42 GMT',
 'Cache-Control' => 'no-cache',
 'Content-Disposition' => 'attachment;filename=oss_download.log',
 'Content-Encoding' => 'utf-8',
 'Content-Type' => 'plain/text',
 'Content-Language' => 'zh-CN',
 'x-oss-server-side-encryption' => 'AES256',
),
);
 $response = $client->initiate_multipart_upload($bucket_name,$object_name,$options);

 $bucket_name: a required parameter. Must comply with the bucket naming rules
 $object_name: a required parameter. It must comply with the object naming rules
 $options: a required parameter. It specifies the various information required for the upload. A detailed
description is given below
 ALIOSS::OSS_HEADERS: optional parameter; if specified, it indicates meta information for this object and the
following header information can be configured:
 Expires is the expiration time (in milliseconds)
 Cache-Control specifies the cache action of the web page when the object is downloaded
 Content-Disposition specifies the name of the object when downloaded
 Content-Encoding specifies the content encoding format when the object is downloaded
 'Content-Type' => 'plain/text' specifies the MIME type during object response
 Content-Language specifies the object language when downloaded
 x-oss-server-side-encryption specifies the server-side encryption algorithm used when the OSS creates an
object

 Get the result by converting the resulting response to array. The same below

 Array(
 [status] => 200
 [header] => Array(
 [content-type] => application/xml
 [content-length] => 234
 [connection] => close
 [date] => Thu, 02 Jul 2015 11:35:36 GMT
 [server] => AliyunOSS
 [x-oss-request-id] => 5595220858DB3AB7521631B1
 [x-oss-server-side-encryption] => AES256
)

 [body] => Array(
 [InitiateMultipartUploadResult] => Array(
 [Bucket] => common-bucket
 [Key] => multipart-upload-1435836936
 [UploadId] => 154A34BD1FE24A90A025EB800AA392CC
)
)

Object Storage Service SDK Reference

157

-

●

-

-

-

●

Uploading parts
Sample Code

Parameter description

Response result

Copying upload parts
Sample Code

)

 $bucket_name = 'bucket name';
 $object_name = 'object name';
 $upload_id = 'upload id';
 $options = array(
 'fileUpload' => 'upload path',
 'partNumber' => 1,
 'seekTo' => 1,
 'length' => 5242880,
);

 $response = $client->upload_part($bucket_name,$object_name, $upload_id, $options);

 $bucket_name: a required parameter. Must comply with the bucket naming rules
 $object_name: a required parameter. It must comply with the object naming rules
 $upload_id: a required parameter. Upload parts correspond to multipart uploads IDs
 $options: a required parameter. It specifies the various information required for the upload. A detailed
description is given below
 fileUpload: the path of the file to upload
 partNumber: the serial number of the part to upload
 seekTo: The byte to start with when accessing the upload file
 length: the slice size

 Get the result by converting the resulting response to array. The same below

 Array(
 [status] => 200
 [header] => Array(
 [content-length] => 0
 [connection] => close
 [date] => Thu, 02 Jul 2015 11:35:36 GMT
 [etag] => "3AE3AD480200A26738F10CBF2FFBE8B6"
 [server] => AliyunOSS
 [x-oss-request-id] => 5595220858DB3AB7521631B3
 [x-oss-server-side-encryption] => AES256
)

 [body] =>
)

Object Storage Service SDK Reference

158

- Parameter description

Response result

 $from_bucket = 'copy from bucket';
 $from_object = 'copy from object';
 $to_bucket = 'copy to bucket';
 $to_object = 'copy to object';
 $part_number = 1;
 $upload_id = 'copy to upload id';
 $options = array(
 'start' => 0,
 'end' => 25000032,
);

 $response = $client-
>copy_upload_part($from_bucket,$from_object,$to_bucket,$to_object,$part_number,$upload_id,$options);

 $from_bucket: a required parameter. It indicates the source bucket and must comply with the bucket naming
rules
 $from_object: required parameter, the source object; must comply with the object naming rules
 $to_bucket: required parameter, the destination bucket; must comply with the bucket naming rules
 $to_object: required parameter, the destination object; must comply with the object naming rules
 $part_number: required parameter; range: 1-10,000
 $upload_id: required parameter; the uploadid returned by initializing multipartupload
 $options: an optional parameter. It provides isFullCopy, startRange, endRange,
 ALIOSS::OSS_HEADERS, and other parameters. In ALIOSS::OSS_HEADERS, the parameters that can be set are
as follows:
 x-oss-copy-source-if-match: If the source object's ETAG value is the same as the ETag provided by the
user, a copy operation will be executed.
 Otherwise, the system returns the 412 HTTP error code (preprocessing failed)
 x-oss-copy-source-if-none-match: If the source object has not been modified after the time specified by
the user, the system performs a copy operation.
 Otherwise, the system returns the 412 HTTP error code (preprocessing failed)
 x-oss-copy-source-if-unmodified-since: If the time in the parameter is the same as or later than the file's
actual modification time, the file is transmitted normally
 and the system returns 200 OK. Otherwise, the system throws the 412 precondition failed exception
 x-oss-copy-source-if-modified-since: If the source object has been modified after the time specified by
the user, the system performs a copy operation.
 Otherwise, the system returns the 412 HTTP error code (preprocessing failed)
 isFullCopy: Whether or not full copy is enabled. If the parameter is set to true, you do not need to set
startRange and endRange
 startRange: If isFullCopy is false, this parameter becomes valid and specifies the start location for copying
the source object
 endRange: If isFullCopy is false, this parameter becomes valid and specifies the end location for copying the
source object

 Get the result by converting the resulting response to array. The same below

 Array
 (

Object Storage Service SDK Reference

159

-

●

-

-

Getting part lists

Sample Code

Parameter description

Response result

 [success] => 1
 [status] => 200
 [header] => Array
 (
 [date] => Thu, 06 Aug 2015 18:13:59 GMT
 [content-type] => application/xml
 [content-length] => 180
 [connection] => keep-alive
 [content-range] => bytes 11304368-11534335/11534336
 [etag] => "E95C28888F15B92B9C49C9ECEC53C958"
 [server] => AliyunOSS
 [x-oss-bucket-version] => 1438864637
 [x-oss-request-id] => 55C3A3E79646C3C03F40EA5E
)

 [body] => Array
 (
 [CopyPartResult] => Array
 (
 [LastModified] => 2015-08-06T18:13:59.000Z
 [ETag] => "E95C28888F15B92B9C49C9ECEC53C958"
)

)

)

 $bucket_name = 'bucket name';
 $object_name = 'object name';
 $upload_id = 'upload id';
 $options = null;
 $response = $client->list_parts($bucket_name,$object_name, $upload_id,$options);

 $bucket_name: a required parameter. Must comply with the bucket naming rules
 $object_name: a required parameter. It must comply with the object naming rules
 $upload_id: a required parameter. Upload parts correspond to multipart uploads IDs
 $options: optional

 Get the result by converting the resulting response to array. The same below

 Array(
 [status] => 200
 [header] => Array(

Object Storage Service SDK Reference

160

-

●

-

Getting multipartUpload lists
Sample Code

Parameter description

 [content-type] => application/xml
 [content-length] => 584
 [connection] => close
 [date] => Thu, 02 Jul 2015 11:35:40 GMT
 [server] => AliyunOSS
 [x-oss-request-id] => 5595220C031C87E546162F44
)

 [body] => Array(
 [ListPartsResult] => Array(
 [Bucket] => common-bucket
 [Key] => multipart-upload-1435836813
 [UploadId] => B4D4B89F8B064A3D835D83D7805B49F3
 [StorageClass] => Standard
 [PartNumberMarker] => 0
 [NextPartNumberMarker] => 1
 [MaxParts] => 1000
 [IsTruncated] => false
 [Part] => Array(
 [PartNumber] => 1
 [LastModified] => 2015-07-02T11:35:40.000Z
 [ETag] => "3AE3AD480200A26738F10CBF2FFBE8B6"
 [Size] => 5242880
)
)
)
)

 $bucket_name = 'bucket name';
 $options = array(
 'delimiter' => '/',
 'max-uploads' => 2,
 'key-marker' => '',
 'prefix' => '',
 'upload-id-marker' => ''
);
 $response = $client->list_multipart_uploads($bucket_name,$options);

 $bucket_name: a required parameter. Must comply with the bucket naming rules
 $options: an optional parameter. It provides the following parameters
 Delimiter is a character used to group Object names. All objects whose names contain the specified prefix
and that appear between the Delimiter characters for the first time are used as a group of elements:
 CommonPrefixes. max-uploads specifies the maximum number of Multipart Upload events returned for one
request. If not specified, the default value is 1,000. The max-keys value cannot exceed 1,000.
 key-marker is used with the upload-id-marker parameter to specify the starting position of the returned
result. lIf the upload-id-marker parameter is not specified, the query result contains:
 Multipart events in which the lexicographic orders of all object names are greater than the value of the key-
marker parameter. l If the upload-id-marker parameter is specified, the query result contains:

Object Storage Service SDK Reference

161

- Response result

 Multipart events in which the lexicographic orders of all object names are greater than the value of the key-
marker parameter and Multipart Upload events in which the object name is the same as the value of the key-marker
parameter but the Upload ID is greater than the value of the upload-id-marker parameter
 Prefix requires the returned object key to be prefixed with prefix. Note that the keys returned from queries
using a prefix will still contain the prefix
 upload-id-marker is used with the key-marker parameter to specify the starting position of the returned
result. l If the key-marker parameter is not specified, the OSS ignores the upload-id-marker parameter.
 If the key-marker parameter is specified, the query result contains: Multipart events in which the
lexicographic orders of all object names are greater than the value of the key-marker parameter and Multipart
Upload events in which the object name is the same as the value of the key-marker parameter but the Upload ID is
greater than the value of the upload-id-marker parameter.

 Get the result by converting the resulting response to array. The same below

 Array(
 [status] => 200
 [header] => Array(
 [content-type] => application/xml
 [content-length] => 876
 [connection] => close
 [date] => Thu, 02 Jul 2015 12:01:50 GMT
 [server] => AliyunOSS
 [x-oss-request-id] => 5595282E031C87E546163301
)

 [body] => Array(
 [ListMultipartUploadsResult] => Array(
 [Bucket] => common-bucket
 [KeyMarker] =>
 [UploadIdMarker] =>
 [NextKeyMarker] => multipart-upload-1435835648
 [NextUploadIdMarker] => 5C79DDEC71DE478AA4AD9E9AA8BFE6DE
 [Delimiter] => /
 [Prefix] =>
 [MaxUploads] => 2
 [IsTruncated] => true
 [Upload] => Array(
 [0] => Array(
 [Key] => multipart-upload-1435835395
 [UploadId] => 799C914C0EC3448BAC126849A1B1D6D0
 [StorageClass] => Standard
 [Initiated] => 2015-07-02T11:09:55.000Z
)

 [1] => Array(
 [Key] => multipart-upload-1435835648
 [UploadId] => 5C79DDEC71DE478AA4AD9E9AA8BFE6DE
 [StorageClass] => Standard
 [Initiated] => 2015-07-02T11:14:08.000Z
)
)
)
)

Object Storage Service SDK Reference

162

-

●

-

-

-

●

Terminating multipartUpload
Sample Code

Parameter description

Response result

Completing multipartUpload
Sample Code

)

 $bucket_name = 'bucket name';
 $object_name = 'object name';
 $upload_id = 'upload id';
 $options = null;
 $response = $client->abort_multipart_upload($bucket_name,$object_name,$upload_id,$options);

 $bucket_name: a required parameter. Must comply with the bucket naming rules
 $object_name: a required parameter. It must comply with the object naming rules
 $upload_id: a required parameter. Upload parts correspond to multipart uploads IDs
 $options: optional

 Get the result by converting the resulting response to array. The same below

 Array(
 [status] => 204
 [header] => Array(
 [content-length] => 0
 [connection] => close
 [date] => Thu, 02 Jul 2015 11:53:52 GMT
 [server] => AliyunOSS
 [x-oss-request-id] => 55952650031C87E5461631E7
)

 [body] =>
)

 $bucket_name = 'bucket name';
 $object_name = 'object name';
 $upload_id = 'upload id';

 $upload_parts = array();
 $upload_parts[] = array(
 'PartNumber' => 1,
 'ETag' => '3AE3AD480200A26738F10CBF2FFBE8B6'
);
 $options = null;
 $response = $client-

Object Storage Service SDK Reference

163

-

-

-

●

Parameter description

Response result

Lifecycle Management

Creating lifecycle rules
Sample Code

>complete_multipart_upload($bucket_name,$object_name,$upload_id,$upload_parts,$options);

 $bucket_name: a required parameter. Must comply with the bucket naming rules
 $object_name: a required parameter. It must comply with the object naming rules
 $upload_id: a required parameter. Upload parts correspond to multipart uploads IDs
 $upload_parts: an array that contains the parts. It must contain the PartNumber and Etag
 $options: optional

 Get the result by converting the resulting response to array. The same below

 Array(
 [status] => 200
 [header] => Array(
 [content-type] => application/xml
 [content-length] => 331
 [connection] => close
 [date] => Thu, 02 Jul 2015 11:35:40 GMT
 [etag] => "003B6AEB546001A97D838E411025239A-1"
 [server] => AliyunOSS
 [x-oss-request-id] => 5595220C031C87E546162F45
 [x-oss-server-side-encryption] => AES256
)

 [body] => Array(
 [CompleteMultipartUploadResult] => Array(
 [Location] => http://common-bucket.oss-cn-shanghai.aliyuncs.com/multipart-upload-1435836813
 [Bucket] => common-bucket
 [Key] => multipart-upload-1435836813
 [ETag] => "003B6AEB546001A97D838E411025239A-1"
)
)
)

 $bucket_name = 'bucket name';
 $lifecycle = "
 <LifecycleConfiguration>
 <Rule>
 <ID>DaysRule</ID>
 <Prefix>days/</Prefix>
 <Status>Enabled</Status>

Object Storage Service SDK Reference

164

-

-

-

●

-

-

Parameter description

Response result

Getting lifecycle rules
Sample Code

Parameter description

Response result

 <Expiration>
 <Days>1</Days>
 </Expiration>
 </Rule>
 </LifecycleConfiguration>" ;
 $options = null;
 $response = $client->set_bucket_lifecycle($bucket_name,$lifecycle,$options);

 $bucket_name: a required parameter. Must comply with the bucket naming rules
 $lifecycle: a required parameter that defines the lifecycle rule. For details about the xml elements, please refer
to the OSS API documentation:
 http://docs.aliyun.com/?spm=5176.383663.9.2.1hkILe#/pub/oss/api-reference/bucket&PutBucketLifecycle
 $options: optional

 Get the result by converting the resulting response to array. The same below

 Array(
 [status] => 200
 [header] => Array(
 [date] => Thu, 02 Jul 2015 06:32:57 GMT
 [content-length] => 0
 [connection] => close
 [server] => AliyunOSS
 [x-oss-request-id] => 5594DB19031C87E5461601D1
)

 [body] =>
)

 $bucket_name = "bucket name";
 $options = null;
 $response = $client->get_bucket_lifecycle($bucket_name,$options);

 $bucket_name: a required parameter. Must comply with the bucket naming rules
 $options: optional

Object Storage Service SDK Reference

165

-

●

-

-

Deleting lifecycle rules
Sample Code

Parameter description

Response result

 Get the result by converting the resulting response to array. The same below

 Array(
 [status] => 200
 [header] => Array(
 [date] => Thu, 02 Jul 2015 06:32:57 GMT
 [content-type] => application/xml
 [content-length] => 243
 [connection] => close
 [server] => AliyunOSS
 [x-oss-request-id] => 5594DB1958DB3AB75216045C
)

 [body] => Array(
 [LifecycleConfiguration] => Array(
 [Rule] => Array(
 [ID] => DaysRule
 [Prefix] => days/
 [Status] => Enabled
 [Expiration] => Array(
 [Days] => 1
)
)
)
)
)

 $bucket_name = "bucket name";
 $options = null;
 $response = $client->delete_bucket_lifecycle($bucket_name,$options);

 $bucket_name: a required parameter. Must comply with the bucket naming rules
 $options: optional

 Get the result by converting the resulting response to array. The same below

 Array(
 [status] => 204
 [header] => Array(
 [date] => Thu, 02 Jul 2015 06:32:58 GMT
 [content-length] => 0
 [connection] => close
 [server] => AliyunOSS
 [x-oss-request-id] => 5594DB1A58DB3AB75216045D

Object Storage Service SDK Reference

166

-

●

-

-

Cross-origin Resource Sharing (CORS)

Creating CORS rules
Sample Code

Parameter description

Response result

)

 [body] =>
)

 $bucket_name = 'bucket name';

 $cors_rule = array();

 $cors_rule[ALIOSS::OSS_CORS_ALLOWED_HEADER]=array("x-oss-test");
 $cors_rule[ALIOSS::OSS_CORS_ALLOWED_METHOD]=array("GET");
 $cors_rule[ALIOSS::OSS_CORS_ALLOWED_ORIGIN]=array("http://www.b.com");
 $cors_rule[ALIOSS::OSS_CORS_EXPOSE_HEADER]=array("x-oss-test1");
 $cors_rule[ALIOSS::OSS_CORS_MAX_AGE_SECONDS] = 10;

 $cors_rules=array($cors_rule);

 $options = null;
 $response = $obj->set_bucket_cors($bucket_name, $cors_rules,$options);

 $bucket_name: a required parameter. Must comply with the bucket naming rules
 $cors_rules: Defines an array of CORS rules. Each rule must contain the following elements:
 ALIOSS::OSS_CORS_ALLOWED_ORIGIN: a required parameter, which specifies the allowed origins of cross-
origin requests. Each rule may contain no more than one "*" symbol
 ALIOSS::OSS_CORS_ALLOWED_METHOD: a required parameter, which specifies the allowed cross-origin
request methods. Select one or more from GET, PUT, POST, DELETE, and HEAD
 ALIOSS::OSS_CORS_ALLOWED_HEADER: optional. The parameter determines whether the headers specified
by Access-Control-Request-Headers in the OPTIONS' prefetch command are allowed.
 Each header specified by Access-Control-Request-Headers must match a value in AllowedHeader. Each rule
supports no more than one wildcard "*"
 ALIOSS::OSS_CORS_EXPOSE_HEADER: optional. The parameter indicates the response headers users are
allowed to access from an application (e.g.: one Javascript XMLHttpRequest object)）
 The wildcard "*" is not allowed.
 ALIOSS::OSS_CORS_MAX_AGE_SECONDS: optional. The parameter specifies the cache time (in seconds) for
the return results of browser prefetch (OPTIONS) requests to a specific resource.
 One CORSRule allows no more than one such parameter.

 $options: optional

 Get the result by converting the resulting response to array. The same below

Object Storage Service SDK Reference

167

-

●

-

-

Getting CORS rules
Sample Code

Parameter description

Response result

 Array(
 [status] => 200
 [header] => Array(
 [date] => Thu, 02 Jul 2015 07:03:29 GMT
 [content-length] => 0
 [connection] => close
 [server] => AliyunOSS
 [x-oss-request-id] => 5594E241031C87E546160697
)

 [body] =>
)

 $bucket = 'bucket name';
 $options = null;
 $response = $client->get_bucket_cors($bucket_name,$options);

 $bucket_name: a required parameter. It must comply with the bucket naming rules
 $options: optional

 Get the result by converting the resulting response to array. The same below

 Array(
 [status] => 200
 [header] => Array(
 [date] => Thu, 02 Jul 2015 07:03:39 GMT
 [content-type] => application/xml
 [content-length] => 327
 [connection] => close
 [server] => AliyunOSS
 [x-oss-request-id] => 5594E24B58DB3AB752160920
)

 [body] => Array(
 [CORSConfiguration] => Array(
 [CORSRule] => Array(
 [AllowedOrigin] => http://www.b.com
 [AllowedMethod] => GET
 [AllowedHeader] => x-oss-test
 [ExposeHeader] => x-oss-test1
 [MaxAgeSeconds] => 10
)
)
)

Object Storage Service SDK Reference

168

-

●

-

-

-

●

Determining whether or not the cross-origin request is allowed
Sample Code

Parameter description

Response result

Deleting CORS rules
Sample Code

)

 $bucket_name = 'bucket name';
 $object_name ='object name';
 $origin = 'http://www.b.com';
 $request_method = ALIOSS::OSS_HTTP_GET;
 $request_headers = 'x-oss-test';
 $options = null;

 $response = $obj->options_object($bucket_name, $object_name, $origin, $request_method,
$request_headers,$options);

 $bucket_name: a required parameter. It must comply with the bucket naming rules
 $object_name: a required parameter. It must comply with the object naming rules
 $origin: a required parameter. It indicates the origin of a request, used to identify the cross-origin request
 $request_method: a required parameter. It indicates the methods to be used in the actual request
 $request_headers: a required parameter. It indicates the headers, except simple headers, for use in actual
requests
 $options: optional

 Get the result by converting the resulting response to array. The same below

 Array(
 [status] => 200
 [header] => Array(
 [date] => Thu, 02 Jul 2015 07:03:39 GMT
 [content-length] => 0
 [connection] => close
 [server] => AliyunOSS
 [x-oss-request-id] => 5594E24B031C87E5461606A1
)

 [body] =>
)

 $bucket_name = "bucket name";
 $options = null;
 $response = $client->delete_bucket_cors($bucket_name,$options);

Object Storage Service SDK Reference

169

-

-

-

●

-

-

Parameter description

Response result

Static Website Hosting

Setting websites
Sample Code

Parameter description

Response result

 $bucket_name: a required parameter. It must comply with the bucket naming rules
 $options: optional

 Get the result by converting the resulting response to array. The same below

 Array
 (
 [status] => 204
 [header] => Array(
 [date] => Thu, 02 Jul 2015 07:03:39 GMT
 [content-length] => 0
 [connection] => close
 [server] => AliyunOSS
 [x-oss-request-id] => 5594E24B031C87E5461606A2
)

 [body] =>
)

 $bucket_name = 'bucket name';
 $index_document = 'index.html';
 $error_document = 'error.html';
 $options = null;
 $response = $client->set_bucket_website($bucket_name,$index_document,$error_document,$options);

 $bucket_name: a required parameter. It must comply with the bucket naming rules
 $index_document: a required parameter. When the website function is enabled, the index_document
parameter must be set
 $error_document: an optional parameter. When the website function is enabled, you can choose whether to
set the error_document
 $options: optional

 Get the result by converting the resulting response to array. The same below

Object Storage Service SDK Reference

170

-

●

-

-

Getting website settings
Sample Code

Parameter description

Response result

 Array(
 [status] => 200
 [header] => Array(
 [date] => Thu, 02 Jul 2015 02:39:23 GMT
 [content-length] => 0
 [connection] => close
 [server] => AliyunOSS
 [x-oss-request-id] => 5594A45B58DB3AB75215E239
)

 [body] =>
)

 $bucket_name = "bucket name";
 $options = null;
 $response = $client->get_bucket_website($bucket_name,$options);

 $bucket_name: a required parameter. It must comply with the bucket naming rules
 $options: optional

 Get the result by converting the resulting response to array. The same below

 Array(
 [status] => 200
 [header] => Array(
 [date] => Thu, 02 Jul 2015 02:39:24 GMT
 [content-type] => application/xml
 [content-length] => 218
 [connection] => close
 [server] => AliyunOSS
 [x-oss-request-id] => 5594A45C031C87E54615DF98
)

 [body] => Array(
 [WebsiteConfiguration] => Array(
 [IndexDocument] => Array(
 [Suffix] => index.html
)

 [ErrorDocument] => Array(
 [Key] => error.html
)
)
)

Object Storage Service SDK Reference

171

-

●

-

-

-

●

-

Deleting websites
Sample Code

Parameter description

Response result

Logging

Setting logging
Sample Code

Parameter description

)

 $bucket_name = "bucket name";
 $options = null;
 $response = $client->delete_bucket_website($bucket_name,$options);

 $bucket_name: a required parameter. It must comply with the bucket naming rules
 $options: optional

 Get the result by converting the resulting response to array. The same below

 Array(
 [status] => 204
 [header] => Array(
 [date] => Thu, 02 Jul 2015 02:39:24 GMT
 [content-length] => 0
 [connection] => close
 [server] => AliyunOSS
 [x-oss-request-id] => 5594A45C031C87E54615DF99
)
 [body] =>
)

 $bucket_name = "bucket name";
 $target_bucket_name = "logging target bucket";
 $target_prefix = "logging file prefix";
 $options = null;
 $response = $client->set_bucket_logging($bucket_name,$target_bucket_name,$target_prefix,$options);

 $bucket_name: a required parameter. It must comply with the bucket naming rules and must be an existing
bucket of the owner

Object Storage Service SDK Reference

172

-

-

●

-

-

Response result

Getting logging settings
Sample Code

Parameter description

Response result

 $target_bucket_name: a required parameter. It indicates the bucket in which to save the logs and must be in
the same cluster as the bucket to be logged
 $target_prefix: an optional parameter. If this parameter is specified, the log file name will be $target_prefix +
OSS log naming rules
 $options: optional

 Get the result by converting the resulting response to array. The same below

 Array(
 [status] => 200
 [header] => Array(
 [date] => Thu, 02 Jul 2015 01:59:06 GMT
 [content-length] => 0
 [connection] => close
 [server] => AliyunOSS
 [x-oss-request-id] => 55949AEA031C87E54615D996
)

 [body] =>
)

 $bucket_name = "bucket name";
 $options = null;
 $response = $client->get_bucket_logging($bucket_name,$options);

 $bucket_name: a required parameter. Must comply with the bucket naming rules
 $options: optional

 Get the result by converting the resulting response to array. The same below

 Array(
 [status] => 200
 [header] => Array(
 [date] => Thu, 02 Jul 2015 02:14:09 GMT
 [content-length] => 235
 [connection] => close
 [server] => AliyunOSS
 [x-oss-request-id] => 55949E7158DB3AB75215DE78
)

Object Storage Service SDK Reference

173

-

●

-

-

-

●

Deleting logging
Sample Code

Parameter description

Response result

Anti-leech Protection (Referer)

Setting Referer anti-leech protection
Sample Code

 [body] => Array(
 [BucketLoggingStatus] => Array(
 [LoggingEnabled] => Array(
 [TargetBucket] => a-00000000000000000003
 [TargetPrefix] => common-bucket-logging-
)
)
)
)

 $bucket_name = "bucket name";
 $options = null;
 $response = $client->get_bucket_logging($bucket_name,$options);

 $bucket_name: a required parameter. Must comply with the bucket naming rules
 $options: optional

 Get the result by converting the resulting response to array. The same below

 Array(
 [status] => 204
 [header] => Array(
 [date] => Thu, 02 Jul 2015 02:29:12 GMT
 [content-length] => 0
 [connection] => close
 [server] => AliyunOSS
 [x-oss-request-id] => 5594A1F858DB3AB75215E0C4
)

 [body] =>
)

 $bucket_name = 'bucket name';
 $is_allow_empty_referer = true;
 $referer_list = array(

Object Storage Service SDK Reference

174

-

-

-

●

-

-

Parameter description

Response result

Getting referer settings
Sample Code

Parameter description

Response result

 'http://aliyun.com',
 'http://sina.com.cn'
);
 $options = null;
 $response = $client->set_bucket_referer($bucket_name,$is_allow_empty_referer,$referer_list,$options);

 $bucket_name: a required parameter. Must comply with the bucket naming rules
 $is_allow_empty_referer: a required parameter. It determines whether the referer can be blank, true by default
 $referer_list: a required parameter. It indicates the white list of allowed referers. Note that each record must
begin with http://
 $options: optional

 Get the result by converting the resulting response to array. The same below

 Array(
 [status] => 200
 [header] => Array(
 [date] => Thu, 02 Jul 2015 03:30:46 GMT
 [content-length] => 0
 [connection] => close
 [server] => AliyunOSS
 [x-oss-request-id] => 5594B06658DB3AB75215E9EC
)

 [body] =>
)

 $bucket_name = 'bucket name';
 $options = null;
 $response = $client->get_bucket_referer($bucket_name,$options);

 $bucket_name: a required parameter. Must comply with the bucket naming rules
 $options: optional

 Get the result by converting the resulting response to array. The same below

Object Storage Service SDK Reference

175

-

●

-

-

-

URL Signature Operations

Getting Get signed URLs
Sample Code

Parameter description

Response result

Getting Get or Put signed URLs

 Array(
 [status] => 200
 [header] => Array(
 [date] => Thu, 02 Jul 2015 03:30:46 GMT
 [content-type] => application/xml
 [content-length] => 248
 [connection] => close
 [server] => AliyunOSS
 [x-oss-request-id] => 5594B06658DB3AB75215E9F2
)

 [body] => Array(
 [RefererConfiguration] => Array(
 [AllowEmptyReferer] => true
 [RefererList] => Array(
 [Referer] => Array(
 [0] => http://aliyun.com
 [1] => http://sina.com.cn
)
)
)
)
)

 $bucket_name = 'bucket name';
 $object_name = 'object name';
 $timeout = 3600;
 $options = null;
 $signed_url = $client->get_sign_url($bucket_name,$object_name,$timeout,$options);

 $bucket_name: a required parameter. Must comply with the bucket naming rules
 $object_name: a required parameter. Must comply with the object naming rules
 $timeout: required parameter; the expiration time
 $options: optional

 http://common-bucket.oss-cn-
shanghai.aliyuncs.com/my_get_file.log?OSSAccessKeyId=ACSb***&Expires=1435820652&
 Signature=AW5z87zmaLulEmvMzf6ZOUrVboE%3D

Object Storage Service SDK Reference

176

●

-

-

Sample Code

Parameter description

Response result

C-SDK

Preface

Introduction

This document introduces the installation and use of the OSS C SDK (for version 0.0.2 in
particular).This document assumes that you have already subscribed to the AliCloud OSS service and
created an Access Key ID and Access Key Secret.In the document, ID represents the Access Key ID and
KEY indicates the Access Key Secret. If you have not yet subscribed to or do not know about the OSS
service, please log into the OSS Product Homepage for more help.

Version Revisions

 $bucket_name = 'bucket name';
 $object_name = 'object name';
 $timeout = 3600;
 $method = ALIOSS::OSS_HTTP_GET;
 $options = null;
 $signed_url = $client->get_sign_url($bucket_name,$object_name,$timeout,$method,$options);

 $bucket_name: a required parameter. Must comply with the bucket naming rules
 $object_name: a required parameter. Must comply with the object naming rules
 $timeout: required parameter; the expiration time
 $method: a required parameter. It specifies the method type, currently GET or PUT
 $options: optional

 http://common-bucket.oss-cn-
shanghai.aliyuncs.com/my_get_file.log?OSSAccessKeyId=ACSb***&Expires=1435820652&
 Signature=AW5z87zmaLulEmvMzf6ZOUrVboE%3D

Object Storage Service SDK Reference

177

1.

2.

1.

2.

1.

2.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

OSS C SDK (2015-08-17) Version 0.04

Updates:

Added support for keeplive persistent connections
Added support for lifecycle settings

OSS C SDK (2015-07-08) Version 0.03

Updates:

Added oss_append_object_from_buffer interface to append buffer content to the object
Added oss_append_object_from_file interface to append file content to the object

OSS C SDK (2015-06-10) Version 0.0.2

Updates:

Added the oss_upload_part_copy interface to support the Upload Part Copy method
Enabled access to OSS through temporary authorization in STS service

OSS C SDK (2015-05-28) Version 0.0.1

Updates:

Added the oss_create_bucket interface to create OSS buckets
Added the oss_delete_bucket interface to delete OSS buckets
Added the oss_get_bucket interface to get OSS buckets' ACLs
Added the oss_list_object interface to list objects in OSS buckets
Added oss_put_object_from_buffer interface to upload buffer content to the object
Added oss_put_object_from_file interface to upload file content to the object
Added oss_get_object_to_buffer interface to download object content to the buffer
Added oss_get_object_to_file interface to download object content to the file
Added the oss_head_object interface, to get objects' user meta information
Added the oss_delete_object interface to delete objects
Added the oss_copy_object interface to copy objects
Added the oss_init_multipart_upload interface to initialize multipart uploads
Added oss_upload_part_from_buffer interface to upload buffer content to the part
Added oss_upload_part_from_file interface to upload file content to the part
Added the oss_list_upload_part interface to retrieve information for all uploaded parts
Added the oss_complete_multipart_upload interface for multipart uploading
Added the oss_abort_multipart_upload interface to cancel multipart upload tasks
Added the oss_list_multipart_upload interface to get all multipart upload tasks in the
bucket
Added the oss_gen_signed_url interface to generate a signed URL

Object Storage Service SDK Reference

178

20.

21.

22.

23.

24.

1.

2.

3.

4.

5.

Added the oss_put_object_from_buffer_by_url interface to upload the buffer content to the
object using the URL signature method
Added the oss_put_object_from_file_by_url interface to upload the file content to the
object using the URL signature method
Added the oss_get_object_to_buffer_by_ur interface download the object content to the
buffer using the URL signature method
Added the oss_get_object_to_file_by_ur interface to download the object content to the
file using the URL signature method
Added the oss_head_object_by_url interface to get objects' user meta information using
the URL signature method

Installation

Steps:

Download the Object Storage Service C SDK from the official website
Decompress the file
After decompression, use the make command to generate the liboss_c_sdk.a static library
from the files in the folder
Copy the liboss_c_sdk.a static library to the third-party library of your project
After completing the steps above, you can use the OSS C SDK in the project

The OSS C SDK uses the autoconf and automake compiling methods and cURL for network
operations. Because you need to use HMAC to make digital signatures for authorization, this is
dependent on the OpenSSL library. In addition, the OSS C SDK uses the apr library as its underlying
data structure and uses libxml2 to parse xml format request responses. The OSS C SDK does not
come with these external libraries. Therefore, prior to using the OSS C SDK, you must make sure the
required external libraries are already installed in your development environment and that their
header file and library file directories have been added in the project settings. This document does
not discuss the installation of these third-party libraries, so please find the relevant materials on your
own.

In an embedded environment, we suggest using -Os optimization options when installing third-party
libraries. In addition, please refer to the following links to reduce the space occupied by third-party
libraries. For optimization options during Curl installation, refer to http://www.cokco.cn/thread-
11777-1-1.html; for optimization options during libxml2 installation, refer to
http://curl.haxx.se/docs/install.html.

During project construction, if an environment-related compilation or link error occurs, please make
sure these options are configured correctly and that the libraries they depend on are correctly
installed.

Object Storage Service SDK Reference

179

Quick Start

In this chapter, you will learn how to use the basic functions of the OSS C SDK.

Step-1. Initializing the OSS C SDK Runtime Environment

When using the OSS C SDK, you must first initialize the runtime environment. When you wish to stop
using it, you must clear the runtime environment. The following code demonstrates the initialization
of the OSS C SDK runtime environment:

aos_http_io_initialize initializes the OSS C SDK runtime environment. The first parameter can be used
to customize the user agent content. aos_http_io_deinitialize clears the OSS C SDK runtime
environment.

Step-2. Initializing an oss_request_options

The OSS operations of the OSS C SDK are completed using the oss_request_options_t structure. The
following code creates an oss_request_options object:

int main(int argc, char *argv[])
{
 //aos_http_io_initialize first
 if (aos_http_io_initialize("oss_test", 0) != AOSE_OK) {
 exit(1);
 }

 //use OSS C SDK api to access OSS
 …

 aos_http_io_deinitialize();
 return 0;
}

aos_pool_t *p;
int is_oss_domain = 1;//Whether or not it uses a third-level domain name; can be initialized through the
is_oss_domain function
oss_request_options_t * oss_request_options;

aos_pool_create(&p, NULL);
//init_ oss_request_options
oss_request_options = oss_request_options_create(p);
oss_request_options->config = oss_config_create(oss_request_options ->pool);
aos_str_set(&oss_request_options ->config->host, oss_endpoint);
oss_request_options->config->port=oss_port;
aos_str_set(&oss_request_options ->config->id, access_key_id);
aos_str_set(&oss_request_options ->config->key, access_key_secret);
oss_request_options ->config->is_oss_domain = is_oss_domain;

Object Storage Service SDK Reference

180

In the above code, the variables access_key_id and access_key_secret are allocated to the user by the
system. They are called the ID pair and used to identify the user. They are used to perform signature
verification when accessing OSS. For more information on oss_request_options, refer to
oss_request_options.

Step-3. Creating Buckets

Buckets are the OSS global namespace. They are equivalent to a data container and can store
numerous objects. You can create a bucket with the following code:

For the Bucket naming rules, refer to the naming rules in Bucket.

Step-4. Uploading Objects

Objects are the basic data elements in OSS. You can simply think of them as files. The code below will
upload an object:

oss_request_options ->ctl = aos_http_controller_create(oss_request_options ->pool, 0);

aos_pool_t *p;
int is_oss_domain = 1;//Whether or not it uses a third-level domain name; can be initialized through the
is_oss_domain function
oss_request_options_t * oss_request_options;
aos_status_t *s;
aos_table_t *resp_headers;
oss_acl_e oss_acl = OSS_ACL_PRIVATE;
aos_string_t bucket;
char *bucket_name = "<your bucket name>";

aos_pool_create(&p, NULL);
// init_ oss_request_options
…
aos_str_set(&bucket, bucket_name);
resp_headers = aos_table_make(p, 0);
s = aos_status_create(p);
s = oss_create_bucket(oss_request_options, &bucket, oss_acl, &resp_headers);
aos_pool_destroy(p);

aos_pool_t *p;
int is_oss_domain = 1;//Whether or not it uses a third-level domain name; can be initialized through the
is_oss_domain function
oss_request_options_t * oss_request_options;
aos_status_t *s;
aos_table_t *headers;
aos_table_t *resp_headers;
aos_string_t bucket;
aos_string_t object;
char *bucket_name = "<your bucket name>";

Object Storage Service SDK Reference

181

For object naming rules, refer to the naming rules in Object. For more information on uploading
objects, refer to uploading objects in Object.

Step-5. Listing All Objects

When you complete a series of uploads, you may need to view which objects are in a bucket. This can
be done with the following program:

char *object_name = "<your object name>";
char *data = "<your object content>";
aos_list_t buffer;
aos_buf_t *content;

aos_pool_create(&p, NULL);
// init_ oss_request_options
…
aos_str_set(&object, object_name);
aos_str_set(&bucket, bucket_name);
headers = aos_table_make(p, 1);
apr_table_set(headers, "x-oss-meta-author", "oss"); //object user meta
resp_headers = aos_table_make(p, 0);
s = aos_status_create(p);

//read object content into buffer
aos_list_init(&buffer);
content = aos_buf_pack(oss_request_options->pool, data, strlen(data));
aos_list_add_tail(&content->node, &buffer);
s = oss_put_object_from_buffer (oss_request_options, &bucket, &object, &buffer, headers, &resp_headers);

aos_pool_destroy(p);

aos_pool_t *p;
int is_oss_domain = 1;//Whether or not it uses a third-level domain name; can be initialized through the
is_oss_domain function
oss_request_options_t * oss_request_options;
aos_status_t *s;
aos_table_t *resp_headers;
aos_string_t bucket;
char *bucket_name = "<your bucket name>";
oss_list_object_params_t *params;

aos_pool_create(&p, NULL);
// init_ oss_request_options
…
aos_str_set(&bucket, bucket_name);
resp_headers = aos_table_make(p, 0);
s = aos_status_create(p);

params = oss_create_list_object_params(p);
params->max_ret = 10;
aos_str_set(¶ms->prefix, "object_prefix");
aos_str_set(¶ms-> delimiter, "object_ delimiter");

Object Storage Service SDK Reference

182

For more flexible parameter configurations, refer to [List Bucket Objects] in Object.

Step-6. Retrieving a specified object

You can refer to the code below to easily retrieve an object:

You can read the user meta information of the object from the response header.

oss_request_options

When using the OSS C SDK to perform OSS operations, you must initialize oss_request_options. Here,
the config variable is used to store basic OSS access information, e.g., the OSS domain name, OSS

aos_str_set(¶ms-> marker, "object_marker");

s = oss_list_object(oss_request_options, &bucket, params, &resp_headers);;

aos_pool_destroy(p);

aos_pool_t *p;
int is_oss_domain = 1;//Whether or not it uses a third-level domain name; can be initialized through the
is_oss_domain function
oss_request_options_t * oss_request_options;
aos_status_t *s;
aos_table_t *headers;
aos_table_t *resp_headers;
aos_string_t bucket;
aos_string_t object;
char *bucket_name = "<your bucket name>";
char *object_name = "<your object name>";
aos_list_t buffer;

aos_pool_create(&p, NULL);
// init_ oss_request_options
…
aos_str_set(&object, object_name);

aos_str_set(&bucket, bucket_name);
headers = aos_table_make(p, 0);
resp_headers = aos_table_make(p, 0);
s = aos_status_create(p);

//get object content into buffer
aos_list_init(&buffer);
s = oss_get_object_to_buffer(oss_request_options, &bucket, &object, headers, &buffer, &resp_headers);

aos_pool_destroy(p);

Object Storage Service SDK Reference

183

port No., and the user’s accessKeyId/accessKeySecret. The is_oss_domain variable specifies whether
OSS access uses a third-level domain name (for CNAME, OSS access uses a second-level domain
name). The ctl variable initializes the OSS C SDK’s OSS access control information. By setting this
variable, you can perform flow control on OSS access.

Initializing oss_request_options

Here, the value corresponding to the region of the bucket to be accessed must be entered for
oss_endpoint.

Configuring oss_request_options

If you wish to set the OSS C SDK’s underlying libcurl communication parameters, you can set the ctl
member variable in oss_request_options.

Bucket

OSS uses buckets as the namespaces of user files and also as the management objects for advanced
functions such as charging, permission control, and log recording. The bucket name must be globally
unique in the entire OSS and cannot be changed. Every object stored on the OSS must be included in
a bucket. One application, such as an image sharing website, can correspond to one or more buckets.
A user can create a maximum of 10 buckets, but there is no limit on the number and total size of
objects in each bucket, so the user does not have to consider data scalability.

Naming Rules
The bucket naming rules are as follows:

aos_pool_t *p;
int is_oss_domain = 1;//Whether or not it uses a third-level domain name; can be initialized through the
is_oss_domain function
oss_request_options_t * oss_request_options;

aos_pool_create(&p, NULL);
//init_ oss_request_options
oss_request_options = oss_request_options_create(p);
oss_request_options ->config = oss_config_create(oss_request_options ->pool);
aos_str_set(&oss_request_options ->config->host, oss_endpoint);
oss_request_options ->config->port=oss_port;
aos_str_set(&oss_request_options ->config->id, access_key_id);
aos_str_set(&oss_request_options ->config->key, access_key_secret);
oss_request_options ->config->is_oss_domain = is_oss_domain;
oss_request_options ->ctl = aos_http_controller_create(oss_request_options ->pool, 0);

Object Storage Service SDK Reference

184

-

-

-

It can only contain lower-case letters, numbers, and dashes (-).
It must start with a lower-case letter or number.
The length must be 3-63 bytes

Creating Buckets

To create a bucket, you must enter the bucket name and ACL. Because bucket names are globally
unique, do your best to ensure your bucket names are not the same as other people's. ACL currently
supports the values private, public-read, and public-read-write. For information on permissions,
please refer to OSS Access Control. If a bucket of the same name already exists and belongs to the
owner, this operation can overwrite the bucket's ACL settings.

Retrieving Bucket ACL

aos_pool_t *p;
int is_oss_domain = 1;//Whether or not it uses a third-level domain name; can be initialized through the
is_oss_domain function
oss_request_options_t * oss_request_options;
aos_status_t *s;
aos_table_t *resp_headers;
oss_acl_e oss_acl = OSS_ACL_PRIVATE;
aos_string_t bucket;
char *bucket_name = "<your bucket name>";

aos_pool_create(&p, NULL);
// init_ oss_request_options
…
aos_str_set(&bucket, bucket_name);
resp_headers = aos_table_make(p, 0);
s = aos_status_create(p);
s = oss_create_bucket(oss_request_options, &bucket, oss_acl, &resp_headers);

aos_pool_destroy(p);

aos_pool_t *p;
int is_oss_domain = 1;//Whether or not it uses a third-level domain name; can be initialized through the
is_oss_domain function
oss_request_options_t * oss_request_options;
aos_status_t *s;
aos_table_t *resp_headers;
aos_string_t bucket;
char *bucket_name = "<your bucket name>";
aos_string_t oss_acl;

aos_pool_create(&p, NULL);
// init_ oss_request_options
…
aos_str_set(&bucket, bucket_name);

Object Storage Service SDK Reference

185

-

-

Deleting Buckets

Please note that if the bucket is not empty (i.e., bucket contains objects or multipart upload
fragments), it cannot be deleted. You must delete all objects and fragments in a bucket before
deleting the bucket.

Object

In OSS, objects are the basic data units for user operation.The maximum size of a single object may
vary depending on the data uploading mode. The size of an object cannot exceed 5 GB in the Put
Object mode or 48.8 TB in the multipart upload mode. An object includes the key, meta, and data.
The key is the object name; meta is the user's description of the object, composed of a series of
name-value pairs; and data is the object data.

Naming Rules

Object naming rules:

It uses UTF-8 encoding
The length must be 1-1023 bytes

resp_headers = aos_table_make(p, 0);
s = aos_status_create(p);
s = oss_get_bucket_acl(oss_request_options, &bucket,& oss_acl, &resp_headers);

aos_pool_destroy(p);

aos_pool_t *p;
int is_oss_domain = 1;//Whether or not it uses a third-level domain name; can be initialized through the
is_oss_domain function
oss_request_options_t * oss_request_options;
aos_status_t *s;
aos_table_t *resp_headers;
aos_string_t bucket;
char *bucket_name = "<your bucket name>";

aos_pool_create(&p, NULL);
// init_ oss_request_options
…
aos_str_set(&bucket, bucket_name);
resp_headers = aos_table_make(p, 0);
s = aos_status_create(p);
s = oss_delete_bucket (oss_request_options, &bucket, &resp_headers);

aos_pool_destroy(p);

Object Storage Service SDK Reference

186

-

-

It cannot start with "/" or "\"
It cannot contain "\r" or "\n" line breaks

Uploading Objects

Simple Upload

Uploads data from the memory to OSS

Uploads local files to OSS

aos_pool_t *p;
int is_oss_domain = 1;//Whether or not it uses a third-level domain name; can be initialized through the
is_oss_domain function
oss_request_options_t * oss_request_options;
aos_status_t *s;
aos_table_t *headers;
aos_table_t *resp_headers;
aos_string_t bucket;
aos_string_t object;
char *bucket_name = "<your bucket name>";
char *object_name = "<your object name>";
char *data = "<your object content>";
aos_list_t buffer;
aos_buf_t *content;

aos_pool_create(&p, NULL);
// init_ oss_request_options
…
aos_str_set(&object, object_name);

aos_str_set(&bucket, bucket_name);
headers = aos_table_make(p, 0);
resp_headers = aos_table_make(p, 0);
s = aos_status_create(p);

//read object content into buffer
aos_list_init(&buffer);
content = aos_buf_pack(oss_request_options->pool, data, strlen(data));
aos_list_add_tail(&content->node, &buffer);
s = oss_put_object_from_buffer (oss_request_options, &bucket, &object, &buffer, headers, &resp_headers);
aos_pool_destroy(p);

aos_pool_t *p;
int is_oss_domain = 1;//Whether or not it uses a third-level domain name; can be initialized through the
is_oss_domain function
oss_request_options_t * oss_request_options;
aos_status_t *s;
aos_table_t *headers;
aos_table_t *resp_headers;
aos_string_t bucket;

Object Storage Service SDK Reference

187

When uploading in this manner, the largest file cannot exceed 5G. If the size exceeds this, use
multipartupload to upload.

Creating Simulated Folders

The OSS service does not use folders. All elements are stored as objects. However, users can create
simulated folders using the following code:

aos_string_t object;
char *bucket_name = "<your bucket name>";
char *object_name = "<your object name>";
char *data = "<your object content>";
char *filename ="<your local filename>";
aos_string_t local_file;

aos_pool_create(&p, NULL);
// init_ oss_request_options
…
aos_str_set(&object, object_name);
aos_str_set(&local_file,filename);
aos_str_set(&bucket, bucket_name);
headers = aos_table_make(p, 0);
resp_headers = aos_table_make(p, 0);
s = aos_status_create(p);

s = oss_put_object_from_file (oss_request_options, &bucket, &object, &local_file, headers, &resp_headers);

aos_pool_destroy(p);

aos_pool_t *p;
int is_oss_domain = 1;//Whether or not it uses a third-level domain name; can be initialized through the
is_oss_domain function
oss_request_options_t * oss_request_options;
aos_status_t *s;
aos_table_t *headers;
aos_table_t *resp_headers;
aos_string_t bucket;
aos_string_t object;
char *bucket_name = "<your bucket name>";
char *object_name = "folder_name/";
char *data = "";
aos_list_t buffer;
aos_buf_t *content;

aos_pool_create(&p, NULL);
// init_ oss_request_options
…

aos_str_set(&bucket, bucket_name);
aos_str_set(&object, object_name);
headers = aos_table_make(p, 0);
resp_headers = aos_table_make(p, 0);
s = aos_status_create(p);

Object Storage Service SDK Reference

188

Creating a simulated folder is in fact creating an object with a size of 0. This object can also be
uploaded and downloaded. The console will display any object ending with "/" as a folder. Therefore,
users can create simulated folders this way. For accessing folders, refer to the folder simulation
function

Setting the Object's Http Header

The OSS service allows users to customize the object Http Header. The following code sets the
expiration time for the object:

You can set the HTTP header to:Cache-Control, Content-Disposition, Content-Encoding, and

//read object content into buffer
…

s = oss_put_object_from_buffer (oss_request_options, &bucket, &object, &buffer, headers, &resp_headers);

aos_pool_destroy(p);

aos_pool_t *p;
int is_oss_domain = 1;//Whether or not it uses a third-level domain name; can be initialized through the
is_oss_domain function
oss_request_options_t * oss_request_options;
aos_status_t *s;
aos_table_t *headers;
aos_table_t *resp_headers;
aos_string_t bucket;
aos_string_t object;
char *bucket_name = "<your bucket name>";
char *object_name = "<your object name>"
char *data = "<your object content>";
aos_list_t buffer;
aos_buf_t *content;

aos_pool_create(&p, NULL);
// init_ oss_request_options
…

aos_str_set(&bucket, bucket_name);
aos_str_set(&object, object_name);

//set http header
headers = aos_table_make(p, 1);
apr_table_set(headers, " Expires", " Fri, 28 Feb 2012 05:38:42 GMT");

resp_headers = aos_table_make(p, 0);
s = aos_status_create(p);

//read object content into buffer
…
aos_pool_destroy(p);

Object Storage Service SDK Reference

189

Expires.For details on the headers, please see RFC2616.

Setting User Meta

The OSS allows users to define meta information to describe the object. For example:

A single object can have multiple similar parameters, but the total size of all user meta cannot exceed
2 KB.

NOTE:The user meta name is not case sensitive. For instance, when a user uploads an object and
defines the metadata name as "Name", the parameter stored in the header will be: "x-oss-meta-
name". Therefore, when accessing the object, just use parameters named "name". However, if
the stored parameter is "name", and no information can be found for the parameter, the system
will return "Null"

Append Object

Append Object is used to upload files in appending mode.The type of the objects created with the

aos_pool_t *p;
int is_oss_domain = 1;//Whether or not it uses a third-level domain name; can be initialized through the
is_oss_domain function
oss_request_options_t * oss_request_options;
aos_status_t *s;
aos_table_t *headers;
aos_table_t *resp_headers;
aos_string_t bucket;
aos_string_t object;
char *bucket_name = "<your bucket name>";
char *object_name = "<your object name>"
char *data = "<your object content>";
aos_list_t buffer;
aos_buf_t *content;

aos_pool_create(&p, NULL);
// init_ oss_request_options
…

aos_str_set(&bucket, bucket_name);
aos_str_set(&object, object_name);
headers = aos_table_make(p, 1);
//set user meta
apr_table_set(headers, "x-oss-meta-author", "oss");
resp_headers = aos_table_make(p, 0);
s = aos_status_create(p);
//read object content into buffer
…

aos_pool_destroy(p);

Object Storage Service SDK Reference

190

Append Object operation is Appendable Object, and the type of the objects uploaded with the Put
Object operation is Normal Object.

aos_pool_t *p;
int is_oss_domain = 1;//Whether or not it uses a third-level domain name; can be initialized through the
is_oss_domain function
oss_request_options_t * oss_request_options;
aos_status_t *s;
aos_table_t *headers;
aos_table_t *resp_headers;
aos_string_t bucket;
aos_string_t object;
char *bucket_name = "<your bucket name>";
char *object_name = "<your object name>";
char *data = "<your object content>";
char *data1 = "<your object content>";
aos_list_t buffer;
aos_buf_t *content;
aos_buf_t *content1;
int64_t position = 0;
aos_pool_create(&p, NULL);
// init_ oss_request_options
…

aos_str_set(&object, object_name);
aos_str_set(&bucket, bucket_name);
headers = aos_table_make(p, 0);
resp_headers = aos_table_make(p, 0);
s = aos_status_create(p);

//append object from start position
aos_list_init(&buffer);
content = aos_buf_pack(oss_request_options ->pool, data, strlen(data));
aos_list_add_tail(&content->node, &buffer);
s = oss_append_object_from_buffer (oss_request_options, &bucket, &object, position, &buffer, headers,
&resp_headers);

//append object from not start position
headers = aos_table_make(p, 0);
position = strlen(data);
aos_list_init(&buffer);
content = aos_buf_pack(oss_request_options->pool, data1, strlen(data1));
aos_list_add_tail(&content1->node, &buffer);
s = oss_append_object_from_buffer (oss_request_options, &bucket, &object, position, &buffer, headers,
&resp_headers);
aos_pool_destroy(p);

os_pool_t *p;
int is_oss_domain = 1;//Whether or not it uses a third-level domain name; can be initialized through the
is_oss_domain function
oss_request_options_t * oss_request_options;
aos_status_t *s;
aos_table_t *headers;
aos_table_t *resp_headers;

Object Storage Service SDK Reference

191

1.

2.

3.

4.

5.

Append Object is not applicable to a non-appendable object.For example, if a normal
object with the same name already exists and the Append Object operation is still
performed, the system returns the 409 message and the error code ObjectNotAppendable.
If you perform the Put Object operation on an existing appendable object, this appendable
object is overwritten by the new object, and the type of this object is changed to Normal
Object.
After the Head Object operation is performed, the system returns x-oss-object-type, which
indicates the type of the object. If the object is an appendable object, the value of x-oss-
object-type is Appendable. For an appendable object, after the Head Object operation is
performed, the system also returns x-oss-next-append-position and x-oss-hash-crc64ecma.
You can neither use Copy Object to copy an appendable object, nor change the server-side
encryption attribute of this object. You can, however, use Copy Object to change the
customized metadata.
In List Objects requests' XML responses, this will set the Appendable Object's Type to
Appendable.

Multipart Upload

OSS allows users to split an object into several requests for uploading to the server. Concerning
multipart upload, refer to the Object Multipart Upload section in MultipartUpload.

List Bucket Objects

Object information is saved in the params object_list. You can use aos_list_for_each_entry to view

aos_string_t bucket;
aos_string_t object;
char *bucket_name = "<your bucket name>";
char *object_name = "<your object name>";
char *data = "<your object content>";
char *filename ="<your local filename>";
aos_string_t append_file;
int64_t position = 0;

aos_pool_create(&p, NULL);
// init_ oss_request_options
…
aos_str_set(&object, object_name);
aos_str_set(&append_file,filename);
aos_str_set(&bucket, bucket_name);
headers = aos_table_make(p, 0);
resp_headers = aos_table_make(p, 0);
s = aos_status_create(p);

s = oss_append_object_from_file (oss_request_options, &bucket, &object, position, &append_file, headers,
&resp_headers);

aos_pool_destroy(p);

Object Storage Service SDK Reference

192

detailed information for each object. NOTE:By default, if a bucket contains more than 100 objects, the
first 100 will be returned and the IsTruncated parameter in the returned results will be true. The
returned NextMarker can be used as the start point for next data access.The number of object entries
returned can be increased by modifying the MaxKeys parameter or using the Marker parameter for
separate access.

Extended Parameters

Generally, the ListObjectsRequest parameter provides more powerful functions. For example:

The above code lists bucket CommonPrefixes with the prefix "pic" and ending in "/". For example,
"pic-people/". Settable parameter names and their functions:

aos_pool_t *p;
int is_oss_domain = 1;//Whether or not it uses a third-level domain name; can be initialized through the
is_oss_domain function
oss_request_options_t * oss_request_options;
aos_status_t *s;
aos_table_t *resp_headers;
aos_string_t bucket;
char *bucket_name = "<your bucket name>";
oss_list_object_params_t *params;

aos_pool_create(&p, NULL);
// init_ oss_request_options
…
aos_str_set(&bucket, bucket_name);
resp_headers = aos_table_make(p, 0);
s = aos_status_create(p);

params = oss_create_list_object_params(p);
params->max_ret = 10;
aos_str_set(¶ms->prefix, "pic");
aos_str_set(¶ms-> delimiter, "/");
aos_str_set(¶ms-> marker, "");

s = oss_list_object(oss_request_options, &bucket, params, &resp_headers);;

aos_pool_destroy(p);

Name Function

Delimiter

Used to group object name characters. All
objects whose names contain the specified
prefix and that appear between the Delimiter
characters for the first time are used as a
group of elements: CommonPrefixes.

Marker
Sets up the returned results to begin from the
first entry after the Marker in alphabetical
order.

MaxKeys Limits the maximum number of objects
returned for one request. If not specified, the

Object Storage Service SDK Reference

193

Retrieving Objects

Reading Objects

The input stream can be used to get and store the object content into an object or the memory.
Object header information can be obtained through resp_headers. It contains the ETag, Http Header,
and custom metadata defined at the time the object was uploaded.

We can set Range to return the object range. We can use this function for segmented file multipart
download and resumable data transfer.

default value is 100. The MaxKeys value
cannot exceed 1000.

Prefix

requires the returned object key to be
prefixed with prefix. Note that the keys
returned from queries using a prefix will still
contain the prefix.

Parameter Description

Range Specifies the range of file transfer.

ModifiedSinceConstraint

If the specified time is earlier than the actual
modification time, the file is transmitted
normally. Otherwise, the system throws the
304 Not Modified exception.

UnmodifiedSinceConstraint

If the specified time is the same as or later
than the actual modification time, the file is
transmitted normally.Otherwise, the system
throws the 412 precondition failed exception

MatchingETagConstraints

Imports an ETag group. If the imported
expected ETag matches the object's ETag, the
file is transmitted normally.Otherwise, the
system throws the 412 precondition failed
exception

NonmatchingEtagConstraints

Imports an ETag group. If the imported ETag
does not match the object's ETag, the file is
transmitted normally.Otherwise, the system
throws the 304 Not Modified exception.

ResponseHeaderOverrides Customizes some headers in the OSS return
request.

aos_pool_t *p;
int is_oss_domain = 1;//Whether or not it uses a third-level domain name; can be initialized through the
is_oss_domain function
oss_request_options_t * oss_request_options;
aos_status_t *s;
aos_table_t *headers;

Object Storage Service SDK Reference

194

Directly Downloading Objects to Files We can use the code below to directly download objects to a
specified file:

aos_table_t *resp_headers;
aos_string_t bucket;
aos_string_t object;
char *bucket_name = "<your bucket name>";
char *object_name = "<your object name>";
aos_list_t buffer;

aos_pool_create(&p, NULL);
// init_ oss_request_options
…

aos_str_set(&bucket, bucket_name);
aos_str_set(&object, object_name);
headers = aos_table_make(p, 1);
//Sets the range and reads the specified range from the file
 apr_table_set(headers, "Range", " bytes=20-100");
resp_headers = aos_table_make(p, 0);
s = aos_status_create(p);

//get object content into buffer
aos_list_init(&buffer);
s = oss_get_object_to_buffer(oss_request_options, &bucket, &object, headers, &buffer, &resp_headers);

aos_pool_destroy(p);

aos_pool_t *p;
int is_oss_domain = 1;//Whether or not it uses a third-level domain name; can be initialized through the
is_oss_domain function
oss_request_options_t * oss_request_options;
aos_status_t *s;
aos_table_t *headers;
aos_table_t *resp_headers;
aos_string_t bucket;
aos_string_t object;
char *bucket_name = "<your bucket name>";
char *object_name = "<your object name>";
int object_name_len;
char *download_filename
aos_string_t download_file;

aos_pool_create(&p, NULL);
// init_ oss_request_options
…

aos_str_set(&bucket, bucket_name);
aos_str_set(&object, object_name);
aos_str_set(&download_file, download_filename);
headers = aos_table_make(p, 0);
resp_headers = aos_table_make(p, 0);
s = aos_status_create(p);
s = oss_get_object_to_file (oss_request_options, &bucket, &object, headers, &download_file, &resp_headers);

Object Storage Service SDK Reference

195

Deleting Objects

Copying Objects

You can copy an object with operation permissions within the same region. We would like to remind
users that, when copying an object larger than 1G, we suggest using the Upload Part Copy method.

Copying One Object

Using the copyObject method, we can copy a single object. The code is as follows:

aos_pool_destroy(p);

aos_pool_t *p;
int is_oss_domain = 1;//Whether or not it uses a third-level domain name; can be initialized through the
is_oss_domain function
oss_request_options_t * oss_request_options;
aos_status_t *s;
aos_table_t *resp_headers;
aos_string_t bucket;
aos_string_t object;
char *bucket_name = "<your bucket name>";
char * object_name = "<your object name>";

aos_pool_create(&p, NULL);
// init_ oss_request_options
…

aos_str_set(&bucket, bucket_name);
aos_str_set(&object, object_name);

resp_headers = aos_table_make(p, 0);
s = aos_status_create(p);

s = oss_delete_object (oss_request_options, &bucket, &object, , &resp_headers);

aos_pool_destroy(p);

aos_pool_t *p;
int is_oss_domain = 1;//Whether or not it uses a third-level domain name; can be initialized through the
is_oss_domain function
oss_request_options_t * oss_request_options;
aos_status_t *s;
aos_table_t * headers;
aos_table_t *resp_headers;
aos_string_t source_bucket;
aos_string_t source_object;
aos_string_t dest_bucket;
aos_string_t dest_object;
char *source_bucket_name = "<your bucket name>";
char *source_object_name = "<your object name>";

Object Storage Service SDK Reference

196

-

-

-

-

Note that the source and destination buckets must be in the same region.

Multipart Upload

Besides using the putObject interface to upload files to OSS, the OSS also provides a Multipart
Upload mode.You can apply the Multipart Upload mode in the following scenarios (but not limited to
the following):

Where breakpoint uploads are needed.
Uploading an object larger than 100MB.
In poor network conditions, when the connection with the OSS server is frequently broken.
Stream uploading an object. When, before uploading the file, you cannot determine its size.

Step-By-Step Multipart Upload

Initialization

Initializes a single multipart upload task

char *dest_bucket_name = "<your bucket name>";
char *dest_object_name = "<your object name>";

aos_pool_create(&p, NULL);
// init_ oss_request_options
…

aos_str_set(&source_bucket, bucket_name);
aos_str_set(&source_object, source_object_name);
aos_str_set(&dest_bucket, dest_bucket_name);
aos_str_set(&dest_object, dest_object_name);

headers = aos_table_make(p, 0);
resp_headers = aos_table_make(p, 0);
s = aos_status_create(p);

s = oss_copy_object (oss_request_options, &source_bucket, &source_object, &dest_bucket, &dest_object ,headers,
&resp_headers);

aos_pool_destroy(p);

aos_pool_t *p;
int is_oss_domain = 1;//Whether or not it uses a third-level domain name; can be initialized through the
is_oss_domain function
oss_request_options_t * oss_request_options;
aos_status_t *s;
aos_table_t * headers;

Object Storage Service SDK Reference

197

The returned results contain the upload_id. This is the unique identifier of a multipart upload task. We
will use this in subsequent operations.

Upload Part Local Upload

Next, we will multipart upload the local file. Let us assume that there is one file in the local path
/path/to/file.zip. Because it is large, we want to multipart upload it to OSS.

aos_table_t *resp_headers;
aos_string_t bucket;
aos_string_t object;
char *bucket_name = "<your bucket name>";
char * object_name = "<your object name>";
aos_string_t upload_id;

aos_pool_create(&p, NULL);
// init_ oss_request_options
…
aos_str_set(&bucket, bucket_name);
aos_str_set(&object,object_name);

headers = aos_table_make(p, 0);
resp_headers = aos_table_make(p, 0);
s = aos_status_create(p);
s = oss_init_multipart_upload (oss_request_options, &bucket, &object, headers, &upload_id,

aos_pool_destroy(p);

aos_pool_t *p;
int is_oss_domain = 1;//Whether or not it uses a third-level domain name; can be initialized through the
is_oss_domain function
oss_request_options_t * oss_request_options;
aos_status_t *s;
aos_table_t *resp_headers;
aos_string_t bucket;
aos_string_t object;
char *bucket_name = "<your bucket name>";
char * object_name = "<your object name>";
aos_string_t upload_id;
char *filename = "<local filename>";
oss_upload_file_t *upload_file;

aos_pool_create(&p, NULL);
// init_ oss_request_options
…

aos_str_set(&bucket, bucket_name);
aos_str_set(&object, object_name);

upload_file = oss_create_upload_file(p);
aos_str_set(&upload_file->filename, filename);
upload_file->file_pos = 0;
upload_file->file_last = 200 * 1024; //200KB

Object Storage Service SDK Reference

198

-

-

-

-

The main idea of this program is to call the oss_upload_part_from_file method to upload each part.
However, you must note the following:

The oss_upload_part_from_file method requires that all parts except the last one must be
larger than 100KB.
In order to ensure that the data transmitted over the network is free from errors, we strong
recommend that the user include meta: content-md5 in the request when uploading parts.
After the OSS receives data, it uses this MD5 value to verify the correctness of the uploaded
data. If it is not consistent, OSS returns the InvalidDigest error code.
The part number range is 1~10000. If the part number exceeds this range, the OSS will
return the InvalidArgument error code.
When each part is uploaded, it will take the stream to the location corresponding to the start
of the next part.

Completing Multipart Uploads

resp_headers = aos_table_make(p, 0);
s = aos_status_create(p);
s = oss_upload_part_from_file (oss_request_options, &bucket, &object, &upload_id, part_num, upload_file,
&resp_headers);

aos_pool_destroy(p);

aos_pool_t *p;
int is_oss_domain = 1;//Whether or not it uses a third-level domain name; can be initialized through the
is_oss_domain function
oss_request_options_t * oss_request_options;
aos_status_t *s;
aos_table_t *resp_headers;
aos_string_t bucket;
aos_string_t object;
char *bucket_name = "<your bucket name>";
char * object_name = "<your object name>";
aos_string_t upload_id;
aos_list_t complete_part_list;

aos_pool_create(&p, NULL);
// init_ oss_request_options
…

aos_str_set(&bucket, bucket_name);
aos_str_set(&object, object_name);

//build complete_part_list
…

resp_headers = aos_table_make(p, 0);
s = aos_status_create(p);
s = oss_complete_multipart_upload (oss_request_options, &bucket, &object, &upload_id, &complete_part_list,
&resp_headers);

Object Storage Service SDK Reference

199

Canceling Multipart Upload Tasks

When a Multipart Upload event is aborted, you cannot use this Upload ID to perform any operations
and the uploaded parts of data will be deleted. Get All Multipart Upload Tasks in the Bucket

aos_pool_destroy(p);

aos_pool_t *p;
int is_oss_domain = 1;//Whether or not it uses a third-level domain name; can be initialized through the
is_oss_domain function
oss_request_options_t * oss_request_options;
aos_status_t *s;
aos_table_t *resp_headers;
aos_string_t bucket;
aos_string_t object;
char *bucket_name = "<your bucket name>";
char * object_name = "<your object name>";
aos_string_t upload_id;

aos_pool_create(&p, NULL);
// init_ oss_request_options
…

aos_str_set(&bucket, bucket_name);
aos_str_set(&object, object_name);

resp_headers = aos_table_make(p, 0);
s = aos_status_create(p);
s = oss_abort_multipart_upload (oss_request_options, &bucket, &object, &upload_id, &resp_headers);

aos_pool_destroy(p);

aos_pool_t *p;
int is_oss_domain = 1;//Whether or not it uses a third-level domain name; can be initialized through the
is_oss_domain function
oss_request_options_t * oss_request_options;
aos_status_t *s;
aos_table_t *resp_headers;
aos_string_t bucket;
aos_string_t object;
char *bucket_name = "<your bucket name>";
char * object_name = "<your object name>";
aos_string_t upload_id;

aos_pool_create(&p, NULL);
// init_ oss_request_options
…

aos_str_set(&bucket, bucket_name);
aos_str_set(&object, object_name);

resp_headers = aos_table_make(p, 0);

Object Storage Service SDK Reference

200

All upload event information is stored in the oss_list_multipart_upload_params_t upload_list, which
can be traversed using aos_list_for_each_entry.

Getting Information for All Uploaded Parts

All part information is stored in the oss_list_upload_part_params_t part_list, which can be traversed
using aos_list_for_each_entry.

Multipart Upload Copy

Using Upload Part Copy, we copy data from an existing object to upload an object.When copying an
object larger than 500MB, we suggest using the Upload Part Copy method.

s = aos_status_create(p);
s = oss_abort_multipart_upload (oss_request_options, &bucket, &object, &upload_id, &resp_headers);

aos_pool_destroy(p);

aos_pool_t *p;
int is_oss_domain = 1;//Whether or not it uses a third-level domain name; can be initialized through the
is_oss_domain function
oss_request_options_t * oss_request_options;
aos_status_t *s;
aos_table_t *resp_headers;
aos_string_t bucket;
aos_string_t object;
char *bucket_name = “<your bucket name>”;
char *object_name = “<your object name>”;
char *utf8_object_name;
aos_string_t upload_id;
oss_list_upload_part_params_t *params;

aos_pool_create(&p, NULL);
// init_ oss_request_options
…
//utf8 encode object name
…

aos_str_set(&bucket, bucket_name);
aos_str_set(&object, utf8_object_name);

resp_headers = aos_table_make(p, 0);
s = aos_status_create(p);

params = params = oss_create_list_upload_part_params(p);
params->max_ret = 10;

s = oss_list_upload_part (oss_request_options, &bucket, &object, &upload_id,params, &resp_headers);;

aos_pool_destroy(p);

Object Storage Service SDK Reference

201

aos_pool_t *p;
int is_oss_domain = 1;//Whether or not it uses a third-level domain name; can be initialized through the
is_oss_domain function
oss_request_options_t * oss_request_options;
aos_string_t upload_id;
oss_list_upload_part_params_t *list_upload_part_params;
oss_upload_part_copy_params_t *upload_part_copy_params1;
aos_table_t *headers;
aos_table_t *resp_headers;
aos_table_t *list_part_resp_headers;
aos_list_t complete_part_list;
oss_list_part_content_t *part_content;
oss_complete_part_content_t *complete_content;
aos_table_t *complete_resp_headers;
aos_status_t *s;
int part1 = 1;
char *source_bucket_name = "<your bucket name>";
char *dest_bucket_name = "<your bucket name>";
char *source_object_name = "<your source object name>";
char *dest_object_name = "<your dest object name>";
aos_string_t dest_bucket;
aos_string_t dest_object;
int64_t range_start1 = 0;
int64_t range_end1 = 6000000;//not less than 5MB

aos_pool_create(&p, NULL);
// init_ oss_request_options
…

//init mulitipart upload
//upload part copy part 1
upload_part_copy_params1 = oss_create_upload_part_copy_params(p);
aos_str_set(&upload_part_copy_params1->source_bucket, source_bucket_name);
aos_str_set(&upload_part_copy_params1->source_object, source_object_name);
aos_str_set(&upload_part_copy_params1->dest_bucket, dest_bucket_name);
aos_str_set(&upload_part_copy_params1->dest_object, dest_object_name);
aos_str_set(&upload_part_copy_params1->upload_id, upload_id.data);
upload_part_copy_params1->part_num = part1;
upload_part_copy_params1->range_start = range_start1;
upload_part_copy_params1->range_end = range_end1;
headers = aos_table_make(p, 0);
resp_headers = aos_table_make(p, 5);
s = oss_upload_part_copy(oss_request_options, upload_part_copy_params1, headers, &resp_headers);

// continue upload part copy like part 1
…

//list part
list_part_resp_headers = aos_table_make(p, 5);
list_upload_part_params = oss_create_list_upload_part_params(p);
list_upload_part_params->max_ret = 1000;
aos_list_init(&complete_part_list);

aos_str_set(&dest_bucket, dest_bucket_name);
aos_str_set(&dest_object, dest_object_name);
s = oss_list_upload_part(oss_request_options, &dest_bucket, &dest_object, &upload_id,

Object Storage Service SDK Reference

202

-

-

-

-

Lifecycle Management

OSS provides the object lifecycle management capability to manage objects for users. The user can
configure the lifecycle of a bucket to define various rules for the bucket's objects. Currently, users can
use rules to delete matching objects. Each rule is composed of the following parts:

The object name prefix; this rule will only apply to objects with the matched prefix.
Operation; the operation the user wishes to perform on the matched objects.
Date or number of days; the user will execute the operation on the objects on the specified
date or a specified number of days after the object's last modification time.

Setting Lifecycles

The lifecycle configuration rules are expressed by an xml segment.

A single lifecycle Config can contain up to 1000 rules. Explanations of each field:

The ID field is used to uniquely identify a rule (inclusion relations, such as abc and abcd,
cannot exist between IDs).

list_upload_part_params, &list_part_resp_headers);

aos_list_for_each_entry(part_content, &list_upload_part_params->part_list, node) {
 complete_content = oss_create_complete_part_content(p);
 aos_str_set(&complete_content->part_number, part_content->part_number.data);
 aos_str_set(&complete_content->etag, part_content->etag.data);
 aos_list_add_tail(&complete_content->node, &complete_part_list);
}

//complete multipart upload
complete_resp_headers = aos_table_make(p, 5);
s = oss_complete_multipart_upload(oss_request_options, &dest_bucket, &dest_object, &upload_id,
&complete_part_list, &complete_resp_headers);

aos_pool_destroy(p);

<LifecycleConfiguration>
 <Rule>
 <ID>delete obsoleted files</ID>
 <Prefix>obsoleted/</Prefix>
 <Status>Enabled</Status>
 <Expiration>
 <Days>3</Days>
 </Expiration>
 </Rule>
</LifecycleConfiguration>

Object Storage Service SDK Reference

203

-

-

-

Prefix indicates the rules used for objects in the bucket with the specified prefix.
Status indicates the status of this rule. The statuses are Enabled and Disabled, indicating if
the rule is enabled or disabled.
In the Expiration node, Days indicates that an object will be deleted a specified number of
days after its last modification. Date indicates that objects will be deleted after the specified
absolute time (the absolute time follows the ISO8601 format).

Using the following code, we can set the above lifecycle rules.

We can use the following code to retrieve the above lifecycle rules.

aos_pool_t *p;
int is_oss_domain = 1;
oss_request_options_t * oss_request_options;
aos_status_t *s;
aos_table_t *resp_headers;
aos_string_t bucket;
char *bucket_name = “<your bucket name>”;
aos_list_t lifecycle_rule_list;
oss_lifecycle_rule_content_t *rule_content;

aos_pool_create(&p, NULL);
// init_ oss_request_options
…

aos_str_set(&bucket, bucket_name);

resp_headers = aos_table_make(p, 0);
s = aos_status_create(p);
aos_list_init(&lifecycle_rule_list);
rule_content = oss_create_lifecycle_rule_content(p);
aos_str_set(&rule_content->id, " delete obsoleted files ");
aos_str_set(&rule_content->prefix, " obsoleted ");
aos_str_set(&rule_content->status, "Enabled");
rule_content->days = 3;
aos_list_add_tail(&rule_content->node, &lifecycle_rule_list);
s = oss_put_bucket_lifecycle(options, &bucket, &lifecycle_rule_list, &resp_headers);

aos_pool_destroy(p);

aos_pool_t *p;
int is_oss_domain = 1;
oss_request_options_t * oss_request_options;
aos_status_t *s;
aos_table_t *resp_headers;
aos_string_t bucket;
char *bucket_name = “<your bucket name>”;
aos_list_t lifecycle_rule_list;
oss_lifecycle_rule_content_t *rule_content;
char *rule_id;
char *prefix;
char *status;

Object Storage Service SDK Reference

204

Using the following code, we can clear the lifecycle rules in a bucket.

Authorized Access

Using STS Service Temporary Authorization

int days = INT_MAX;
char* date = "";

aos_pool_create(&p, NULL);
// init_ oss_request_options
…

aos_str_set(&bucket, bucket_name);

resp_headers = aos_table_make(p, 0);
s = aos_status_create(p);
aos_list_init(&lifecycle_rule_list);
s = oss_get_bucket_lifecycle(options, &bucket, &lifecycle_rule_list, &resp_headers);
aos_list_for_each_entry(rule_content, &lifecycle_rule_list, node) {
 rule_id = apr_psprintf(p, "%.*s", rule_content->id.len, rule_content->id.data);
 prefix = apr_psprintf(p, "%.*s", rule_content->prefix.len, rule_content->prefix.data);
status = apr_psprintf(p,"%.*s", rule_content->status.len, rule_content->status.data);
date = apr_psprintf(p, "%.*s", rule_content->date.len, rule_content->date.data);
 days = rule_content->days;
}

aos_pool_destroy(p);

aos_pool_t *p;
int is_oss_domain = 1;
oss_request_options_t * oss_request_options;
aos_status_t *s;
aos_table_t *resp_headers;
aos_string_t bucket;
char *bucket_name = “<your bucket name>”;

aos_pool_create(&p, NULL);
// init_ oss_request_options
…

aos_str_set(&bucket, bucket_name);

resp_headers = aos_table_make(p, 0);
s = aos_status_create(p);
s = oss_delete_bucket_lifecycle(options, &bucket, &resp_headers);

aos_pool_destroy(p);

Object Storage Service SDK Reference

205

-

-

1.

2.

3.

4.

5.

Introduction

Through the AliCloud STS service, OSS can temporarily grant authorized access.AliCloud STS is a web
service that provides a temporary access token to a cloud computing user. Using STS, you can grant
access credentials to a third-party application or federated user (you can manage the user IDs) with
customized permissions and validity periods. Third-party applications or federated users can use
these access credentials to directly call the AliCloud product APIs or use the SDKs provided by
AliCloud products to access the cloud product APIs.

You do not need to expose you long-term key (AccessKey) to a third-party application and
only need to generate an access token and send the access token to the third-party
application. You can customize the access permission and validity of this token.
You do not need to care about permission revocation issues. The access credential
automatically becomes invalid when it expires.

Using an App as an example, the interaction process is shown below:

The solution is described
in detail as follows:

Log in as the app user. App user IDs are managed by the client. Clients can customize the ID
management system, and may also use external Web accounts or OpenID. For each valid
app user, the AppServer can precisely define the minimum access permission.
The AppServer requests a security token (Security Token) from the STS. Before calling STS,
the AppServer needs to determine the minimum access permission (described in policy
syntax) of app users and the expiration time of the authorization. Then, the security token is
obtained by calling the STS’ AssumeRole interface.
The STS returns a valid access credential to the AppServer, where the access credential
includes a security token, a temporary access key (AccessKeyId and AccessKeySecret), and
the expiry time.
The AppServer returns the access credential to the ClientApp. The ClientApp caches this
credential. When the credential becomes invalid, the ClientApp needs to request a new
valid access credential from the AppServer. For example, if the access credential is valid for
one hour, the ClientApp can request the AppServer to update the access credential every 30
minutes.
The ClientApp uses the access credential cached locally to request for AliCloud Service APIs.
The ECS perceives the STS access credential, relies on STS to verify the credential, and
correctly responds to the user request.

The key is to obtain a valid access credential by simply calling the STS interface AssumeRole.The

Object Storage Service SDK Reference

206

method can also be called by using the STS DSK. Clicking to View Details

Using STS Credentials to Construct Signed Requests

After obtaining the STS temporary credential, the user’s client generates an oss_request_options
using the contained Security Token and temporary access key (AccessKeyId, AccessKeySecret). Using
an object upload as an example:

URL Signature Authorization

You can provide users with a temporary access URL by generating a signed URL. During URL

aos_pool_t *p;
int is_oss_domain = 1;//Whether or not it uses a third-level domain name; can be initialized through the
is_oss_domain function
oss_request_options_t * oss_request_options;
aos_status_t *s;
aos_table_t *headers;
aos_table_t *resp_headers;
aos_string_t bucket;
aos_string_t object;
char *bucket_name = "<your bucket name>";
char *object_name = "<your object name>"
char *data = "<your object content>";
aos_list_t buffer;
aos_buf_t *content;

aos_pool_create(&p, NULL);

// init_oss_request_options using sts_token
oss_request_options = oss_request_options_create(p);
oss_request_options ->config = oss_config_create(oss_request_options ->pool);
aos_str_set(&oss_request_options ->config->host, oss_endpoint);
oss_request_options ->config->port=oss_port;
aos_str_set(&oss_request_options ->config->id, tmp_access_key_id);
aos_str_set(&oss_request_options ->config->key, tmp_access_key_secret);
aos_str_set(&oss_request_options ->config->sts_token, sts_token);
oss_request_options ->config->is_oss_domain = is_oss_domain;
oss_request_options ->ctl = aos_http_controller_create(oss_request_options ->pool, 0);

aos_str_set(&bucket, bucket_name);
aos_str_set(&object, object_name);
headers = aos_table_make(p, 0);
resp_headers = aos_table_make(p, 0);
s = aos_status_create(p);

aos_list_init(&buffer);
content = aos_buf_pack(oss_request_options ->pool, data, strlen(data));
aos_list_add_tail(&content->node, &buffer);
s = oss_put_object_from_buffer (oss_request_options, &bucket, &object, &buffer, headers, &resp_headers);
aos_pool_destroy(p);

Object Storage Service SDK Reference

207

generation, you can specify the URL expiration time to limit the duration of the user’s access.

Generating a Signed URL

Generates a get object request URL signature.

Generates a put object request URL signature:

Using Signed URLs to Send Requests

Uses a signed URL to getobject

aos_pool_t *p;
int is_oss_domain = 1;//Whether or not it uses a third-level domain name; can be initialized through the
is_oss_domain function
oss_request_options_t * oss_request_options;
aos_http_request_t *req;
char *url_signed_str
char *bucket_name = "<your bucket name>";
char * object_name = "<your object name>";

aos_pool_create(&p, NULL);
// init_ oss_request_options
…

req = aos_http_request_create(p);
req->method = HTTP_GET;
url_str = gen_test_signed_url(oss_request_options,bucket_name, object_name, expire_time, req);

aos_pool_destroy(p);

aos_pool_t *p;
int is_oss_domain = 1;//Whether or not it uses a third-level domain name; can be initialized through the
is_oss_domain function
oss_request_options_t * oss_request_options;
aos_http_request_t *req;
char *url_signed_str;
char *bucket_name = "<your bucket name>";
char * object_name = "<your object name>";

aos_pool_create(&p, NULL);
// init_ oss_request_options
…

req = aos_http_request_create(p);
req->method = HTTP_PUT;
url_str = gen_test_signed_url(oss_request_options,bucket_name, object_name, expire_time, req);

aos_pool_destroy(p);

Object Storage Service SDK Reference

208

Uses a signed URL to putobject

aos_pool_t *p;
int is_oss_domain = 1;//Whether or not it uses a third-level domain name; can be initialized through the
is_oss_domain function
oss_request_options_t * oss_request_options;
aos_http_request_t *req;
aos_table_t *headers;
aos_table_t *resp_headers;
char *url_signed_str;
char *bucket_name = "<your bucket name>";
char * object_name = "<your object name>";
aos_string_t url;
aos_string_t download_file;
char *filename = "<local filename>"

aos_pool_create(&p, NULL);
// init_ oss_request_options
…

headers = aos_table_make(p, 0);
resp_headers = aos_table_make(p, 5);
req = aos_http_request_create(p);
req->method = HTTP_GET;
url_str = gen_test_signed_url(oss_request_options,bucket_name, object_name, expire_time, req);
aos_str_set(&url, url_str);
aos_str_set(&download_file, filename);
s = oss_get_object_to_file_by_url(oss_request_options, &url, headers,&download_file, &resp_headers);

aos_pool_destroy(p);

aos_pool_t *p;
int is_oss_domain = 1;//Whether or not it uses a third-level domain name; can be initialized through the
is_oss_domain function
oss_request_options_t * oss_request_options;
aos_http_request_t *req;
aos_table_t *headers;
aos_table_t *resp_headers;
char *url_signed_str;
char *bucket_name = "<your bucket name>";
char * object_name = "<your object name>";
aos_string_t url;
aos_string_t local_file;
char *filename = "<local filename>"

aos_pool_create(&p, NULL);
// init_ oss_request_options
…

headers = aos_table_make(p, 0);
resp_headers = aos_table_make(p, 5);
req = aos_http_request_create(p);
req->method = HTTP_PUT;
url_str = gen_test_signed_url(oss_request_options,bucket_name, object_name, expire_time, req);
aos_str_set(&url, url_str);

Object Storage Service SDK Reference

209

Error Responses

Common Error Codes

aos_str_set(&local_file, filename);
s = oss_put_object_from_file_by_url(oss_request_options, &url, &local_file, headers, &resp_headers);

aos_pool_destroy(p);

Error Code Description

AccessDenied Access denied

BucketAlreadyExists The bucket already exists

BucketNotEmpty The bucket is not empty

EntityTooLarge The entity is too large

EntityTooSmall The entity is too small

FileGroupTooLarge The file group is too large

FilePartNotExist A file part does not exist

FilePartStale A file part has expired

InvalidArgument Parameter format error

InvalidAccessKeyId The Access Key ID does not exist

InvalidBucketName The bucket name is invalid

InvalidDigest The digest is invalid

InvalidObjectName The object name is invalid

InvalidPart A part is invalid

InvalidPartOrder The part order is invalid

InvalidTargetBucketForLogging The logging operation has an invalid target
bucket

InternalError Internal OSS error

MalformedXML Illegal XML format

MethodNotAllowed The method is not supported

MissingArgument A parameter is missing

MissingContentLength The content length is missing

NoSuchBucket The bucket does not exist

NoSuchKey The file does not exist

Object Storage Service SDK Reference

210

-

-

-

-

Download SDK

Java SDK

Java SDK Documentation

Click to View

Java SDK (2015-07-10) Version 2.0.5

Java SDK download address:java_sdk_20150710.zip

Updates:

Added Append Object support.
Added HTTPS support.
Added the encoding-type parameter in the DeleteObject and ListObjects interfaces for users
to specify the object name encoding method.
Removed the mandatory check of the Expires response header date format, fixing the issue
where the system could not parse Expires response headers without using the GMT date
format.

Java SDK (2015-05-29) Version 2.0.4

Java SDK download address:java_sdk_20150529.zip

NoSuchUpload Multipart Upload ID does not exist

NotImplemented The method cannot be processed

PreconditionFailed Preprocessing error

RequestTimeTooSkewed The request initiation time exceeds the server
time by 15 minutes

RequestTimeout Request timed out

SignatureDoesNotMatch Signature error

TooManyBuckets The user's bucket quantity exceeds the limit

Object Storage Service SDK Reference

211

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

Updates:

Added STS support.
Added a test Demo Jar; for specific usage, refer to Readme.txt in the demo folder.
Modified the CreateBucket logic to allow users to specify the Bucket ACL during creation.
Modified the bucket name inspection rules, allow for operations on existing buckets with
underlines, but not the creation of buckets with underlines.
Optimized the HTTP connection pool, enhancing its concurrent processing capability.

Java SDK (2015-04-24) Version 2.0.3

Java SDK download address:java_sdk_20150424.zip

Updates:

Added the deleteObjects interface to batch delete object lists.
Added the doesObjectExist interface to check for the existence of objects under the specified
bucket.
Added the switchCredentials interface, allowing users to switch the credentials of existing
OSSClient instances.
Added the OSSClient constructor with CredentialsProvider to allow for more customization
of the CredentialsProvider.
Fixed the bug that occurred when the Source Key in the copyObject interface contained the
plus sign special character.
Adjusted the OSSException/ClientException information display format.

Java SDK (2015-03-23) Version 2.0.2

Java SDK download address:java_sdk_20150323.zip

Updates:

Added the GeneratePostPolicy/calculatePostSignature interface, used to generate the Policy
string and Post signature for Post requests.
Support for Bucket Lifecycle.
Added the URL signature-based Put/GetObject overload interface.
Support for PutObject, UploadPart, and Chunked encoding data upload.
Fixed several bugs.

Java SDK (2015-01-15) Version 2.0.1

Java SDK download address:java_sdk_20150115.zip

Updates:

Object Storage Service SDK Reference

212

-

-

-

-

-

-

-

-

Support for Cname, allowing users to specify which domain names are retained
Support for user ContentType and ContentMD5 specification during URI generation.
Addressed the problem where CopyObject requests did not support server-side encryption.
Changed the UserAgent format.
Expanded location constant and added some samples

Java SDK (2014-11-13)

Java SDK download address:java_sdk_20141113.zip

New content: Upload Part Copy function OSS Java SDK source code Sample Code

Important: In version 2.0.0, the OSS Java SDK removed the OTS-related code from previous versions,
adjusted the package structure, and added OSS SDK source code and sample code. Programs
developed using a version earlier than 2.0.0 must change the referenced package name when using
version 2.0.0. The package names com.aliyun.openservices.* and com.aliyun.openservices.oss.* should
be changed to com.aliyun.oss.*.

Python SDK

Python SDK Documentation

Click to View

Python SDK (2015-09-09) Version 0.4.2

Updates:

Added the appendfromfile interface in osscmd to support automatically appending file
content to a specified object
Added apengd (append object interface) in API

Python SDK download address: OSS_Python_API_20150909.zip

Python cmd tool instructions for use: Click to View

Python SDK (2015-08-11) Version 0.4.1

Updates:

osscmd supports the receipt of xml encoded responses that contain control character lists

Object Storage Service SDK Reference

213

-

-

-

-

-

-

-

and delete objects.
Python SDK download address: OSS_Python_API_20150811.zip

Python cmd tool instructions for use: Click to View

Python SDK (2015-07-07) Version 0.4.0

Updates:

Supported STS function in osscmd

Python SDK download address: OSS_Python_API_20150707.zip

Python cmd tool instructions for use: Click to View

Python SDK (2015-06-24) Version 0.3.9

Updates:

Added copylargefile command in osscmd to support the copying of large files

Python SDK download address: OSS_Python_API_20150624.zip

Python cmd tool instructions for use: Click to View

Python SDK (2015-04-13) Version 0.3.8

Updates:

Fixed the invalid max_part_num specified for multiupload problem in osscmd
Added an md5 check for the part specified by upload_part in oss_api

Python SDK download address: oss_python_sdk_20150413.zip

Python cmd tool instructions for use: Click to View

Python SDK (2015-01-29) Version 0.3.7

Updates:

Added the referer and lifecycle interfaces in oss_api.
Added referer and lifecycle commands in osscmd.
Fixed invalid upload_id in osscmd.

Python SDK download address: oss_python_sdk_20150129.zip

Python cmd tool instructions for use: Click to View

Object Storage Service SDK Reference

214

-

-

-

-

-

-

-

-

Python SDK (2014-12-31) Version 0.3.6

Updates:

Added the check_point function for the osscmd uploadfromdir command, using the --
check_point optional setting.
Added the --force function for the osscmd deleteallobject command, force deleting all files.
Added the --thread_num option in osscmd's multipart and uploadfromdir/downloadtodir
commands, allowing users to adjust the number of threads
Added the file name-based Content-Type generation function in oss_api.
Added the --temp_dir option for the osscmd downloadtodir command, supporting
temporarily saving the downloaded file to the specified directory.
Added the --check_md5 option for osscmd, allowing md5 checks on upload files.

Python SDK download address: oss_python_sdk_20141231.zip

For a Quick Start Guide, refer to the README file in the SDK

Python SDK (2014-05-09)

Updates:

Fixed the bug of logger initialization error in oss_util.
Optimized the multi_upload_file upload interface in oss_api in certain situations, reducing the
number of re-uploads due to network exceptions.

Python SDK download address:oss_python_sdk_20140509.zip

Android SDK

Android SDK Documentation (for version 1.2.0 in
particular)

Click to View

Android SDK (07-31-2015) Version 1.3.0

Address for SDK download:OSS_Android_SDK_20150731

Updates:

Object Storage Service SDK Reference

215

1.

2.

3.

4.

1.

2.

1.

2.

3.

1.

2.

3.

4.

Released an independent multipart upload interface.
Added the OSSData direct import from input stream interface.
Fixed the problem in STS mode where a single token was retrieved multiple times upon
initialization.
Fixed the problem where, after a breakpoint download is manually canceled, the stream was
not fully read, affecting connection multiplexing.

Android SDK (07-01-2015) Version 1.2.0

Address for SDK download:OSS_Android_SDK_20150701

Updates:

Uses httpdns for domain name resolution to prevent domain name hijacking.
Optimized connection multiplexing to increase stability in concurrent requests.

Android SDK (06-02-2015) Version 1.1.0

Address for SDK download:OSS_Android_SDK_20150602

Updates:

Added support for STS authentication.
Added commonPrefixs in the ListObjectsInBucket results.
Added the method of retrieving an object input stream.

Android SDK (04-07-2015) Version 1.0.0

Address for SDK download:OSS_Android_SDK_20150407

Note that this OSS Android SDK has been formally integrated into the AliCloud OneSDK. For a
uniform style, the SDK name and several interface names were changed in this update. For
details, see the documentation.

Updates:

Support for ListObjectsInBucket.
Support for breakpoint downloads.
Support for global network parameter settings and resumable data transfer configuration
options.
Unified the style of the package name with AliCloud OneSDK: Changed the package name
from 'com.aliyun.mbaas.oss.' to 'com.alibaba.sdk.android.oss.'.

Object Storage Service SDK Reference

216

1.

2.

3.

4.

1.

1.

2.

3.

4.

5.

6.

Android SDK Documentation (for version 0.3.0 in
particular)

Click to Download

Android SDK (01-23-2015) Version 0.3.0

Address for SDK download:OSS_Android_SDK_20150123

Updates:

Improved support for CNAME and CDN domain names
Added the custom benchmark time interface
In asynchronous operations, tokens are generated in sub-threads
Checks HTTP exception responses to see if they are from the OSS Server

Android SDK (12-20-2014) Version 0.2.2

Address for SDK download:OSS_Android_SDK_20141220

ChangeList:

Fixed the bug in version 0.2.1 where the incorrect BucketName was entered in the
objectKey parameter of the asynchronous upload interface

Android SDK (12-17-2014) Version 0.2.1

Address for SDK download:OSS_Android_SDK_20141217

Updates:

Added the OSSBucket class to set domain names, permissions and signatures for individual
buckets.
Added the permission setting to specify access permissions for a bucket.
Added the objectKey parameter for asynchronous task progress and exception callbacks.
Access URLs can be generated for one OSSObject to facilitate access to URLs by third-
parties.
All asynchronous upload/download tasks can be canceled midway through.
Fixed the breakpoint upload interface's invalid Content-type bug.

Android SDK (11-26-2014) Version 0.0.1

Address for SDK download:OSS_Android_SDK_20141126

Object Storage Service SDK Reference

217

1.

2.

3.

4.

5.

6.

1.

1.

2.

3.

iOS SDK

iOS SDK Documentation (for version 1.3.0 in particular)

Click to View

iOS SDK (2015-08-05) Version 1.3.0

Address for SDK download:OSS_iOS_SDK_20150805

Updates:

Released an independent multipart upload interface
In STS authentication mode, the SDK automatically manages a token's lifecycle and gets a
new one only after expiration
Fixed the problem where concurrent upload tasks could not always be canceled
Asynchronous upload/download interfaces return a handler, through which tasks are
canceled
Added a complete demo
Supports the servercallback function

iOS SDK (2015-06-30) Version 1.2.0

Address for SDK download:OSS_iOS_SDK_20150630

Updates:

Uses httpdns for domain name resolution to prevent domain name hijacking

iOS SDK (2015-06-09) Version 1.1.0

Address for SDK download:OSS_iOS_SDK_20150609

Updates:

Changed the method of using SDK from the original .an object to framework
Added STS support
Fixed the bug of invalid callback in some situations

iOS SDK (2015-04-07) Version 1.0.0
Address for SDK download:OSS_iOS_SDK_20150407

Object Storage Service SDK Reference

218

1.

2.

3.

1.

2.

1.

2.

3.

Note: This OSS iOS SDK has been formally integrated into the AliCloud OneSDK. For a uniform
style, the SDK package name and several interface names were changed in this update. For
details, see the SDK documentation

Updates:

Added the list Objects function
Enabled the function of specified range download to define the end of an object
Added a new method of using OSS SDK

iOS SDK Documentation (for version 0.1.2 in particular)

Click to Download

iOS SDK (2015-03-04) Version 0.1.2

Address for SDK download:OSS_iOS_SDK_20150304

Updates:

Supports the upload of object keys with names including Chinese characters
Fixed the bugs of the resumable data transfer function

iOS SDK (2015-01-20) Version 0.1.1

Address for SDK download:OSS_iOS_SDK_20150120

Updates:

Changed the methods provided by the SDK from the original framework to static library
The SDK simultaneously provides three types of static libraries: real machine, simulator, and
joint real machine and simulator use
Added bucket settings to direct to the domain name interface of the bound CNAME

iOS SDK (2014-12-22) Version 0.1.0

Address for SDK download:OSS_iOS_SDK_20141222

PHP SDK

Object Storage Service SDK Reference

219

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

PHP SDK (2015-08-19)

Download address:oss_php_sdk_20150819

Updates

Fixed the download signature mismatch problem when using response-content-disposition
and other HTTP headers.
Added settings for response body conversion. The OSS currently supports xml, array, and
json formats. XML is the default format
Added the copy_upload_part method
Added support for STS
Changed the $options parameter location in the signature URL
Fixed the read_dir looping problem
Added the referer and lifecycle interfaces.Added the content-md5 check option for upload
by file and multipart upload.
Added init_multipart_upload to directly obtain string type uploads
Adjusted the return value of the batch_upload_file function from the original blank value to a
boolean value; true indicates success and false indicates failure.
Adjusted the tool function location in tsdk.class.php, placing it in util/oss_util.class.php. If
you need to reference it, add OSSUtil:: and reference this file.

Bug fixes:

Fixed the problem in the Copy object process where you could not edit the header.
Fixed the custom upload syntax error during upload part.
Fixed the problem where the mimetype of office2007 files could not be set correctly during
uploads.
Fixed the problem where the system would time out and quit when it encountered an empty
directory during the batch_upload_file operation.

PHP SDK (2014-06-25)

Download address:oss_php_sdk_20140625 New functions:

Added the CORS setting function

PHP SDK V1 (2013-06-25)

PHP SDK (2012-10-10)

This version mainly includes a change to the domain name generation rules according to the newly

Object Storage Service SDK Reference

220

1.

2.

3.

4.

-

-

1.

2.

-

-

released API

PHP SDK (2012-08-17)

This version is primarily designed to solve the problem where fix get_sign_url could not set Expires

PHP SDK (2012-06-12)

Updates:

Fixed the bugs in hostname setting
Optimized internal exception handling
Added support for third-level domain names, e.g. bucket.storage.aliyun.com
Optimized the demo program to make it simpler

C SDK

OSS C SDK Documentation

Click to View

OSS C SDK (2015-08-17) Version 0.04

Download address:

Linux:aliyun_OSS_C_SDK_v0.04.tar.gz
Windows:aliyun_OSS_C_SDK_windows_v0.0.4.rar

Updates:

Supports keeplive persistent connections
Supports lifecycle settings

OSS C SDK (2015-07-08) Version 0.03

Download address:

Linux:aliyun_OSS_C_SDK_v0.03.tar.gz
Windows:aliyun_OSS_C_SDK_windows_v0.0.3.rar

Updates:

Object Storage Service SDK Reference

221

1.

2.

1.

2.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Added oss_append_object_from_buffer interface, allowing the user to append buffer
content to the object
Added oss_append_object_from_file interface, allowing the user to append file content to
the object

OSS C SDK (2015-06-10) Version 0.0.2

Updates:

Added the oss_upload_part_copy interface to support the Upload Part Copy method
Enabled temporary access to OSS through temporary authorization from STS service

OSS C SDK (2015-05-28) Version 0.0.1

Updates:

Added the oss_create_bucket interface to create OSS buckets
Added the oss_delete_bucket interface to delete OSS buckets
Added the oss_get_bucket interface to get OSS buckets' ACLs
Added the oss_list_object interface to list objects in OSS buckets
Added oss_put_object_from_buffer interface, allowing the user to upload buffer content to
the object
Added oss_put_object_from_file interface, allowing the user to upload file content to the
object
Added oss_get_object_to_buffer interface, allowing the user to download object content to
the buffer
Added oss_get_object_to_file interface, allowing the user to download object content to the
file
Added the oss_head_object interface, to get objects' user meta information
Added the oss_delete_object interface to delete objects
Added the oss_copy_object interface to copy objects
Added the oss_init_multipart_upload interface to initialize multipart uploads
Added oss_upload_part_from_buffer interface, allowing the user to upload buffer content
to the part
Added oss_upload_part_from_file interface, allowing the user to upload file content to the
part
Added the oss_list_upload_part interface, which retrieves information for all uploaded
parts
Added the oss_complete_multipart_upload interface for multipart upload
Added the oss_abort_multipart_upload interface to cancel multipart upload events
Added the oss_list_multipart_upload interface to get all multipart upload events in the
bucket
Added the oss_gen_signed_url interface to generate a signed URL
Added the oss_put_object_from_buffer_by_url interface to upload the buffer content to the

Object Storage Service SDK Reference

222

21.

22.

23.

24.

-

-

-

-

-

-

object using the URL signature method
Added the oss_put_object_from_file_by_url interface to upload the file content to the
object using the URL signature method
Added the oss_get_object_to_buffer_by_ur interface download the object content to the
buffer using the URL signature method
Added the oss_get_object_to_file_by_ur interface to download the object content to the
file using the URL signature method
Added the oss_head_object_by_url interface to get objects' user meta information using
the URL signature method

OSS NodeJs SDK

OSS NodeJs SDK

The link to github is as follows: NodeJs SDK

.NET SDK

.NET SDK Documentation

Click to View

.NET SDK (05-28-2015)

Download address:aliyun_dotnet_sdk_20150528

Updates:

2015/05/28

Added Bucket Lifecycle support. Adding and removing Lifecycle rules allowed;
Added the DoesBucketExist and DoesObjectExist interfaces for determining the existence of
Bucket and Objects;
Added SwitchCredentials so as to be able to change user account information at runtime;
Added the ICredentialsProvider interface class to provide a policy for generating customized
Credentials through its implementation.
Added GeneratePostPolicy interface to generate Post Policy；
Added asynchronization interface (supporting Put/Get/List/Copy/PartCopy asynchronous

Object Storage Service SDK Reference

223

-

-

-

-

-

-

-

-

-

-

●

●

●

-

●

-

●

-

●

-

-

-

operations);
Added STS support.
Added custom time calibration function. It can be set through the Client configuration item -
SetCustomEpochTicks interface;
Added support for Chunked encoding transfer. The Content-Length item can be skipped
when uploading;
Fixed the bug of getting null results after setting the Expose Header attribute in Bucket
CORS;
Fixed the bug of SDK only getting the first Prefix out of multiple prefixes contained in
CommonPrefixs returned in an ListObjects request.
Fixed the bug of RequestId and HostId resolved to null in response to an OSS-related
exception;
Fixed the bug of encoding error due to the inclusion of Chinese characters in the source key
of the CopyObject/CopyPart interface;

.NET SDK (01-15-2015)

Download address:aliyun_dotnet_sdk_20150115

Environment requirements:

.NET Framework 4.0 and above
A registered user account on AliCloud.com

Assembly:Aliyun.OSS.dll

Version:1.0.5492.31618

Package structure:

bin
Aliyun.OSS.dll .NET assembly file
Aliyun.OSS.pdb debugging and project status information file
Aliyun.OSS.xml Assembly comments file

doc
Aliyun.OSS.chm Help file

src
SDK source code

sample
Sample code

Updates:

Removed OTS branch, assembly renamed to Aliyun.OSS.dll
.NET Framework version upgraded to 4.0 and above
OSS: Added interfaces for Copy Part, Delete Objects, Bucket Referer List, etc.

Object Storage Service SDK Reference

224

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

OSS: Added the ListBuckets pagination function
OSS: Added CNAME support
OSS: Fixed the Put/GetObject flow interruption problem
OSS: Added samples

.NET SDK (06-26-2014)

Download address:aliyun_dotnet_sdk_20140626

Open Services SDK for .NET included OSS and OTS SDKs..NETSDK used the same interface design as
Java SDK and made some improvements based on C#. (The latest version supports multipart uploads
to the OSS)

Environment requirements:

.NET Framework 3.5 SP1 or above
A registered user account on AliCloud.com, and a subscription to related services (OSS, OTS).

Updates: 2014/06/26- OSS:

Added CORS functionality.

2013/09/02- OSS:

Fixed the bug of being unable to throw correct exceptions in some cases.
Optimized SDK performance.

2013/06/04- OSS:

Changed the default OSS service access method to a third-level domain name access
method.

2013/05/20- OTS:

Updated the default OTS service address to:http://ots.aliyuncs.com
Added Mono support.
Fixed some bugs in the SDK, so that it runs more stably.

2013/04/10- OSS:

Added Object Multipart Upload functionality.
Added Copy Object functionality.
Added the ability to generate pre-signed URLs.
Isolated the IOSS interface to be inherited by OssClient.

2012/10/10- OSS:

Updated the default OSS service address to:http://oss.aliyuncs.com

Object Storage Service SDK Reference

225

-

-

-

-

-

-

-

-

-

-

2012/09/05- OSS:

Resolved the problem of invalid parameters like Prefix for ListObjects.

2012/06/15- OSS:

Added OSS support for the first time.Included basic operations, such as create, modify, read
and delete, on OSS Bucket, ACL and Object.
OTS:
OTSClient.GetRowsByOffset supports reverse read.
Added an automatic error handling mechanism for special requests.
Added HTML help files.

2012/05/16- OTS

Client.GetRowsByRange supports reverse read.

2012/03/16- OTS

Access interface, including table/table group creation, modification, and deletion, as well as
data insertion, modification, deletion, query, etc.
Client access settings, such as proxy and HTTP connection attribute settings
Unified the structure for exception handling.

Object Storage Service SDK Reference

226

	SDK Reference
	Java-SDK
	Preface
	Introduction
	SDK Download
	Version Revisions
	Java SDK (2015-07-10) Version 2.0.5
	Java SDK (2015-05-29) Version 2.0.4
	Java SDK (2015-04-24) Version 2.0.3
	Java SDK (2015-03-23) Version 2.0.2
	Java SDK (2015-01-15) Version 2.0.1
	Java SDK Development Kit (2014-11-13) Version 2.0.0

	Installation
	Directly Using the JAR Package in Eclipse
	Using SDKs in Maven Projects

	Quick Start
	Step-1. Initialize an OSSClient
	Step-2. Creating Buckets
	Step-3. Upload objects
	Step-4. Listing all objects
	Step-5. Retrieving a specified object

	OSSClient
	Creating the OSSClient
	Configuring the OSSClient
	Using a Proxy
	Setting Network Parameters

	Bucket
	Naming Rules
	Creating Buckets
	Listing all Buckets of a User
	CNAME Access
	Determining If a Bucket Exists
	Setting Bucket ACL
	Retrieving Bucket ACL
	Retrieving Bucket Addresses
	Deleting Buckets

	Object
	Naming Rules
	Uploading Objects
	Simplest Upload
	Creating Simulated Folders
	Setting the Object's Http Header
	User-Defined Metadata
	Upload Through Chunked Encoding
	Append Object
	Multipart Upload

	List Bucket Objects
	Listing Objects
	Extended Parameters
	Folder Function Simulation
	List All Bucket Files
	Recursively List All Files in a Directory
	List Files and Subdirectories in a Directory

	Retrieving Objects
	Simply Getting Object
	Using GetObjectRequest to Retrieve Objects
	Directly Downloading Objects to Files
	Only Retrieve ObjectMetadata

	Deleting Objects
	Copying Objects
	Copying One Object
	Using CopyObjectRequest to Copy Objects

	POST Method File Uploads
	Generating POST Policy
	Generating Post Signature

	Multipart Upload
	Step-By-Step Multipart Upload
	Initializing Multipart Upload
	Upload Part Local Upload
	Upload Part Local Chunked Upload
	Upload Part Copy
	Completing Multipart Uploads

	Canceling Multipart Upload Tasks
	Getting All Multipart Upload Tasks in the Bucket
	Getting Information for All Uploaded Parts

	Anti-leech Settings
	Setting the Referer White List
	Retrieving the Referer White List
	Clearing the Referer White List

	Lifecycle Management
	Setting Lifecycles

	Authorized Access
	Using STS Service Temporary Authorization
	Introduction
	Using STS Credentials to Construct Signed Requests

	Using URL Signature to Authorize Access
	Generating a Signed URL
	Generating a Signed URL
	Generating Other HTTP Method URLs
	Adding User-defined Parameters (UserMetadata)

	Using Signed URLs to Send Requests
	Using the getobject URL Signature Method
	Using the putobject URL Signature Method

	Cross-Origin Resource Sharing (CORS)
	Setting CORS Rules
	Retrieving CORS Rules
	Deleting CORS Rules

	Exceptions
	ClientException
	OSSException

	Python-SDK
	Installation
	Environment Requirements
	Installing and Verifying SDK
	Installing the SDK

	Preface
	Introduction
	Version Revisions
	Python SDK Development Kit (2015-07-07) Version 0.4.0
	Python SDK Development Kit (2015-06-24) Version 0.3.9
	Python SDK Development Kit (2015-04-13) Version 0.3.8
	Python SDK Development Kit (2015-01-29) Version 0.3.7
	Python SDK Development Kit (2014-12-31) Version 0.3.6
	Python SDK Development Kit (2014-05-09)

	Quick Start
	Step-1. Initializing an OssAPI
	Step-2. Creating Buckets
	Step-3. Uploading objects
	Step-4. Listing all objects
	Step-5. Retrieving a specified object

	Bucket
	Naming Rules
	Creating Buckets
	Listing all Buckets of a User
	CNAME Access
	Setting Bucket ACL
	Retrieving Bucket ACL
	Retrieving Bucket Addresses
	Deleting Buckets

	OssAPI
	Initializing OssAPI
	Configuring OssAPI

	Object
	Naming Rules
	Uploading Objects
	Simple Upload
	Creating Simulated Folders
	Setting the Object's Http Header
	Setting User Meta
	Multipart Upload

	List Bucket Objects
	Listing Objects
	Extended Parameters
	Folder Function Simulation

	Retrieving Objects
	Reading Objects
	Directly Downloading Objects to Files
	Only Retrieve ObjectMetadata

	Deleting Objects
	Copying Objects
	Copying One Object
	Modifying Object Meta

	Multipart Upload
	Step-By-Step Multipart Upload
	Initialization
	Upload Part Local Upload
	Completing Multipart Uploads

	Canceling Multipart Upload Tasks
	Getting All Multipart Upload Tasks in the Bucket
	Getting Information for All Uploaded Parts

	Error Responses
	Error Response Handling
	Common Error Codes

	Lifecycle Management
	Setting Lifecycles
	Retrieving Lifecycle Rules
	Deleting Lifecycle Rules

	Cross-Origin Resource Sharing (CORS)
	Setting CORS Rules
	Retrieving CORS Rules
	Deleting CORS Rules

	Android-SDK
	Preface
	Description
	About OSS
	SDK download

	Installation
	1. Use in the OneSDK
	2. Direct Use in Eclipse
	3. Permission Setting

	Initialization
	1. Getting the OSS Service
	2. Application Context Import
	3. Setting the Data Center Domain Name
	4. Token Generator Settings
	5. Custom Reference Time Setting
	6. Network-related Settings
	7. Initialization Overview

	Access control
	1. Original AK/SK authentication
	2. STS token authentication

	Bucket Operations
	1. Bucket settings
	1.1 Stating Bucket Access Permissions
	1.2 Setting the Data Center Domain Name or CNAME
	1.3 Setting CDN Domains

	2. Initialization Overview
	3. List Objects

	Data Storage
	1. Data Downloads
	2. Asynchronous Data Download Version
	3. Retrieving the Data Input Stream
	4. Data Uploads
	5. Data Deletion
	6. Data Copying
	7. Specifying a Range During Downloads
	8. Adding Custom Meta Attributes During Uploads
	9. Generating Data URLs
	10. Canceling Asynchronous Upload/Download Tasks

	File Operations
	1. Downloading to Files
	3. Retrieving a File Input Stream
	3. Uploading From Files
	4. Other Common Operations
	5. Breakpoint Downloads
	6. Resuming From Breakpoints

	Retrieving Meta
	Independent Multipart Uploads
	Complete Examples
	Exception Handling
	1. Local Exceptions
	2. OSS Exceptions

	iOS-SDK
	Preface
	Description
	About OSS
	SDK download

	Installation
	1. Direct Use in Xcode
	2. Introducing Header Files

	Initialization
	1. Getting the OSS Service
	2. Setting the Data Center Domain Name
	3. Token Generator Settings
	4. Custom Reference Time Setting

	Access control
	1. Original AK/SK authentication
	2. Federation token authentication

	Bucket Operations
	1. Bucket settings
	1.1 Stating Bucket Access Permissions
	1.2 Setting the Data Center Domain Name or CNAME
	1.3 Setting CDN Domains

	2. Initialization Overview
	3. List Objects

	Data Storage
	1. Data Downloads
	2. Asynchronous Data Download Version
	3. Data Uploads
	4. Data Deletion
	5. Data Copying
	6. Generating Data URLs
	7. Cancelling Asynchronous Uploads/Downloads
	8. Adding Custom Meta Attributes During Uploads

	File Operations
	1. Downloading to Files
	2. Uploading From Files
	3. Remaining Common Operations
	4. Resumable Data Transfer

	Retrieving Meta
	Independent Multipart Uploads
	Exception Handling
	1. Local Exceptions
	2. OSS Exceptions

	.NET-SDK
	Preface
	Introduction
	SDK download
	Version Revisions
	.NET SDK (2015-05-28)
	.NET SDK (2015-01-15)
	.NET SDK (2014-06-26)

	Installation
	Using the SDK Directly from within Visual Studio

	Quick Start
	Step-1. Initialize an OSSClient
	Step-2. Create a bucket
	Step-3. Upload objects
	Step-4. List all objects
	Step-5. Retrieve a specified object

	OssClient
	Creating the OSSClient
	Configuring the OSSClient
	Setting Network Parameters
	Using a Proxy

	Bucket
	Naming Rules
	Creating Buckets
	Listing all Buckets of a User
	CNAME Access
	Determining If a Bucket Exists
	Setting Bucket ACL
	Retrieving Bucket ACL
	Deleting Buckets

	Object
	Naming Rules
	Uploading Objects
	Simple Upload
	Creating Simulated Folders
	Setting the Object's Http Header
	User-Defined Metadata
	Multipart Upload

	List Bucket Objects
	Listing Objects
	Extended Parameters
	Folder Function Simulation
	List All Bucket Files
	Recursively List All Files in a Directory
	List Files and Subdirectories in a Directory

	Retrieving Objects
	Simply Getting Object
	Using GetObjectRequest to Retrieve Objects
	Only Retrieve ObjectMetadata

	Deleting Objects
	Copying Objects
	Copying One Object
	Modifying Object Meta

	Multipart Upload
	Step-By-Step Multipart Upload
	Initializing Multipart Upload
	Upload Part Local Upload
	Upload Part Copy
	Completing Multipart Uploads

	Canceling Multipart Upload Tasks
	Getting All Multipart Upload Tasks in the Bucket
	Getting Information for All Uploaded Parts

	Anti-leech Settings
	Setting the Referer White List
	Retrieving the Referer White List
	Clearing the Referer White List

	Lifecycle Management
	Setting Lifecycles

	Authorized Access
	Using STS Service Temporary Authorization
	Introduction
	Using STS Credentials to Construct Signed Requests

	Using URL Signature to Authorize Access
	Generating a Signed URL
	Generating a Signed URL
	Generating Other HTTP Method URLs

	Using Signed URLs to Send Requests
	Using the putobject URL Signature Method

	Cross-Origin Resource Sharing (CORS)
	Setting CORS Rules
	Retrieving CORS Rules
	Deleting CORS Rules

	Exceptions
	ClientException
	OSSException

	PHP-SDK
	OSS PHP SDK Documentation
	Introduction
	ChangeHistory
	Naming Rules
	Pre-dependency Check
	Initializing Resources
	Bucket-related Operations
	Object-related Operations
	MultipartUpload-related Operations
	Lifecycle Management
	Cross-origin Resource Sharing (CORS)
	Static Website Hosting
	Logging
	Anti-leech Protection (Referer)
	URL Signature Operations

	C-SDK
	Preface
	Introduction
	Version Revisions
	OSS C SDK (2015-08-17) Version 0.04
	OSS C SDK (2015-07-08) Version 0.03
	OSS C SDK (2015-06-10) Version 0.0.2
	OSS C SDK (2015-05-28) Version 0.0.1

	Installation
	Quick Start
	Step-1. Initializing the OSS C SDK Runtime Environment
	Step-2. Initializing an oss_request_options
	Step-3. Creating Buckets
	Step-4. Uploading Objects
	Step-5. Listing All Objects
	Step-6. Retrieving a specified object

	oss_request_options
	Initializing oss_request_options
	Configuring oss_request_options

	Bucket
	Naming Rules
	Creating Buckets
	Retrieving Bucket ACL
	Deleting Buckets

	Object
	Naming Rules
	Uploading Objects
	Simple Upload
	Creating Simulated Folders
	Setting the Object's Http Header
	Setting User Meta
	Append Object
	Multipart Upload

	List Bucket Objects
	Extended Parameters

	Retrieving Objects
	Reading Objects
	Copying Objects
	Copying One Object

	Multipart Upload
	Step-By-Step Multipart Upload
	Initialization
	Upload Part Local Upload
	Completing Multipart Uploads
	Canceling Multipart Upload Tasks
	Getting Information for All Uploaded Parts
	Multipart Upload Copy

	Lifecycle Management
	Setting Lifecycles

	Authorized Access
	Using STS Service Temporary Authorization
	Introduction
	Using STS Credentials to Construct Signed Requests

	URL Signature Authorization
	Generating a Signed URL
	Using Signed URLs to Send Requests

	Error Responses
	Common Error Codes

	Download SDK
	Java SDK
	Java SDK Documentation
	Java SDK (2015-07-10) Version 2.0.5
	Java SDK (2015-05-29) Version 2.0.4
	Java SDK (2015-04-24) Version 2.0.3
	Java SDK (2015-03-23) Version 2.0.2
	Java SDK (2015-01-15) Version 2.0.1
	Java SDK (2014-11-13)

	Python SDK
	Python SDK Documentation
	Python SDK (2015-09-09) Version 0.4.2
	Python SDK (2015-08-11) Version 0.4.1
	Python SDK (2015-07-07) Version 0.4.0
	Python SDK (2015-06-24) Version 0.3.9
	Python SDK (2015-04-13) Version 0.3.8
	Python SDK (2015-01-29) Version 0.3.7
	Python SDK (2014-12-31) Version 0.3.6
	Python SDK (2014-05-09)

	Android SDK
	Android SDK Documentation (for version 1.2.0 in particular)
	Android SDK (07-31-2015) Version 1.3.0
	Android SDK (07-01-2015) Version 1.2.0
	Android SDK (06-02-2015) Version 1.1.0
	Android SDK (04-07-2015) Version 1.0.0
	Android SDK Documentation (for version 0.3.0 in particular)
	Android SDK (01-23-2015) Version 0.3.0
	Android SDK (12-20-2014) Version 0.2.2
	Android SDK (12-17-2014) Version 0.2.1
	Android SDK (11-26-2014) Version 0.0.1

	iOS SDK
	iOS SDK Documentation (for version 1.3.0 in particular)
	iOS SDK (2015-08-05) Version 1.3.0
	iOS SDK (2015-06-30) Version 1.2.0
	iOS SDK (2015-06-09) Version 1.1.0
	iOS SDK (2015-04-07) Version 1.0.0
	iOS SDK Documentation (for version 0.1.2 in particular)
	iOS SDK (2015-03-04) Version 0.1.2
	iOS SDK (2015-01-20) Version 0.1.1
	iOS SDK (2014-12-22) Version 0.1.0

	PHP SDK
	PHP SDK (2015-08-19)
	Updates
	PHP SDK (2014-06-25)
	PHP SDK V1 (2013-06-25)
	PHP SDK (2012-10-10)
	PHP SDK (2012-08-17)
	PHP SDK (2012-06-12)

	C SDK
	OSS C SDK Documentation
	OSS C SDK (2015-08-17) Version 0.04
	OSS C SDK (2015-07-08) Version 0.03
	OSS C SDK (2015-06-10) Version 0.0.2
	OSS C SDK (2015-05-28) Version 0.0.1

	OSS NodeJs SDK
	OSS NodeJs SDK

	.NET SDK
	.NET SDK Documentation
	.NET SDK (05-28-2015)
	.NET SDK (01-15-2015)
	.NET SDK (06-26-2014)

