# Machine Learning Platform for AI

**Best Practices** 

MORE THAN JUST CLOUD | C-) Alibaba Cloud

# **Best Practices**

# Heart disease prediction

## Overview

Heart disease is the biggest killer of humans. Heart disease causes 33% of deaths in the world. In China, hundreds and thousands of people die of heart disease every year. Data mining has become extremely important for heart disease prediction and treatment. It uses the relevant health exam indicators and analyzes their influences on heart disease. This document introduces how to use Alibaba Cloud Machine Learning Platform for AI to create a heart disease prediction model based on the data collected from heart disease patients.

## Datasets

| Name     | Definition          | Data Type | Description                                                                                |
|----------|---------------------|-----------|--------------------------------------------------------------------------------------------|
| age      | Age                 | string    | Age of a patient. The age attribute only uses numbers.                                     |
| sex      | Gender              | string    | Gender of a patient:<br>female or male.                                                    |
| ср       | Chest pain type     | string    | Chest pain types,<br>including typical,<br>atypical, non-<br>anginal, and<br>asymptomatic. |
| trestbps | Blood pressure      | string    | Blood pressure of a patient.                                                               |
| chol     | cholesterol         | string    | Cholesterol of a patient.                                                                  |
| fbs      | Fasting blood sugar | string    | True means that a patient's fasting blood sugar is                                         |

Data source UCI Heart Disease Dataset. This dataset is created based on 303 cases of heart disease in the United States. The attributes are as follows:

|         |                                                          |        | greater than 120<br>mg/dl. False means<br>that a patient's<br>fasting blood sugar<br>is equal to or less<br>than 120 mg/dl.                                                   |
|---------|----------------------------------------------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| restecg | Resting<br>electrocardiographic<br>result                | string | The resting<br>electrocardiographic<br>results include<br>normal, having ST-T<br>wave abnormality,<br>and showing<br>probable or definite<br>left ventricular<br>hypertrophy. |
| thalach | Maximum heart rate achieved                              | string | Maximum heart rate of a patient.                                                                                                                                              |
| exang   | Exercise induced<br>angina                               | string | True means that a<br>patient has exercise<br>induced angina.<br>False means that a<br>patient does not<br>have exercise<br>induced angina.                                    |
| oldpeak | ST depression<br>induced by exercise<br>relative to rest | string | ST depression of a patient.                                                                                                                                                   |
| slop    | Slope of the peak<br>exercise ST segment                 | string | Slopes of the peak<br>exercise ST segment,<br>including down, flat,<br>and up.                                                                                                |
| са      | Number of major<br>vessels colored by<br>flouroscopy     | string | Number of major<br>vessels colored by<br>flouroscopy                                                                                                                          |
| thal    | Defect type                                              | string | defect types,<br>including norm, fix,<br>and rev.                                                                                                                             |
| status  | Heart disease status                                     | string | Health means that a<br>patient does not<br>have heart disease.<br>Sick means that a<br>patient has heart<br>disease.                                                          |

## Data exploring procedure

The following figure shows the procedure of data mining:



The following figure shows the workflow of the project:



## Data pre-processing

Data pre-processing, also known as data cleaning, is the process of analyzing and making changes to the source data, including irrelevant data removal, incomplete data fixing, and data type conversion. With 14 indicators and one goal field, this project focuses on predicting the presence or absence of heart disease in patients based on their health exam indicators. The project uses one of the generalized linear models: logistic regression. Additionally, the data type of all input indicators is double.

All input data:

| Data explo | Jata exploration - pai_online_project.heart_disease_prediction - (Show top one hundred rows.) |       |      |             |        |       |           |           |         |           | ки <b>х</b> |      |        |          |         |    |
|------------|-----------------------------------------------------------------------------------------------|-------|------|-------------|--------|-------|-----------|-----------|---------|-----------|-------------|------|--------|----------|---------|----|
| Index .    | 200 •                                                                                         | 50Y + | CD • | tractions . | chol + | fbs . | restern + | thalach + | exand • | oldnosk + | slon +      | C2 + | thal . | ctatue . | chila . |    |
| 1          | 63.0                                                                                          | male  | an   | 145.0       | 233.0  | true  | hyp       | 150.0     | fal     | 2.3       | down        | 0.0  | fix    | buff     | H       | 11 |
| 2          | 67.0                                                                                          | male  | as   | 160.0       | 286.0  | fai   | hyp       | 108.0     | true    | 1.5       | flat        | 3.0  | norm   | sick     | S2      |    |
| 3          | 67.0                                                                                          | male  | as   | 120.0       | 229.0  | fal   | hyp       | 129.0     | true    | 2.6       | flat        | 2.0  | rev    | sick     | S1      |    |
| 4          | 37.0                                                                                          | male  | not  | 130.0       | 250.0  | fal   | norm      | 187.0     | fal     | 3.5       | down        | 0.0  | norm   | buff     | н       |    |
| 5          | 41.0                                                                                          | fem   | ab   | 130.0       | 204.0  | fal   | hyp       | 172.0     | fal     | 1.4       | up          | 0.0  | norm   | buff     | н       |    |
| 6          | 56.0                                                                                          | male  | ab   | 120.0       | 236.0  | fal   | norm      | 178.0     | fal     | 0.8       | up          | 0.0  | norm   | buff     | н       |    |
| 7          | 62.0                                                                                          | fem   | as   | 140.0       | 268.0  | fal   | hyp       | 160.0     | fal     | 3.6       | down        | 2.0  | norm   | sick     | \$3     |    |
| 8          | 57.0                                                                                          | fem   | as   | 120.0       | 354.0  | fal   | norm      | 163.0     | true    | 0.6       | up          | 0.0  | norm   | buff     | н       |    |
| 9          | 63.0                                                                                          | male  | as   | 130.0       | 254.0  | fal   | hyp       | 147.0     | true    | 1.4       | flat        | 1.0  | rev    | sick     | S2      |    |
| 10         | 53.0                                                                                          | male  | as   | 140.0       | 203.0  | true  | hyp       | 155.0     |         | 3.1       | down        | 0.0  | rev    | sick     | S1      |    |
| 11         | 57.0                                                                                          | male  | as   | 140.0       | 192.0  | fal   | norm      | 148.0     | fal     | 0.4       | flat        | 0.0  | fix    | buff     | н       |    |

During data pre-processing, we must convert data of string and text types to numeric type based on the definition of the data.

### Boolean data

For example, you can set the sex attribute to 0 to indicate female and set the attribute to 1 to indicate male.

Multivalued data

For example, you can use 0 through 3 to numerically rate the chest pain in ascending order for the cp attribute.

The data pre-processing is based on SQL scripts. Learn more, see the SQL script-1 component as follows:

select age, (case sex when 'male' then 1 else 0 end) as sex, (case cp when 'angina' then 0 when 'notang' then 1 else 2 end) as cp, trestbps, chol, (case fbs when 'true' then 1 else 0 end) as fbs, (case restecg when 'norm' then 0 when 'abn' then 1 else 2 end) as restecg, thalach, (case exang when 'true' then 1 else 0 end) as exang, oldpeak, (case slop when 'up' then 0 when 'flat' then 1 else 2 end) as slop, ca, (case thal when 'norm' then 0 when 'fix' then 1 else 2 end) as thal, (case status when 'sick' then 1 else 0 end) as ifHealth from \${t1};

### Feature engineering

Feature engineering includes feature derivation and scale change. This project uses the feature selection and data normalization components for feature engineering.

Filter-based feature selection

This component measures the influence of each indicator on the prediction results by using the entropy and Gini coefficient. You can view the final prediction results in the assessment report.



### Data normalization

This project requires you to train your model by using dichotomous logistic regression. Therefore, you must avoid using different fundamental units for the indicators. Data normalization uses the following formula to ensure that all indicators use a value between 0 and 1: result = (val-min) / (max-min).

K7 X

| The following               | figure shows the results of data normalization: |  |
|-----------------------------|-------------------------------------------------|--|
| Data exploration - pai temp | 21028 1317476 1 - (Show top one hundred rows.)  |  |

|         | _     |      |       |           |         |        |        |            |        |            |        |           |           |                       |
|---------|-------|------|-------|-----------|---------|--------|--------|------------|--------|------------|--------|-----------|-----------|-----------------------|
| Index 🔺 | sex 🔺 | cp 🔺 | fbs 🔺 | restecg 🔺 | exang 🔺 | slop 🔺 | thal 🔺 | ifhealth 🔺 | age 🔺  | trestbps 🔺 | chol 🔺 | thalach 🔺 | oldpeak 🔺 | ca 🔺                  |
| 1       | 1     | 0    | 1     | 1         | 0       | 1      | 0.5    | 0          | 0.70   | 0.4811320  | 0.244  | 0.603053  | 0.370967  | 0                     |
| 2       | 1     | 1    | 0     | 1         | 1       | 0.5    | 0      | 1          | 0.79   | 0.6226415  | 0.365  | 0.282442  | 0.241935  | 1                     |
| 3       | 1     | 1    | 0     | 1         | 1       | 0.5    | 1      | 1          | 0.79   | 0.2452830  | 0.235  | 0.442748  | 0.419354  | 0.6666666666666666    |
| 4       | 1     | 0.5  | 0     | 0         | 0       | 1      | 0      | 0          | 0.16   | 0.3396226  | 0.283  | 0.885496  | 0.564516  | 0                     |
| 5       | 0     | 1    | 0     | 1         | 0       | 0      | 0      | 0          | 0.25   | 0.3396226  | 0.178  | 0.770992  | 0.225806  | 0                     |
| 6       | 1     | 1    | 0     | 0         | 0       | 0      | 0      | 0          | 0.5625 | 0.2452830  | 0.251  | 0.816793  | 0.129032  | 0                     |
| 7       | 0     | 1    | 0     | 1         | 0       | 1      | 0      | 1          | 0.6875 | 0.4339622  | 0.324  | 0.679389  | 0.580645  | 0.66666666666666666   |
| 8       | 0     | 1    | 0     | 0         | 1       | 0      | 0      | 0          | 0.58   | 0.2452830  | 0.520  | 0.702290  | 0.096774  | 0                     |
| 9       | 1     | 1    | 0     | 1         | 0       | 0.5    | 1      | 1          | 0.70   | 0.3396226  | 0.292  | 0.580152  | 0.225806  | 0.3333333333333333333 |

### Model training and prediction

Supervised learning requires you to train your model to obtain the prediction results and compare the prediction results with the existing data. In this project, supervised learning is used to train the model to predict the presence or absence of heart disease in a group of patients.

### Data split

Use the split component to split the data into the training dataset and predicting dataset at the ratio of 7:3. The training dataset is imported to the dichotomous logistic regression component for model training. The predicting dataset is imported to the prediction

#### component.

Dichotomous logistic regression

Logistic regression is a linear model. In this project, dichotomous logistic regression (determining the presence or absence of heart disease) is achieved by comparing the prediction results with a threshold. You can learn more about logistic regression from the Internet or relevant documentation. You can view the model that has already been trained by logistic regression on the Model page. K7 X

Logistic Regression Output

| footuro   | weight              |     |  |  |  |  |
|-----------|---------------------|-----|--|--|--|--|
| leature 🔺 | 1.                  | 0 🔺 |  |  |  |  |
| sex       | 1.473569994686197   | •   |  |  |  |  |
| ср        | 2.730064736238172   | •   |  |  |  |  |
| fbs       | -0.6007338270729394 |     |  |  |  |  |
| restecg   | 0.8990240712157691  |     |  |  |  |  |
| exang     | 0.9026382341453308  |     |  |  |  |  |
| slop      | 1.041821068646534   | -   |  |  |  |  |
| thal      | 1.562393603912368   | •   |  |  |  |  |
| age       | -0.4278050593226199 | •   |  |  |  |  |

#### Prediction

The prediction component has two inputs: the model and the predicting dataset. The prediction results show the calculated data, the predicting data, and the probability of inconsistencies between the calculated data and predicting data.

### Assessment

You can use the confusion matrix to assess the attributes of the model, such as the accuracy.

| С | onfusion Matrix  |                   |               |           |            |             |               |         | ку <b>х</b> |
|---|------------------|-------------------|---------------|-----------|------------|-------------|---------------|---------|-------------|
|   | Confusion Matrix | Proportion Matrix | Stats         |           |            |             |               |         |             |
|   | Models 🔺         | true count 🔺      | False count 🔺 | Summary 🔺 | Accuracy 🔺 | Precision 🔺 | Recall Rate 🔺 | F1 🔺    |             |
|   | 0                | 47                | 11            | 58        | 82.418%    | 81.034%     | 90.385%       | 85.455% |             |
|   | 1                | 28                | 5             | 33        | 82.418%    | 84.848%     | 71.795%       | 77.778% |             |

Based on the accuracy of the prediction result, you can determine whether your model is well trained or not.

## **Conclusions**

According to the workflow of data exploring, the following conclusions can be made:

Feature weight

• You can obtain the weight of each indicator in the prediction by using filter-based feature selection.

| featname 🔺 | weight 🔺              |
|------------|-----------------------|
| thalach    | 0.16569171224597157   |
| oldpeak    | 0.14640697618779352   |
| thal       | 0.13769166559906015   |
| са         | 0.11467097546217575   |
| chol       | 0.10267709576600859   |
| age        | 0.07876430484527841   |
| trestbps   | 0.0772599125640569    |
| slop       | 0.07702762609078306   |
| restecg    | 0.015246832497405105  |
| ср         | 0.0037507283721422424 |
| exang      | 0                     |
| fbs        | 0                     |
| sex        | 0                     |

- The maximum heart rate achieved (thalach) indicator has the greatest impact on heart disease prediction.
- The gender indicator does not have any impact on heart disease prediction.

**Prediction results** 

Based on the 14 indicators, the model can predict heart disease with an accuracy of over 80%. This model can be used in heart disease prediction and treatment.

## **Financial risk management**

## Overview

This project is created by using Alibaba Cloud Network Chart. Network Chart is used to illustrate the interconnections among a set of entities, for example, the relationships among a group of people. Unlike hierarchical data, the relationships in Network Chart are represented by nodes and edges (links). The nodes are connected to each other through edges. Alibaba Cloud Machine Learning Platform For AI provides several Network Chart components, including K-Core, largest connected subgraph, and label propagation classification.

## Scenario

The following figure shows the relationships among a group of people. The arrows in the figure represent the relationships between these people (for example, coworkers or relatives). Enoch is a trusted customer and Evan is a fraudulent customer. Based on this information and the relationship graph, Network Chart allows you to calculate the credit scores of the remaining people for financial risk management. By referencing the credit scores, you can make predictions about which of them may be fraudulent customers.



## Datasets

Data source: the dataset in this project is provided by Alibaba Cloud Machine Learning Platform For AI. The dataset includes the following attributes:

| Name        | Definition            | Data Type | Description                                                                     |
|-------------|-----------------------|-----------|---------------------------------------------------------------------------------|
| start_point | Start node of an edge | string    | Name of a person.                                                               |
| end_point   | End node of an edge   | string    | Name of a person.                                                               |
| count       | Relational closeness  | double    | The larger the value<br>is, the closer<br>relationship the two<br>persons have. |

The following figure shows the data entries:

| start_point 🔺 | end_point 🔺 | count 🔺 |
|---------------|-------------|---------|
| Enoch         | Evan        | 10      |
| Enoch         | Gregary     | 2       |
| Gregary       | Hale        | 6       |
| Evan          | Hugo        | 2       |
| Evan          | Jeff        | 4       |
| Gregary       | Keith       | 7       |
| Jeff          | Keith       | 5       |
| Hale          | Jeff        | 11      |
| Keith         | Leif        | 3       |
| Keith         | Lionel      | 1       |
| Leif          | Mick        | 4       |

## Data exploring procedure

The following figure shows the workflow of this project:



## Largest connected subgraph

The largest connected subgraph allows you to find the cluster that contains the most interconnected entities. In this project, the largest connected subgraph divides the people into two groups and assigns each team a group ID (group\_id). The group containing Parker, Rex, and Stan should be removed from the subgraph because the relationship between these people do not affect the prediction results. You can use the SQL script component and JOIN component to remove this group from the subgraph.



## Single-source shortest path

The single-source shortest path allows you to measure the distance (number of nodes) that a start node must pass through to reach an end node.

| start_node 🔺 | dest_node 🔺 | distance 🔺 | distance_cnt 🔺 |
|--------------|-------------|------------|----------------|
| Enoch        | Hale        | 2          | 1              |
| Enoch        | Leif        | 3          | 1              |
| Enoch        | Hugo        | 2          | 1              |
| Enoch        | Keith       | 2          | 1              |
| Enoch        | Jeff        | 2          | 1              |
| Enoch        | Evan        | 1          | 1              |
| Enoch        | Lionel      | 3          | 1              |
| Enoch        | Mick        | 4          | 1              |
| Enoch        | Gregary     | 1          | 1              |
| Enoch        | Noah        | 4          | 1              |
| Enoch        | Enoch       | 0          | 0              |

The following figure shows the distances between Enoch and the others:

## Label propagation classification

Label propagation classification is a semi-supervised classification algorithm. It uses the existing label information of the nodes to predict the label information of the unlabeled nodes. Based on the correlations between the nodes, label propagation classification propagates each label to other nodes.

To use the label propagation classification component, make sure that you have a connected graph containing all entities and the data for labeling. In this project, the data for labeling is imported from the **Read Data Source** component. The weight column shows the probability of a person being a fraudulent customer.

| point 🔺 | point_type 🔺 | weight 🔺 |
|---------|--------------|----------|
| Enoch   | 信用用户         | 1        |
| Evan    | 欺诈用户         | 0.8      |

By SQL filtering, the final results show the probabilities of committing fraud for all people. The larger the value is, the larger probability a person may be fraudulent customer.

| node   | tag 🔺 | weight 🗸            |
|--------|-------|---------------------|
| Hugo   | 欺诈用户  | 1                   |
| Evan   | 欺诈用户  | 0.8                 |
| Noah   | 欺诈用户  | 0.42059743476528927 |
| Jeff   | 欺诈用户  | 0.34784053907648443 |
| Mick   | 欺诈用户  | 0.3113287445872401  |
| Lionel | 欺诈用户  | 0.2938277295951075  |
| Leif   | 欺诈用户  | 0.24091136964145973 |
| Keith  | 欺诈用户  | 0.2264783897173419  |

# **Product recommendation**

## Overview

The parable of beer and diapers is a classic case of data mining utilization. The diapers and beer are irrelevant. However, when the diapers and beer are put next to each other on shelves, both of their sales increase. The problem is how to find the hidden correlation between two irrelevant products. To resolve this problem, you can use collaborative filtering, which is one of the algorithms commonly used in data mining. This algorithm enables you to find the hidden correlation between different customers and products.

Collaborative filtering is a correlation rule-based algorithm. This project takes shopping behaviors as an example, including customers A and B and products X, Y, and Z. If both customers A and B have purchased products X and Y, collaborative filtering determines that customers A and B have similar interests in shopping. Collaborative filtering then recommends product Z to customer B because customer A has purchased product Z. In this case, collaborative filtering works based on customers' interests.

### Scenario:

This project shows how to use the customer shopping behaviors recorded before July to find the correlations between products. We then use this information to recommend relevant products to customers. In addition, the project also makes an assessment of the recommendation results. For example, customer A purchased product X before July. Product X is strongly correlated with product Y. The system then recommends product Y to customer A after July and calculates the probability of customer A purchasing product Y.

## Datasets

Data source: the two datasets are provided by the Tianchi challenges, including the shopping behaviors before July and the shopping behaviors after July.

| Name        | Definition        | Data Type | Description                                                                                                                                                                       |
|-------------|-------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| user_id     | User ID           | string    | User ID of a customer.                                                                                                                                                            |
| item_id     | Product ID        | string    | ID of a product.                                                                                                                                                                  |
| active_type | Shopping behavior | string    | A value of 0<br>indicates that the<br>product page is<br>viewed by the<br>customer. A value of<br>1 indicates that the<br>product is<br>purchased. A value<br>of 2 indicates that |

The attributes are as follows:

|             |              |        | the product is added<br>to the customer's<br>favorites. A value of<br>3 indicates that the<br>product is added to<br>the customer's<br>shopping cart. |
|-------------|--------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| active_date | Purchased at | string | Time when the<br>product is<br>purchased.                                                                                                             |

### The following figure shows the data entries:

| 10944750 | 8689  | 2 | 5月2日 |
|----------|-------|---|------|
| 10944750 | 25687 | 2 | 5月8日 |
| 10944750 | 7150  | 1 | 6月7日 |
| 10944750 | 13451 | 0 | 6月4日 |
| 10944750 | 13451 | 0 | 6月4日 |
| 10944750 | 13451 | 0 | 6月4日 |
| 10944750 | 13451 | 0 | 6月4日 |
| 10944750 | 13451 | 0 | 6月4日 |

## Data exploring procedure

The following figure shows the workflow of this project:



## Collaborative filtering-based recommendation procedure

Load the dataset recorded before July, use SQL scripts to extract the shopping behaviors, and import the data to the collaborative filtering component. Set the **TopN** attribute to 1 for the collaborative filtering component. This allows the collaborative filtering component to find the most similar item for each input item and calculate its weight. Analyze the shopping behaviors and then make predictions about items that are most likely to be purchased by the same customer.



The following figure shows the relevant settings:

| Column Settings                | Parameter Settings |
|--------------------------------|--------------------|
| Similarity Type Optional.      |                    |
| wbcosine                       | \$                 |
| Top N Optional 🕐               |                    |
| 1                              |                    |
| Computation Method Optional (  | 3                  |
| Add                            | \$                 |
| Min Item Quantity Optional (?) |                    |
| 2                              |                    |
| Max Item Quantity Optional (?) |                    |
| 500                            |                    |
| Smoothing Factor Optional (?)  |                    |
| 0.5                            |                    |
| Weighting Coefficient Optional | ?                  |
| 1                              |                    |

The following figure shows the collaborative filtering results. The **itemid** column shows the IDs of the target products. The **similarity** column shows two colon-separated items: ID of the product that is strongly correlated with the target product and the probability of this product being purchased.

| itemid 🔺 | similarity 🔺        |
|----------|---------------------|
| 1000     | 15584:0.2747133918  |
| 10014    | 18712:0.05229603127 |
| 10066    | 3228:0.2650900672   |
| 1008     | 24507:1             |
| 10082    | 18024:0.1781525919  |
| 1010     | 18024:0.2104947227  |
| 10133    | 14020:0.2070609237  |
| 1015     | 18024:0.2104947227  |
| 10151    | 26288:0.4366713611  |
| 10171    | 11080:0.2401992435  |

## **Product recommendations**

The preceding steps show how to list all strongly correlated products. The following figure shows the workflow of using the product similarity list to make recommendations and predicting the recommendation results. For example, if customer A purchased product X and product X is strongly correlated with product Y, product Y then is recommended to customer A.



## **Recommendation results**

This figure shows the statistics components. The full table scan component 1 shows the recommendation list created based on the shopping behaviors before July. By removing any duplicate rows, the final list contains 18,065 entries. The full table scan component 2 shows the number of products (in the recommendation list) that are purchased by the customers. In this project, 90 products are purchased by the customers.



## Conclusions

By referencing the recommendation results, we can still make the following improvements to the project:

The project should include all factors that may influence the recommendation results. For example, the shopping behaviors must be time effective. In this project, the dataset includes shopping behaviors recorded in several months. Using outdated data may prevent you from getting the expected recommendation results. Additionally, the project only focuses on the hidden correlations between the products. The attributes of the recommended products are not taken into consideration. For example, whether the products are frequently rated products or not. If customer A bought a cell phone last month, he may not buy another cell phone the next month. In this case, cell phones are infrequently rated products.

To increase the accuracy of the prediction, this project should use a model trained by machine learning. The latent product associations should be only used as supplementary data.

# Credit card bill statements-based-credit scorecard

## Overview

Scorecard is not only a machine learning algorithm, but also a generic modeling framework used to

build a model for assessing credit risks. In scorecard modeling, the original data is processed by data binning and feature engineering, and then is used to build a linear model.

Scorecard modeling is typically used in credit assessment scenarios, such as for credit card applications and loan disbursements. It is also used in other industries for scoring, including customer service scoring and Alipay credit scoring. This project shows how to use the financial component on Alibaba Cloud Machine Learning Platform for AI to build a scorecard model.

## Datasets

The following dataset contains client information, such as gender, education, marital status, and age, payment history, and credit card billing statements. The payment\_next\_month column (goal field) indicates the probability of a client paying off their credit card debt, as shown in the following figure. A value of 1 indicates that the client will likely pay off the debt and a value of 0 indicates that the client will likely pay off the debt and a value of 0 indicates that the client will not likely pay off the debt.

| Source Table Columns |        | G             |
|----------------------|--------|---------------|
| Columns              | Туре   | Range from o  |
| id                   | STRING | 1,2,3,4,5     |
| limit_bal            | BIGINT | 20000,50000,  |
| sex                  | STRING | 女,男           |
| education            | STRING | 本科            |
| marriage             | STRING | 已婚,未婚         |
| age                  | BIGINT | 24,26,34,37,5 |
| pay_0                | BIGINT | -1,0,2        |
| pay_2                | BIGINT | 0,2           |
| pay_3                | BIGINT | -1,0          |
| pay_4                | BIGINT | -1,0          |
| pay_5                | BIGINT | -2,0          |
| pay_6                | BIGINT | -2,0,2        |
| bill_amt1            | DOUBLE | 2682.0,3913.( |
| bill_amt2            | DOUBLE | 1725.0,3102.( |
| bill_amt3            | DOUBLE | 689.0,2682.0, |
| bill_amt4            | DOUBLE | 0.0,3272.0,14 |
| bill_amt5            | DOUBLE | 0.0,3455.0,14 |
| bill_amt6            | DOUBLE | 0.0,3261.0,15 |
| pay_amt1             | DOUBLE | 0.0,1518.0,20 |
| pay_amt2             | DOUBLE | 689.0,1000.0, |
| pay_amt3             | DOUBLE | 0.0,1000.0,12 |
| pay_amt4             | DOUBLE | 0.0,1000.0,11 |
| pav amt5             |        | 0.0.689.0.100 |

The dataset contains 30,000 entries. You can download the dataset from https://www.kaggle.com/uciml/default-of-credit-card-clients-dataset.

## **Project workflow**

The following figure shows the workflow of this project:



The procedure includes the following major steps:

### Data split

Split the input data into two parts: one for model training and one for prediction result assessment.

### Data binning

Data binning is similar to onehot encoding. It is a process of grouping the input data into data classes (bins). The data values in each bin are replaced by a value, which is the representative of the bin. As shown in the following figure, the binning component groups the age values into a number of age intervals:

| Inday . | Label -   | Constraint |       | WoE    |       | Number  |            |            | Rate    |            |          |
|---------|-----------|------------|-------|--------|-------|---------|------------|------------|---------|------------|----------|
| INDEX A |           | Operator   | Value | WoE 🔺  | Chart | Total 🔺 | Positive 🔺 | Negative 🔺 | Total 🔺 | Positive 🔺 | Negative |
| 0       | (-inf,25] | ~          |       | 0.249  |       | 3082    | 822        | 2260       | 12.84%  | 15.5%      | 12.09%   |
| 1       | (25,27]   | Ŧ          |       | -0.12  | 1 I.  | 2184    | 439        | 1745       | 9.1%    | 8.28%      | 9.33%    |
| 2       | (27,29]   | ~          |       | -0.137 |       | 2421    | 480        | 1941       | 10.09%  | 9.05%      | 10.38%   |
| 3       | (29,31]   | ~          |       | -0.196 | 1 I.  | 2084    | 394        | 1690       | 8.68%   | 7.43%      | 9.04%    |
| 4       | (31,34]   |            |       | -0.2   | 1 I.  | 2791    | 526        | 2265       | 11.63%  | 9.92%      | 12.11%   |
| 5       | (34,37]   | v          |       | -0.016 |       | 2622    | 572        | 2050       | 10.93%  | 10.79%     | 10.96%   |
| 6       | (37,40]   | ~          |       | -0.025 |       | 2224    | 482        | 1742       | 9.27%   | 9.09%      | 9.32%    |
| 7       | (40,43]   | v          |       | 0.026  |       | 1823    | 411        | 1412       | 7.6%    | 7.75%      | 7.55%    |
| 8       | (43,49]   | ~          |       | 0.083  |       | 2628    | 619        | 2009       | 10.95%  | 11.67%     | 10.74%   |
| 9       | (49,+inf) | Ŧ          |       | 0.215  | 1 I I | 2141    | 557        | 1584       | 8.92%   | 10.51%     | 8.47%    |
| -2      | ELSE      | ~          |       |        |       | -       | -          | -          | -       | -          | -        |

### As shown in the following figure, after data binning, each field falls into multiple intervals:

| Index 🔺 | feature 🔺 | json 🔺                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1       | limit_bal | { "bin": ("norm": [( "iv': 0.0712350000000001, "n": 2086, "p": 1155, "prate": 0.356371, "total": 3241, "value": "(-inf,30000]", "woe": 0.669669), ( "iv": 0.011173, "n": 2074, "p":                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2       | age       | { "bin": {"norm": {{ "Nv": 0.008099, "n": 2257, "p": 816, "prate": 0.265539, "total": 3073, "value": "{-inf,25]", "woe": 0.243439}, { "Iv": 0.000492999999999999999, "n": 1744, "p": 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3       | pay_0     | { "bin": {"norm": {{ "NV": 0.047537, "n": 5746, "p": 1052, "prate": 0.154751, "total": 6798, "value": "(-inf,-1]", "woe": -0.436994}, { "IV": 0.170212, "n": 10241, "p": 1515, "prate":                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 4       | pay_2     | { "bin": {"norm": {{ "NV": 0.007126, "n": 2490, "p": 552, "prate": 0.18146, "total": 3042, "value": "{-inf,-2]", "woe": -0.245673}, { "IV": 0.031622, "n": 4077, "p": 758, "prate": 0.156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 5       | pay_3     | { "bin"; {"norm"; {{"iv': 0.007195, "n"; 2680, "p"; 599, "prate"; 0.182678, "total"; 3279, "value"; "(-inf2]", "woe"; -0.237494), {"iv': 0.034982, "n"; 4025, "p"; 728, "prate"; 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 6       | pay_4     | { "bin"; {"norm"; {{"10rm"; {{10rm"; {10rm; |
| 7       | pay_5     | { "bin": {"norm": [{ "IV": 0.004848, "n": 2950, "p": 696, "prate": 0.190894, "total": 3646, "value": "(-inf,-2]", "woe": -0.183394}, { "IV": 0.027291, "n": 3748, "p": 707, "prate": 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 8       | pay_6     | { "bin": {"norm": {{ "Nv": 0.003858, "n": 3166, "p": 767, "prate": 0.195017, "total": 3933, "value": "(-inf,-2]", "woe": -0.156921}, { "Iv": 0.020181, "n": 3839, "p": 774, "prate": 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 9       | bill_amt1 | { "bin": ("norm": [{ "Iv": 0.001837, "n": 1813, "p": 587, "prate": 0.244583, "total": 2400, "value": "(-inf,267]", "woe": 0.133103), { "Iv": 1e-06, "n": 1871, "p": 529, "prate": 0.2204                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 10      | bill_amt2 | { "bin": ("norm": [{ "iv": 0.000424, "n": 1945, "p": 587, "prate": 0.231833, "total": 2532, "value": "(-inf,0]", "woe": 0.062824), { "iv": 5.1e-05, "n": 1777, "p": 492, "prate": 0.2168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

### Population stability index

Population stability index (PSI) is an important metric to identify a shift in the population for credit scorecards, for example, the changes in the population within two months. A PSI value smaller than 0.1 indicates insignificant changes. A PSI value between 0.1 and 0.25 indicates minor changes. A PSI value larger than 0.25 indicates major changes in the population.

By comparing the stability of the population before data split, after data split, and after data binning, the model calculates the final PSI values for all features as follows:

|   | Feature 🔺 | Bin 🔺 | Test % 🔺 | Base % 🔺 | Test - Base 🔺 | In(Test/Base) 🔺 | PSI 🔺  |
|---|-----------|-------|----------|----------|---------------|-----------------|--------|
| + | limit_bal | -     | -        | -        | -             | -               | 0.0019 |
| + | age       | -     | -        | -        | -             | -               | 0.0005 |
| + | pay_0     | -     | -        | -        | -             | -               | 0.0002 |
| + | pay_2     | -     | -        | -        | -             | -               | 0.0006 |
| + | pay_3     | -     | -        | -        | -             | -               | 0.0005 |
| + | pay_4     | -     | -        | -        | -             | -               | 0.0016 |
| + | pay_5     | -     | -        | -        | -             | -               | 0.0015 |
| + | pay_6     | -     | -        | -        | -             | -               | 0.0019 |
| + | bill_amt1 | -     | -        | -        | -             | -               | 0.001  |
| + | bill_amt2 | -     | -        | -        | -             | -               | 0.0025 |
| + | bill_amt3 | -     | -        | -        | -             | -               | 0.0022 |
| + | bill_amt4 | -     | -        | -        | -             | -               | 0.0014 |
| + | bill_amt5 | -     | -        | -        | -             | -               | 0.0011 |
| + | bill_amt6 | -     | -        | -        | -             | -               | 0.0009 |
| + | pay_amt1  | -     | -        | -        | -             | -               | 0.0032 |
| + | pay_amt2  | -     | -        | -        |               | -               | 0.0009 |

### Scorecard training

The following figure shows the scorecard training results:

| Variable + | Selected . | Bin Id + | Variable/Rin    | Const . | Wei        | ght      | Train  |              |         |            |            |         |         |
|------------|------------|----------|-----------------|---------|------------|----------|--------|--------------|---------|------------|------------|---------|---------|
| Valiable = | 00100100 = | birrid = | vanabici biri = |         | Unscaled 🔺 | Scaled 🔺 | WOE 🔺  | Importance 🔺 | Total 🔺 | Positive 🔺 | Negative 🔺 | % Pos 🔺 | % Neg 🔺 |
| intercept  |            | -        |                 | -       | -1.254     | 531      |        |              |         | -          | -          |         |         |
| pay_0      | √          | -        | -               | -       | 0.789      | -        | -      | 4.445e-2     | -       | -          | -          |         |         |
|            | -          | 0        | (-inf,-1]       | -       | -0.34      | -20      | -0.415 |              | 1648    | 266        | 1382       | 19.65   | 29.75   |
|            | -          | 1        | (-1,0]          | -       | -0.51      | -29      | -0.706 | -            | 2943    | 370        | 2573       | 27.33   | 55.38   |
|            |            | 2        | (0,1]           | -       | 0.474      | 27       | 0.562  | -            | 757     | 256        | 501        | 18.91   | 10.78   |
|            | -          | 3        | (1,2]           | -       | 1.618      | 93       | 2.12   | -            | 562     | 398        | 164        | 29.39   | 3.53    |
|            | -          | 4        | (2,+inf)        | -       | 1.747      | 101      | 2.134  | -            | 90      | 64         | 26         | 4.73    | 0.56    |
|            | -          | -2       | ELSE            | -       | 0          | 0        | -      | -            | 0       | 0          | 0          | 0       | 0       |
|            |            | -1       | NULL            |         | 0          | 0        | -      |              | 0       | 0          | 0          | 0       | 0       |
| Iimit_bal  | √          | -        |                 |         | 0.453      | -        | -      | 2.414e-3     | -       | -          | -          | -       |         |
|            | -          | 0        | (-inf,30000]    | -       | 0.299      | 17       | 0.743  | -            | 803     | 305        | 498        | 22.53   | 10.72   |
|            |            | 1        | (30000,50000]   | -       | 0.124      | 7        | 0.269  | -            | 710     | 196        | 514        | 14.48   | 11.06   |
|            | -          | 2        | (50000,70000]   | -       | 0.168      | 10       | 0.208  | -            | 337     | 89         | 248        | 6.57    | 5.34    |
|            | -          | 3        | (70000,100000]  | -       | 0.058      | 3        | 0.161  | -            | 639     | 163        | 476        | 12.04   | 10.25   |
|            | -          | 4        | (100000,140     | -       | 0.02       | 1        | 0.033  | -            | 579     | 134        | 445        | 9.9     | 9.58    |
|            | -          | 5        | (140000,180     | -       | -0.126     | -7       | -0.398 | -            | 684     | 112        | 572        | 8.27    | 12.31   |
|            |            | 6        | (180000.210     | -       | -0.139     | -8       | -0.222 | -            | 486     | 92         | 394        | 6.79    | 8.48    |

The purpose of using the scorecard is to use normalized scores to indicate the weights of the features in the model.

- Unscaled: represents the original weight.
- Scaled: an index that indicates the amount of points that a feature gains or loses. For example, if the pay\_0 feature falls into the (-1,0] bin, the feature gains 29 points. If the pay\_0 feature falls into the (0,1] bin, the feature loses 27 points.
- Importance: represents the influence of each indicator on the prediction results. The larger the value is, the greater influence the indicator has.

#### Modeling results

In this project, the modeling results refer to the credit scores calculated for all clients, as shown in the following figure:

| ata explo | oration - pai_temp_121044_13175 | 77_1 - (Show top one hundred ro | DWS.)               | КЛ<br>123                           |
|-----------|---------------------------------|---------------------------------|---------------------|-------------------------------------|
| Index 🔺   | payment_next_month ▲            | prediction_score 🔺              | prediction_prob 🔺   | prediction_detail 🔺                 |
| 1         | 1                               | 702                             | 0.8426741578827107  | {"0":0.1573258421,"1":0.8426741579} |
| 2         | 0                               | 513                             | 0.17196627060745318 | {"0":0.8280337294,"1":0.1719662706} |
| 3         | 0                               | 543                             | 0.2534425185567956  | {"0":0.7465574814,"1":0.2534425186} |
| 4         | 0                               | 452                             | 0.06944174926097901 | {"0":0.9305582507,"1":0.0694417493} |
| 5         | 0                               | 566                             | 0.33592039510976124 | {"0":0.6640796049,"1":0.3359203951} |
| 6         | 0                               | 472                             | 0.09238878984022982 | {"0":0.9076112102,"1":0.0923887898} |
| 7         | 1                               | 610                             | 0.5314449414477093  | {"0":0.4685550586,"1":0.5314449414} |
| 8         | 0                               | 486                             | 0.11714112722057633 | {"0":0.8828588728,"1":0.1171411272} |
| 9         | 0                               | 492                             | 0.1258877124009584  | {"0":0.8741122876,"1":0.1258877124} |
| 10        | 0                               | 489                             | 0.12060969220628287 | {"0":0.8793903078,"1":0.1206096922} |
| 11        | 1                               | 633                             | 0.6240071289996736  | {"0":0.3759928710,"1":0.6240071290} |
| 12        | 0                               | 590                             | 0.43668648320511594 | {"0":0.5633135168,"1":0.4366864832} |
| 13        | 0                               | 524                             | 0.20197025563113366 | {"0":0.7980297444,"1":0.2019702556} |

## Conclusions

You can use the credit card billing statements of your clients to train a scorecard model to calculate credit scores for all the clients. The credit scores can be used in loans or other credit dependent

financial transactions for assessment.

# Implement image classification by TensorFlow

## Overview

The development of the Internet has generated large volumes of images and voice data. How to effectively make use of this unstructured data has always been a challenge for data mining professionals. The processing of unstructured data usually involves the use of deep learning algorithms. These algorithms can be daunting to use at first sight. In addition, processing this data usually requires powerful GPUs and a large amount of computing resources. This document introduces a method of image recognition using deep learning frameworks. This method can be applied to scenarios such as illicit image filtering, facial recognition, and object detection.

This guide creates an image recognition model using the deep learning framework TensorFlow in Alibaba Cloud Machine Learning Platform for AI. The entire procedure takes about 30 minutes to complete. After the procedure, the system is able to recognize the bird in the following image.



## Dataset

To download the dataset and source code, click Tensorflow\_cifar10 case.

The CIFAR-10 dataset is used in this guide. This dataset contains 60,000 32x32 color images in 10 different categories, such as airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships, and trucks. The dataset is as follows.

| airplane   | 1                                       | X  | -  | X  | *  | *    | 2              |     |       | - Ala |
|------------|-----------------------------------------|----|----|----|----|------|----------------|-----|-------|-------|
| automobile |                                         |    |    |    | -  | No.  |                |     | -     | -     |
| bird       | S                                       | 5  | te |    |    | 4    | 1              |     | 10    | 4     |
| cat        |                                         |    | 4  | 50 |    | 1    | Z.             | đ.  | A.S.  | 20    |
| deer       | 1                                       | 48 | X  | RA | 1  | Y    | Y              | 1   | -     |       |
| dog        | 1                                       | 1  | -  |    | 1  | a)   |                | 18  | A     | N.    |
| frog       | -                                       | 19 | 1  |    |    |      | and the second | 5   |       | 5.0   |
| horse      | - Apr                                   | T. | P  | 2  | 1  | ICAR | 1              | 20  | (A)   | N.    |
| ship       | -                                       |    | 11 | -  | 44 | -    | 2              | 120 | and i |       |
| truck      | ALL |    | 1  |    |    |      |                | 1   | 1     | dia   |

This source data is divided into two parts: 50,000 images are used for training and 10,000 for testing. The 50,000 training images are further divided into five data\_batch files, and the 10,000 testing images form a test\_batch file. The source data contains the following.



## Training procedure

To create an experiment in the machine learning platform, you need to enable GPU usage and activate Object Storage Service (OSS) to store your data.

For more information about the machine learning platform, see machine learning platform console.

For more information about OSS, see OSS console.

### 1. Data preparation

Download the dataset and source code, then decompress them.

Log on to OSS, and create an OSS bucket (For more information, see OSS Document).

Create new directory in OSS bucket. An **aohai\_test** directory is created in this article, and four folders are created under this directory as follows.

|   | Folder Name                    |
|---|--------------------------------|
| î | aohai_test/ Go back up a level |
|   | check_point/                   |
|   | cifar-10-batches-py/           |
|   | predict_code/                  |
|   | train_code/                    |

The role of each folder is as follows:

check\_point: Stores the models that are generated in the experiment.

cifar-10-batches-py: Stores the training data, **file cifar-10-batcher-py**. The prediction data, **file bird\_mount\_bluebird.jpg**.

predict\_code: Stores the code file cifar\_predict\_pai.py.

train\_code: Stores the code file cifar\_pai.py.

Upload the dataset and source code to the corresponding directory of the OSS bucket.

## 2. OSS permissions Configuration

Log on to the machine learning platform, and click **Settings** to configure OSS permissions, as shown in the following figure. For more information, see the "Read OSS buckets" chapter of **Deep learning** 



### 3. Model training

Drag a **Read OSS Bucket** component and a **TensorFlow** component to the canvas, and configure the TensorFlow component as follows.

|                                         | Parameters Setting Execution Optimization                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Read OSS Buck ()<br>TensorFlow (V1.2)-2 | Python Code Files ⑦   oss://tfmnist001.oss-cn-shanghai-inter   Edit in Notebook   Primary Python Files ⑦   Data Source Directory ⑦   oss://tfmnist001.oss-cn-shanghai-inter   Configuration File Hyperparameters and Cust   Configuration File Hyperparameters and Cust   Output Directory (optional) ⑦   oss://tfmnist001.oss-cn-shanghai-inter   TensorFlow Q&A Documentation   Restrict job running hours |

- Python Code File: Select the OSS directory of cifar\_pai.py.
- Data Source Directory: Select the OSS directory of cifar-10-batches-py.

- Output Directory: Select the OSS directory of check\_point.

Click **Run** to start the training procedure.

You can change the number of GPUs by changing the configuration as follows. You can also adjust the number of GPUs in the code.

|                                      | Parameters Setting | Execution Optimization |
|--------------------------------------|--------------------|------------------------|
| Read OSS Buck<br>TensorFlow (V1.2)-2 | Number of GPUs     | ¢                      |

### 4. Training code explanation

Note the following code in cifar\_pai.py:

- The following code creates the training model using the convolutional neural network (CNN).

```
network = input_data(shape=[None, 32, 32, 3],
data_preprocessing=img_prep,
data_augmentation=img_aug)
network = conv_2d(network, 32, 3, activation='relu')
network = max_pool_2d(network, 2)
network = conv_2d(network, 64, 3, activation='relu')
network = conv_2d(network, 64, 3, activation='relu')
network = max_pool_2d(network, 2)
network = fully_connected(network, 512, activation='relu')
network = dropout(network, 0.5)
network = fully_connected(network, 10, activation='softmax')
network = regression(network, optimizer='adam',
loss='categorical_crossentropy',
learning_rate=0.001)
```

- The following code generates the model model.tfl.

```
model = tflearn.DNN(network, tensorboard_verbose=0)
model.fit(X, Y, n_epoch=100, shuffle=True, validation_set=(X_test, Y_test),
show_metric=True, batch_size=96, run_id='cifar10_cnn')
model_path = os.path.join(FLAGS.checkpointDir, "model.tfl")
print(model_path)
model.save(model_path)
```

## 5. Log view

Right-click the TensorFlow component to view the logs generated during the training process.

| View log                                                                               | КЛ         | ×  |
|----------------------------------------------------------------------------------------|------------|----|
| All [1]                                                                                |            | _  |
| ····                                                                                   |            | 11 |
| [1] Sub Instance ID = 2017121217104516313bb3_f6b0_4c31_bfb7_d03c1a49b4de               |            |    |
| [1] http://iogview.odps.aliyun.com/iogview/?                                           |            |    |
| h=http://service.cn.maxcompute.aliyun.com/api&p=pal_huabel&l=2017121217104516313bb3_f6 | <u>b0</u>  |    |
| 4c31_bfb7_d03c1a49b4de&token=eXI0Njc1MzRwN2t4ZkIMSHhkWFBYK1ZiVIVBPSxPRFBTX09           | CTz        |    |
| oxNjY0MDgxODU1MTgzMTExLDE1MTM2NzQ2NDgseyJTdGF0ZW1lbnQiOlt7lkFjdGlvbil6WyJvZ            | <u>HB</u>  |    |
| zOIJIYWQIXSwiRWZmZWN0IjoiQWxsb3ciLCJSZXNvdXJjZSI6WyJhY3M6b2RwczoqOnByb2pIY3            | Rz         |    |
| L3BhaV9odWFiZWkvaW5zdGFuY2VzLziwMTcxMjEyMTcxMDQ1MTYzMTNiYjNfZjZIMF80YzMxX              | <u>2Jm</u> |    |
| YjdfZDAzYzFhNDliNGRill19XSwiVmVyc2lvbil6ijEifQ==                                       |            |    |
| <ul><li>[1] train: 2017-12-12 17:10:49 ps_job:0/0/0[0%] worker_job:0/0/0[0%]</li></ul> |            |    |
| [1] train: 2017-12-12 17:10:54 ps_job:0/0/0[0%] worker_job:0/0/0[0%]                   |            |    |
| <ul><li>[1] train: 2017-12-12 17:11:00 ps_job:1/0/2[0%] worker_job:2/0/2[0%]</li></ul> |            |    |
| <ul><li>[1] train: 2017-12-12 17:11:05 ps_job:1/0/2[0%] worker_job:2/0/2[0%]</li></ul> |            |    |
| <ul><li>[1] train: 2017-12-12 17:11:11 ps_job:1/0/2[0%] worker_job:2/0/2[0%]</li></ul> |            |    |
| <ul><li>[1] train: 2017-12-12 17:11:17 ps_job:1/0/2[0%] worker_job:2/0/2[0%]</li></ul> |            |    |
| <ul><li>[1] train: 2017-12-12 17:11:22 ps_job:1/0/2[0%] worker_job:2/0/2[0%]</li></ul> |            |    |
| <ul><li>[1] train: 2017-12-12 17:11:28 ps_job:1/0/2[0%] worker_job:2/0/2[0%]</li></ul> |            |    |
| <ol> <li>train: 2017-12-12 17:11:33 ps_job:1/0/2[0%] worker_job:2/0/2[0%]</li> </ol>   |            |    |
| <ol> <li>train: 2017-12-12 17:11:39 ps_job:2/0/2[0%] worker_job:2/0/2[0%]</li> </ol>   |            |    |
| <ol> <li>train: 2017-12-12 17:11:44 ps_job:2/0/2[0%] worker_job:2/0/2[0%]</li> </ol>   |            |    |
| [1] train: 2017-12-12 17:11:50 ps_iob:2/0/2[0%] worker_iob:2/0/2[0%]                   |            |    |
| C                                                                                      | lose       | ,  |

Click a logview link and run the following steps to view the logs.

Open the Algo Task under ODPS Tasks.

Double-click the TensorFlow Task.

| Click MV | Vorker | on t | the l | eft, | and | choose | All. |  |
|----------|--------|------|-------|------|-----|--------|------|--|
|          |        |      | _     |      |     | (      |      |  |

| Sma | artFilter Failed(0) | Terminated(2) | All(2) | Long-Tai | ls(0) 📙 Late | ency chart         |
|-----|---------------------|---------------|--------|----------|--------------|--------------------|
|     | FuxiInstance        | LogID         | StdOut | StdErr   | Status       | FinishedPercentage |
| 0   | MWorker#0_0         |               | J      | J        | Terminated   | 100%               |
| 1   | MWorker#1_0         |               | J      | J        | Terminated   | 100%               |

Click **StdOut** to print the training logs.

| Logview [Stdout]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | × |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Logview [Stdout]<br>[2K  Adam   epoch: 100   loss: 0.26830 - acc: 0.9044 iter: 49248/50000<br>[A [ATraining Step: 52093   total loss: [1m [32m0.27007 [0m [0m   time: 17.023s<br>[2K  Adam   epoch: 100   loss: 0.27007 - acc: 0.9056 iter: 49344/50000<br>[A [ATraining Step: 52094   total loss: [1m [32m0.27512 [0m [0m   time: 17.057s<br>[2K  Adam   epoch: 100   loss: 0.27512 - acc: 0.9088 iter: 49440/50000<br>[A [ATraining Step: 52095   total loss: [1m [32m0.27783 [0m [0m   time: 17.090s<br>[2K  Adam   epoch: 100   loss: 0.27783 - acc: 0.9075 iter: 49536/50000<br>[A [ATraining Step: 52096   total loss: [1m [32m0.27609 [0m [0m   time: 17.121s<br>[2K  Adam   epoch: 100   loss: 0.27609 - acc: 0.9053 iter: 49632/50000<br>[A [ATraining Step: 52097   total loss: [1m [32m0.27241 [0m [0m   time: 17.153s<br>[3K  Adam   epoch: 100   loss: 0.271 - acs: 0.9042 iter: 40729(50000 | X |
| [AK] Adam   epoch: 100   loss: 0.27241 - acc: 0.9043 iter: 49726/50000 [A [ATraining Step: 52098   total loss: [1m [32m0.26988 [0m [0m   time: 17.182s [2K] Adam   epoch: 100   loss: 0.26988 - acc: 0.9066 iter: 49824/50000 [A [ATraining Step: 52099   total loss: [1m [32m0.26066 [0m [0m   time: 17.215s [2K] Adam   epoch: 100   loss: 0.26066 - acc: 0.9087 iter: 49920/50000 [A [ATraining Step: 52100   total loss: [1m [32m0.24700 [0m [0m   time: 18.614s [2K] Adam   epoch: 100   loss: 0.24700 - acc: 0.9136   val_loss: 0.80838 - val_acc: 0.8175 iter: 50000/50000 oss://pai-shanghai-test/aohai_test/check_point/model/model.tfl                                                                                                                                                                                                                                                          |   |

More logs are printed as the experiment continues. You can also use the print function to print key information in the code. In this example, you can use the **aac** parameter to view the accuracy of the model.

### 6. Result prediction

You can drag another **TensorFlow** component for use in predicting.

| Ŧ                   |      |              | Parameters Setting                                                                         | Execution Optimization |
|---------------------|------|--------------|--------------------------------------------------------------------------------------------|------------------------|
| Read OSS            | Buck |              | Python Code Files ⑦<br>oss://tfmnist001.oss-<br>Edit in Notebook<br>Primary Python Files ( | cn-shanghal-inter      |
| TensorFlow (V1.2)-3 |      | R 71<br>R 21 | Data Source Directory ⑦<br>oss://tfmnist001.oss-cn-shanghai-inter                          |                        |
|                     |      |              | Output Directory (optio                                                                    | nal) ⑦                 |

- Python Code File: Select the OSS directory of cifar\_predict\_pai.py.
- Data Source Directory: Select the OSS directory of cifar-10-batches-py.
- Output Directory: Select the OSS directory of model model.tfl.

The image that is used for predicting is stored in the **checkpoint** folder.



The prediction result is as follows:

#### Logview [Stdout]



## 7. Predicting code explanation

The following code:

predict\_pic = os.path.join(FLAGS.buckets, "bird\_bullocks\_oriole.jpg")
img\_obj = file\_io.read\_file\_to\_string(predict\_pic)
file\_io.write\_string\_to\_file("bird\_bullocks\_oriole.jpg", img\_obj)

img = scipy.ndimage.imread("bird\_bullocks\_oriole.jpg", mode="RGB")

```
# Scale it to 32x32
img = scipy.misc.imresize(img, (32, 32), interp="bicubic").astype(np.float32, casting='unsafe')
```

# Predict
prediction = model.predict([img])
print (prediction[0])
print (prediction[0])
#print (prediction[0].index(max(prediction[0])))
num=['airplane','automobile','bird','cat','deer','dog','frog','horse','ship','truck']
print ("This is a %s"%(num[prediction[0].index(max(prediction[0]))]))

X

- Reads the image "bird\_bullocks\_oriole.jpg", and scales the image to 32\*32 pixels.
- Passes the image to the function model.predict to evaluate similarity scores.
- Returns the result based on the similarity scores. The class that scores the highest similarity is returned.

**Note**: Because of the randomness of the model training, it is not guaranteed that the model from each training can return accurate results for the predicted image. It is necessary to continuously debug the corresponding parameters to achieve a stable effect. This case is relatively simple and is for reference only.

# **Related download**

# Tensorflow\_cifar10 case

Training data

Training code

Predicting code

Predicting image

# Multiple workers and tasks in TensorFlow case

For detailed usage, see Deep Learning.

Code download for multiple workers and tasks in TensorFlow case.

## Identify the most relevant poluttant for haze

## Background



Air pollution has become one of the top 10 issues that people are worried about. Air pollution, or haze, not only affects how people travel and entertain themselves, but also presents a hazard to public health. This example analyzes the weather data of Beijing collected in 2016 and finds that nitrogen dioxide was the most relevant pollutant for haze (PM 2.5).

Log on to Alibaba Cloud Machine Learning Platform for AI (PAI) Studio to create an air pollution haze prediction experiment by using a template.

## Dataset

Data source: This dataset was created based on the weather data of Beijing in 2016.

Air index data for each hour since January 1, 2016 was collected. The fields are as follows.

| Field | Definition                 | Туре   |
|-------|----------------------------|--------|
| time  | Date, accurate to the day  | string |
| hour  | The hour of the data       | string |
| pm2   | The PM2.5 index.           | string |
| pm10  | The PM10 index.            | string |
| so2   | The sulfur dioxide index.  | string |
| со    | The carbon monoxide index. | string |
| no2   | The carbon dioxide index.  | string |
### Data exploration procedure

The experiment process is as follows.



The entire experiment is divided into four parts: data import and preprocessing (1 in the preceding figure), statistical analysis (2 in the preceding figure), model training and prediction (3 in the preceding figure), and model evaluation and analysis (4 in the preceding figure). The details are as follows.

#### 1. Data import and preprocessing

Data import Click **Data Source**, select **Create Table**, and upload a .txt or .csv file.



After the data is imported, right-click the component and choose **View Data** from the shortcut menu. The result is as follows.

| time 🔺 | hour 🔺 | pm2 | pm10 🔺 | so2 🔺 | C0 🔺 | no2 🔺 |
|--------|--------|-----|--------|-------|------|-------|
| 2016   | 2      | 85  | 123    | 18    | 1.8  | 72    |
| 2016   | 8      | 114 | 127    | 25    | 2.3  | 81    |
| 2016   | 11     | 123 | 140    | 27    | 2.5  | 83    |
| 2016   | 14     | 134 | 150    | 30    | 2.6  | 86    |
| 2016   | 17     | 150 | 168    | 32    | 2.8  | 92    |
| 2016   | 20     | 166 | 191    | 34    | 3    | 97    |
| 2016   | 23     | 179 | 207    | 35    | 3.2  | 101   |
| 2016   | 1      | 190 | 222    | 37    | 3.4  | 104   |
| 2016   | 10     | 225 | 249    | 39    | 3.8  | 107   |
| 2016   | 19     | 244 | 287    | 41    | 4    | 113   |
|        |        |     |        |       |      |       |

#### 1. Data preprocessing

Convert data of the string type to the double type through the Data Type Conversion component.

Convert the target column to a double type of 0 and 1 through the SQL Script component.

In this experiment, "pm2" is listed as the target column. Values larger than 200 are marked as 1 for heavy haze, and values smaller than or equal to 200 are marked as 0. The SQL statement is as follows.

select time,hour,(case when pm2>200 then 1 else 0 end),pm10,so2,co,no2 from \${t1};

#### Normalization

Normalization aims to remove the dimension, that is, to unify the units of pollutants with different indexes.

| time 🔺   | hour 🔺 | _c2 🔺 | pm10 🔺     | so2 🔺         | 00 📥                | no2 🔺               |
|----------|--------|-------|------------|---------------|---------------------|---------------------|
| 20160101 | 2      | 0     | 0.24532224 | 0.21917808219 | 0.36956521739130427 | 0.43312101910828027 |
| 20160101 | 8      | 0     | 0.25363825 | 0.31506849315 | 0.4782608695652173  | 0.49044585987261147 |
| 20160101 | 11     | 0     | 0.28066528 | 0.34246575342 | 0.5217391304347825  | 0.5031847133757962  |
| 20160101 | 14     | 0     | 0.30145530 | 0.38356164383 | 0.5434782608695652  | 0.5222929936305732  |
| 20160101 | 17     | 0     | 0.33887733 | 0.41095890410 | 0.5869565217391303  | 0.5605095541401274  |
| 20160101 | 20     | 0     | 0.38669438 | 0.43835616438 | 0.6304347826086956  | 0.5923566878980892  |
| 20160101 | 23     | 0     | 0.41995841 | 0.45205479452 | 0.6739130434782609  | 0.6178343949044586  |
| 20160102 | 1      | 0     | 0.45114345 | 0.47945205479 | 0.7173913043478259  | 0.6369426751592356  |
| 20160102 | 10     | 1     | 0.50727650 | 0.50684931506 | 0.8043478260869563  | 0.6560509554140127  |
| 20160102 | 19     | 1     | 0.58627858 | 0.53424657534 | 0.8478260869565216  | 0.6942675159235668  |
| 20160102 | 22     | 1     | 0.68191268 | 0.53424657534 | 0.8913043478260869  | 0.7197452229299363  |
| 20160103 | 0      | 1     | 0.74428274 | 0.53424657534 | 0.8913043478260869  | 0.732484076433121   |
| 20160105 | 16     | 0     | 0.06860706 | 0.02739726027 | 0.06521739130434782 | 0.16560509554140126 |

#### 2. Statistical analysis

#### Histogram

The Histogram component allows you to view the distribution of the data in different intervals.

This experiment visually presents the distribution of data in each field. As shown in the following figure, taking PM2.5 (pm2) as an example, the most significant range of values is 11.74 to 15.61, with a total of 430 records.



#### Data View

The Data View component allows you to view the impact of intervals with different metrics for the prediction results.

For example, seven instances with value 0 and nine instances with value 1 fall into the 112.33 to 113.9 interval. This indicates that when the nitrogen dioxide index is between 112.33 and 113.9, the probability of heavy haze is large. The entropy and Gini coefficient indicate the impact of this feature range on the target value (the impact on the aspect of information), and the larger the value, the greater the impact.



#### 3. Model training and prediction

In this example, two different algorithms are used to predict and analyze the results: random forest and logistic regression.

#### Random forest

The dataset is split, in which 80% is used for model training, and 20% is used for prediction. In the left-side navigation pane of the console, click **Models** and select **Saved Models**. Right-click the model

and choose **Show Model** from the shortcut menu. Then, the tree model of the random forest is visually shown as follows.



The **AUC** in the preceding figure is 0.99, which indicates that with the weather index data used in this example, it can predict whether haze will occur, and the accuracy rate can reach more than 90%.

#### Logistic regression

A linear model can be obtained by training with the logistic regression algorithm, as shown in the following figure.

K7 X

#### 逻辑回归二分类

| 在输入数据为稀疏的时候,不显示 | 示 weight 全是 0 的特征   |     |
|-----------------|---------------------|-----|
| 今印夕 .           | ŧ.                  | 又重  |
| 子权白▲            | 1.                  | 0 🔺 |
| pm10            | 18.32146628653672   | -   |
| so2             | 1.767062094833547   | -   |
| со              | -0.2519492790928399 | -   |
| no2             | 10.95221282178011   | -   |
| 常量              | -16.66654139199668  | 0   |

#### The prediction result is as follows.



The result shows that the **AUC** is 0.98, which is a little lower than the prediction accuracy based on random forest. If you exclude the impact of parameter adjustments, the two prediction results show that random forest trains your model better than logistic regression.

## Model evaluation and analysis

Based on the preceding model and prediction results, the air index with the greatest impact on PM2.5 is analyzed.

The logistic regression model generated is shown in the following figure.

#### 逻辑回归二分类

| 在输入数据为稀疏的时候,不显示 | 示 weight 全是 0 的特征   |     |
|-----------------|---------------------|-----|
| 今日夕 .           | 花                   | 又重  |
| 子段台▲            | 1 🔺                 | 0 🔺 |
| pm10            | 18.32146628653672   | -   |
| so2             | 1.767062094833547   | -   |
| со              | -0.2519492790928399 | -   |
| no2             | 10.95221282178011   | -   |
| 常量              | -16.66654139199668  | 0   |

The impact on the result is proportional to the model coefficient of the logistic regression algorithm after normalized computing. The coefficient symbol is positive for positive correlation and negative for negative correlation. In the preceding figure, pm10 and no2 have the greatest positive coefficients.

- The difference between pm10 and pm2 is the size of fine particles. Therefore, the impact of pm10 is not considered.

K7 X

- NO2 (nitrogen dioxide) has the greatest impact on PM2.5. You can check the relevant documents to find out which factors will cause a large amount of nitrogen dioxide emissions and identify the major factors that affect PM2.5.

The article **Source of Nitrogen Dioxide** from the Internet indicates that nitrogen dioxide mainly comes from vehicle exhaust.

#### References

You can log on to Alibaba Cloud PAI to experience this product and go to Yunqi Community to discuss it with us.

# **Issue algriculture loans**

The data in this topic is fictitious and is only used for experimental purposes.

## Background

Issuing agriculture loans is a typical data mining case. Lenders use an experience model built based on statistics of past years (including a borrower's yearly income, types of planted crops, loan history,

and other factors) to predict that borrower' s repayment ability.

This topic is based on real agriculture loan scenarios and shows how to use the linear regression algorithm to handle loan issuing business. Linear regression is a widely applicable statistics analysis method used in statistics to determine the quantitative relation that two or more variables depend on. This topic predicts whether to issue requested loan amounts to users in the prediction set by analyzing the issuing historical information of agriculture loans.

## Dataset

The fields are as follows.

| Field       | Definition                                 | Туре   | Description                                                    |
|-------------|--------------------------------------------|--------|----------------------------------------------------------------|
| id          | The unique identifier of a data item       | string | Person.                                                        |
| name        | The name of a user                         | string | Person.                                                        |
| region      | The region where the user is located       | string | Arranged from north to south.                                  |
| farmsize    | The size of the farmland owned by the user | double | Farmland area.                                                 |
| rainfall    | The rainfall in the region                 | double | Rainfall.                                                      |
| landquality | The land quality of the region             | double | Higher land quality<br>values indicate<br>better land quality. |
| farmincome  | The income of the user from the farmland   | double | Yearly income.                                                 |
| maincrop    | The crops cultivated on the farmland       | string | Types of crops.                                                |
| claimtype   | Loan type                                  | string | Two types.                                                     |
| claimvalue  | Loan amount                                | double | Loan amount.                                                   |

The following is a screenshot of the data.

| id 🔺 | name 🔺 | region 🔺 | farmsize 🔺 | rainfall 🔺 | landquality 🔺 | farmincome 🔺 | maincrop 🔺 | claimtype 🔺  | claimvalue 🔺 |
|------|--------|----------|------------|------------|---------------|--------------|------------|--------------|--------------|
| "id  | "name  | "midland | 1480       | 30         | 8             | 330729       | "wheat"    | "decommiss   | 74703.1      |
| "id  | "name  | "north"  | 1780       | 42         | 9             | 734118       | "maize"    | "arable_dev" | 245354       |
| "id  | *name  | "midland | 500        | 69         | 7             | 231965       | "rapeseed" | *decommiss   | 84213        |
| "id  | "name  | "southw  | 1860       | 103        | 3             | 625251       | "potatoes" | decommiss    | 281082       |
| "id  | "name  | "north"  | 1700       | 46         | 8             | 621148       | "wheat"    | "decommiss   | 122006       |
| *id  | "name  | "southea | 1580       | 42         | 7             | 445785       | "maize"    | "arable_dev" | 122135       |
| "id  | "name  | southea  | 1820       | 29         | 6             | 211605       | "maize"    | "arable_dev" | 68969.2      |
| "id  | "name  | "southea | 1640       | 108        | 7             | 1167040      | "maize"    | "arable_dev" | 485011       |
| "id  | "name  | "southw  | 1600       | 101        | 5             | 756755       | "wheat"    | decommiss    | 160904       |
| *id  | "name  | "southea | 600        | 80         | 6             | 267928       | "wheat"    | "arable_dev" | 90350.6      |

## Data exploration procedure

The following figure shows the experiment process.



#### 1. Data source preparation

Input data is divided into two parts:

- Loan training set: More than 200 pieces of loan data are used to train the regression model. This training set includes features such as "farmsize" and "rainfall". "claimvalue" is the recovered loan amount.
- Loan prediction set: This prediction set includes a total of 71 loan applicants this year. "claimvalue" is a farmer' s requested loan amount.

Predicate whom of the 71 applicants will receive loans based on the existing 200+ pieces of historical

data.

#### 2. Data preprocessing

Map data of the string type to numbers according to data meanings. For example, for the "region" field, map "north", "middle", and "south" in order to 0, 1, and 2, respectively. Then, convert the field to the double type by using the Data Type Conversion component, as shown in the following figure. You can perform model training after data is preprocessed.



#### 3. Model training and prediction

Use the Linear Regression component to train historical data and create a regression model, which is used in the Prediction component to predict data in the prediction set. Use the Merge Columns component to merge the user ID, prediction score, and claim value, as shown in the following figure. The prediction score indicates a user' s loan repayment ability (expected loan repayment amount).

| claimvalue 🔺 | prediction_score A | id 🔺 |
|--------------|--------------------|------|
| 172753       | 164424.3413395547  | 1    |
| 93415.4      | 146370.52166158534 | 2    |
| 46800.2      | 41879.999271195346 | 3    |
| 131728       | 192648.19077439874 | 4    |
| 89040.8      | 76369.8134277192   | 5    |
| 135493       | 103695.67105783387 | 6    |
| 88906.8      | 136845.30246967232 | 7    |
| 147159       | 144156.81362150217 | 8    |
| 277397       | 466728.8170899566  | 9    |
| 67547.3      | 131340.40980772747 | 10   |
| 345394       | 402192.7992950041  | 11   |

#### 4. Regression model evaluation

Use the Regression Model Evaluation component to evaluate the model. The following table lists evaluation results.

| 字段名称           | 描述       |
|----------------|----------|
| SST            | 总平方和     |
| SSE            | 误差平方和    |
| SSR            | 回归平方和    |
| R2             | 判定系数     |
| R              | 多重相关系数   |
| MSE            | 均方误差     |
| RMSE           | 均方根误差    |
| MAE            | 平均绝对误差   |
| MAD            | 平均误差     |
| MAPE           | 平均绝对百分误差 |
| count          | 行数       |
| yMean          | 原始因变量的均值 |
| predictionMean | 预测结果的均值  |

#### 5. Loan issuance

Use the Filtering and Mapping component to determine the applicants who can receive loans. The principle of the experiment is that, if an applicant' s repayment ability is predicted to be greater than the requested loan amount, that applicant will receive a loan. This principle applies to each potential customer.



## References

You can log on to Alibaba Cloud Machine Learning Platform for AI (PAI) to experience this product and go to Yunqi Community to discuss with us.

# **Identify electricity theft**

The conventional measures to identify power theft, electricity leakage, and electricity meter faults include periodic inspection, periodic electricity meter check, and user reporting. However, these measures depend on manual work and lack specific targets.

Currently, many power supply bureaus use the metering alert function and the power data query function to monitor users' power usage online. The bureau staff identify power theft, electricity leakage, and electricity meter faults by collecting information such as abnormal power usage, electricity load exceptions, terminal alerts, primary site alerts, and line exceptions or losses. A model is created to analyze abnormal power usage based on the metric weights by collecting statistics on the current, voltage, and load at the metering point before and after an alert is triggered. This helps

identify power theft, illegal power usage, and electricity meter faults.

The analysis model can collect information about abnormal power usage but fails to identify the users suspected of power theft or electricity leakage in a fast and accurate manner. This is a big challenge for the audit staff. The analysis model requires expert knowledge and experience to determine the weights of input metrics. This process is flawed and depends on subjective judgment, producing unsatisfactory results.

An automatic electricity metering system can collect statistics on electricity load, such as current in all phases, voltage, and power factor, as well as terminal alerts such as abnormal power usage. Alerts and electricity load data can reflect users' power usage. The audit staff can identify users suspected of power theft and electricity leakage through an online audit system and onsite audit, and import findings to the system.

The imported data is analyzed to extract the key features of power theft and electric leakage and create a model used to automatically check and identify power thieves and households with electric leakage. This greatly reduces the workload of the audit staff and ensures normal and safe power usage.

# Load and explore data

You can select a dataset to view three metrics about a user's power usage and the data that indicates whether the user steals power or encounters electric leakage. The three metrics are power usage decline level, line loss rate, and warning num. The "is theft" column lists the metric analysis result.

| 数据探查 | – anti_electricity_theft – (仅显示前一百条) |                  |               | × K3       |
|------|--------------------------------------|------------------|---------------|------------|
| -    |                                      |                  |               |            |
| 序号▲  | power_usage_decline_level            | line_loss_rate 🔺 | warning_num 🔺 | is_theft A |
| 1    | 4                                    | 1                | 1             | 1          |
| 2    | 4                                    | 0                | 4             | 1          |
| 3    | 2                                    | 1                | 1             | 1          |
| 4    | 9                                    | 0                | 0             | 0          |
| 5    | 3                                    | 1                | 0             | 0          |
| 6    | 2                                    | 0                | 0             | 0          |
| 7    | 5                                    | 0                | 2             | 1          |
| 8    | 3                                    | 1                | 3             | 1          |

In the left-side navigation pane, choose **Components** > **Statistical Analysis**, and drag and drop **Correlation Coefficient Matrix** to the right section to view each feature related to the output power.



Right-click the completed component and select **View Analytics Report** to obtain the correlation analysis result. The correlation chart shows that the three metrics are not closely related to the result of "is theft". That is, the features are not specific enough to determine whether a user is a power thief. Then, in the left-side navigation pane, choose **Components** > **Statistical Analysis**, and drag and drop **Data View** to the right section to analyze the distribution of data in the label column by feature. Select the feature columns as follows.

| 输入关键字搜索列,包含关键字即可            |   |    |                           | (      |
|-----------------------------|---|----|---------------------------|--------|
| 全选                          |   | 已选 |                           | 列表 编辑  |
| BIGINT                      | ~ | Û  | 字段                        | 类型     |
| v power_usage_decline_level |   | Ū  | power_usage_decline_level | BIGINT |
| ✓ line_loss_rate            |   | Û  | line_loss_rate            | BIGINT |
| varning_num                 |   | ñ  | warning_num               | BIGINT |
| is_theft                    |   |    |                           |        |

Then, select the label column.



Finally, right-click Run from Here, choose the completed component, and select **View Analytics Report** to view the distribution of data in the label column by feature.

# Model data

After completing a simple exploratory analysis, you can select an appropriate algorithm model for data modeling. In the left-side navigation pane, choose **Components** > **Data Preprocessing**, and drag and drop **Split** to the right section to split data into the training set and test set.

Choose **Components** > **Machine Learning** > **Binary Classification**, and drag and drop **Logistic Regression for Binary Classification** to the right section to perform regression modeling on data. Select the feature columns (X) and label column (Y). In this experiment, the feature columns are power usage decline level, line loss rate, and warning num.

| € € ⊕ ‡ ⊡ ፬ 23 | 字段设置 参数设置 执行调             | 同优 <u></u> 当代 |
|----------------|---------------------------|---------------|
|                | 训练特征列 必选 支持Double/Int类型字段 | Self tuby     |
|                | 已选择 3 个字段                 |               |
|                | 目标列 必选                    |               |
|                | is_theft                  | • 4           |
|                | 正类值 必选 eg. 0/1分类中1是正类     | 見たが           |
|                | 1                         |               |
|                | □ 是否稀疏数据 k:v,k:v 类型特征     |               |
|                |                           |               |
|                |                           |               |
| ◎ 逻辑回类-1 ②     |                           |               |

## Predict and evaluate the regression model

After modeling is complete, choose **Components** > **Machine Learning** and drag and drop **Prediction** to the right section to predict the effect of the model on the test dataset. For **Feature Columns** and **Reversed Output Column**, all options are selected by default. In the left-side navigation pane, choose **Components** > **Machine Learning** > **Evaluation**, and drag and drop **Binary Classification Evaluation** to the right section to view the model effect. The following figure shows the result of the experiment.



Right-click the Binary Classification Evaluation component to view the model effect. The AUC reaches the satisfying value 0.9827.

|                  | 指标数据 图表 等频详细信息 等宽详细信息 高分段关键信息                                                                       |   |
|------------------|-----------------------------------------------------------------------------------------------------|---|
|                  | ROC        O Cumulative Positive Dist.           AUC(0)         05.05           sensitive         1 | 不 |
| -5               | 0.8                                                                                                 |   |
| l                | 0.6                                                                                                 |   |
| tracision Recall | 0.2 Threshold : 0.00125051 0 Sensitivity : 1                                                        |   |
|                  |                                                                                                     | • |

This completes the identification of power theft through Machine Learning Platform for AI (PAI). You can use Elastic Algorithm Service (EAS) to deploy the identification service so that it can be called online to identify power theft in power grids.

This experiment references the book "Python Practice of Data Analysis and Mining." For copyright issues, contact the author of this topic. We respect every researcher in the academic field for their academic contribution and strive to better integrate technologies with the real life.

# Use the FastNN repository

Machine Learning Platform for AI (PAI) provides Fast Neural Networks (FastNN), which is a distributed neural network repository based on the PAISoar framework. Currently, FastNN supports classic algorithms such as Inception, Resnet, and VGG. More advanced models will be available in the future. FastNN is built into PAI Studio. To try it out, log on to PAI Studio and create an experiment by clicking the corresponding template on the homepage.

# **Custom development method**

## 1. Data source preparation

To facilitate trying FastNN in PAI, we have downloaded and converted the cifar10, mnist, and flowers data to tfrecord data and stored the converted data in the open Object Storage Service (OSS). The data can be accessed through the Read File Data or OSS Data Synchronization components of PAI. The following table lists the storage paths in OSS.

| Dataset | Number of classes | Training set | Test set | Storage path                                                                                                                                                                                                                                          |
|---------|-------------------|--------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| mnist   | 10                | 3320         | 350      | China (Beijing):<br>oss://pai-<br>online-<br>beijing.oss-cn-<br>beijing-<br>internal.aliyunc<br>s.com/fastnn-<br>data/mnist/<br>China<br>(Shanghai):<br>oss://pai-<br>online.oss-cn-<br>shanghai-<br>internal.aliyunc<br>s.com/fastnn-<br>data/mnist/ |
| cifar10 | 10                | 50000        | 10000    | China (Beijing):<br>oss://pai-<br>online-<br>beijing.oss-cn-                                                                                                                                                                                          |

|         |   |       |       | beijing-<br>internal.aliyunc<br>s.com/fastnn-<br>data/cifar10/<br>China<br>(Shanghai):<br>oss://pai-<br>online.oss-cn-<br>shanghai-<br>internal.aliyunc<br>s.com/fastnn-<br>data/cifar10/                                                                 |
|---------|---|-------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| flowers | 5 | 60000 | 10000 | China (Beijing):<br>oss://pai-<br>online-<br>beijing.oss-cn-<br>beijing-<br>internal.aliyunc<br>s.com/fastnn-<br>data/flowers/<br>China<br>(Shanghai):<br>oss://pai-<br>online.oss-cn-<br>shanghai-<br>internal.aliyunc<br>s.com/fastnn-<br>data/flowers/ |

To access a data source, write its path in the component.

|              | OSS数据路径 ⑦                           |
|--------------|-------------------------------------|
|              | oss://pai-online-beijing.oss-cn-bei |
| ☐ 读OSS数据-1 ⊘ | 角色名称: AliyunODPSPAIDefaultRole      |

The FastNN repository supports reading data in the tfrecord format and implements the dataset pipeline based on the TFRecordDataset API for model training. This covers a majority of the data preprocessing time. The current implementation logic in data sharding is not refined enough. Users must ensure that data is evenly distributed to each machine during data preparation. That is:

- The number of samples for each tfreocrd file must be almost the same.
- The number of tfrecord files processed by each worker must be almost the same.

If the data format is tfrecord, see the files in cifar10/mnist/flowers of datasets. The cifar10 data is used as an example.

- Assume that the key\_to\_features format of cifar10 data is as follows.

```
features={
    'image/encoded': tf.FixedLenFeature((), tf.string, default_value=''),
```

'image/format': tf.FixedLenFeature((), tf.string, default\_value='png'), 'image/class/label': tf.FixedLenFeature( [], tf.int64, default\_value=tf.zeros([], dtype=tf.int64)), } - Create the data parsing file cifar10.py in the datasets directory and edit the following sample content: """Provides data for the Cifar10 dataset. The dataset scripts used to create the dataset can be found at: datasets/download\_and\_covert\_data/download\_and\_convert\_cifar10.py .... from \_\_future\_\_ import division from \_\_future\_\_ import print\_function import tensorflow as tf """Expect func\_name is 'parse\_fn' .... def parse fn(example): with tf.device("/cpu:0"): features = tf.parse\_single\_example( example, features={ 'image/encoded': tf.FixedLenFeature((), tf.string, default\_value=''), 'image/format': tf.FixedLenFeature((), tf.string, default\_value='png'), 'image/class/label': tf.FixedLenFeature( [], tf.int64, default\_value=tf.zeros([], dtype=tf.int64)), } ) image = tf.image.decode\_jpeg(features['image/encoded'], channels=3) label = features['image/class/label'] return image, label

- Add dataset\_map in datasets/dataset\_factory.py.

```
from datasets import cifar10
datasets_map = {
'cifar10': cifar10,
}
```

- When running the workflow script, use cifar10 data for model training by setting dataset\_name to cifar10 and train\_files to cifar10\_train.tfrecord.

To read data in other formats, implement the dataset pipeline construction logic. For more information, see utils/dataset\_utils.py.

# 2. Hyperparameter file

The following types of hyperparameters are supported:

- Dataset parameters: basic attributes of the training set, such as the training set storage path dataset\_dir.
- Data preprocessing parameters: data preprocessing functions and parameters related to the dataset pipeline.
- Model parameters: basic hyperparameters for model training, including model\_name and batch\_size.
- Learning rate parameters: learning rate and related tuning parameters.
- Optimizer parameters: optimizer and related parameters.
- Log parameters: parameters of output logs.
- Performance tuning parameters: mixed precision and other tuning parameters.

Sample hyperparameter file:



#### 2.1 Dataset parameters

| #Parameter           | #Туре   | #Description                                                                                                                                                                                                                                      |
|----------------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dataset_name         | string  | The name of the input data<br>parsing file. Valid values:<br>mock, cifar10, mnist, and<br>flowers. For more<br>information, see all data<br>parsing files in the<br>images/datasets directory.<br>Default value: mock,<br>indicating analog data. |
| dataset_dir          | string  | The absolute path of the input dataset. Default value: None.                                                                                                                                                                                      |
| num_sample_per_epoch | integer | The total number of dataset<br>samples. This parameter is<br>typically used with learning<br>rate decay.                                                                                                                                          |
| num_classes          | integer | The number of sample classes. Default value: 100.                                                                                                                                                                                                 |
| train_files          | string  | The file names of all training<br>data, which are separated<br>with commas (,), such as<br>"0.tfrecord,1.tfrecord".                                                                                                                               |

| 2.2 | Data | preprocessing | parameters |
|-----|------|---------------|------------|
|     |      | p             |            |

| #Parameter                | #Туре   | #Description                                                                                                                                                                                                                                                                               |
|---------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| preprocessing_name        | string  | Used with model_name to<br>specify the name of the data<br>preprocessing method. For<br>more information about the<br>current value range, see the<br>preprocessing_factory file in<br>the images/preprocessing<br>directory. Default value:<br>None, indicating no data<br>preprocessing. |
| shuffle_buffer_size       | integer | The size of the buffer pool<br>for sample-based shuffle<br>when a data pipeline is<br>created. Default value: 1024.                                                                                                                                                                        |
| num_parallel_batches      | integer | The number of parallel<br>threads multiplied by<br>batch_size to equal<br>map_and_batch. This<br>parameter helps specify the<br>parallel granularity of parsing<br>samples. Default value: 8.                                                                                              |
| prefetch_buffer_size      | integer | The number of batches of<br>data prefetched by the data<br>pipeline. Default value: 32.                                                                                                                                                                                                    |
| num_preprocessing_threads | integer | The number of threads used<br>by the data pipeline to<br>prefetch data in parallel.<br>Default value: 16.                                                                                                                                                                                  |
| datasets_use_caching      | bool    | Specifies whether to enable<br>caching for compressed<br>input data with memory<br>overhead. Default value:<br>False, indicating that caching<br>is not enabled.                                                                                                                           |

# 2.3 Model parameters

| #Parameter | #Туре  | #Description                                                                                                                                         |
|------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| task_type  | string | Valid values: pretrain and<br>finetune, which indicate<br>model pre-training and<br>model optimization,<br>respectively. Default value:<br>pretrain. |
| model_name | string | The model to be trained. The valid values include all                                                                                                |

|                   |         | models in images/models.<br>You can set model_name<br>based on all models defined<br>in the<br>images/models/model_factor<br>y file. Default value:<br>inception resnet v2. |
|-------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| num_epochs        | integer | The number of training<br>rounds for the training set.<br>Default value: 100.                                                                                               |
| weight_decay      | float   | The weight decay factor<br>during model training.<br>Default value: 0.00004.                                                                                                |
| max_gradient_norm | float   | Specifies whether to perform<br>gradient clipping based on<br>the global normalization<br>value. Default value: None,<br>indicating no gradient<br>clipping.                |
| batch_size        | integer | The amount of data that is processed by one card in an iteration. Default value: 32.                                                                                        |
| model_dir         | string  | The path to reload the<br>checkpoint. Default value:<br>None, indicating no model<br>optimization.                                                                          |
| ckpt_file_name    | string  | The name of the file that reloads the checkpoint. Default value: None.                                                                                                      |

## 2.4 Learning rate parameters

| #Parameter    | #Туре   | #Description                                                                                                                                                                                                                                                                       |
|---------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| warmup_steps  | integer | The number of iterations for inverse learning rate decay. Default value: 0.                                                                                                                                                                                                        |
| warmup_scheme | string  | The way of inverse learning<br>rate decay. The valid value<br>'t2t' indicates<br>Tensor2Tensor, in which the<br>learning rate is initialized to<br>be 1/100 of the specified<br>learning rate and then is<br>exponentiated to inverse-<br>decay to the specified<br>learning rate. |
| decay_scheme  | string  | The way of learning rate<br>decay. Valid values:<br>luong234, luong5, and                                                                                                                                                                                                          |

|                            |        | luong10. luong234 indicates<br>to start 4 rounds of decay<br>with a factor of 1/2 after 2/3<br>of total iterations are<br>completed. luong5 indicates<br>to start 5 rounds of decay<br>with a factor of 1/2 after 1/2<br>of total iterations are<br>completed. luong10<br>indicates to start 10 rounds<br>of decay with a factor of 1/2<br>after 1/2 of total iterations<br>are completed. |
|----------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| learning_rate_decay_factor | float  | The learning rate decay factor. Default value: 0.94.                                                                                                                                                                                                                                                                                                                                       |
| learning_rate_decay_type   | string | The learning rate decay type.<br>Valid values: fixed,<br>exponential, and polynomial.<br>Default value: exponential.                                                                                                                                                                                                                                                                       |
| learning_rate              | float  | The initial learning rate.<br>Default value: 0.01.                                                                                                                                                                                                                                                                                                                                         |
| end_learning_rate          | float  | The minimum learning rate<br>during decay. Default value:<br>0.0001.                                                                                                                                                                                                                                                                                                                       |

# 2.5 Optimizer parameters

| #Parameter                            | #Туре  | #Description                                                                                                                                                |
|---------------------------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| optimizer                             | string | The name of the optimizer.<br>Valid values: adadelta,<br>adagrad, adam, ftrl,<br>momentum, sgd, rmsprop,<br>and adamweightdecay.<br>Default value: rmsprop. |
| adadelta_rho                          | float  | The decay factor of Adadelta.<br>Default value: 0.95. This<br>parameter is specific to the<br>Adadelta optimizer.                                           |
| adagrad_initial_accumulator_<br>value | float  | The initial value of the<br>AdaGrad accumulator.<br>Default value: 0.1. This<br>parameter is specific to the<br>AdaGrad optimizer.                          |
| adam_beta1                            | float  | The exponential decay rate in<br>primary momentum<br>prediction. Default value: 0.9.<br>This parameter is specific to<br>the Adam optimizer.                |
| adam_beta2                            | float  | The exponential decay rate in                                                                                                                               |

|                                |       | secondary momentum<br>prediction. Default value:<br>0.999. This parameter is<br>specific to the Adam<br>optimizer.                 |
|--------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------|
| opt_epsilon                    | float | The offset of the optimizer.<br>Default value: 1.0. This<br>parameter is specific to the<br>Adam optimizer.                        |
| ftrl_learning_rate_power       | float | The idempotent parameter<br>of the learning rate. Default<br>value: -0.5. This parameter is<br>specific to the FTRL<br>optimizer.  |
| ftrl_initial_accumulator_value | float | The starting point of the<br>FTRL accumulator. Default<br>value: 0.1. This parameter is<br>specific to the FTRL<br>optimizer.      |
| ftrl_l1                        | float | The regularization term of<br>FTRL I1. Default value: 0.0.<br>This parameter is specific to<br>the FTRL optimizer.                 |
| ftrl_l2                        | float | The regularization term of<br>FTRL I2. Default value: 0.0.<br>This parameter is specific to<br>the FTRL optimizer.                 |
| momentum                       | float | The momentum parameter<br>of MomentumOptimizer.<br>Default value: 0.9. This<br>parameter is specific to the<br>Momentum optimizer. |
| rmsprop_momentum               | float | The momentum parameter<br>of RMSPropOptimizer.<br>Default value: 0.9.                                                              |
| rmsprop_decay                  | float | The decay factor of RMSProp. Default value: 0.9.                                                                                   |

#### 2.6 Log parameters

| #Parameter             | #Туре   | #Description                                                                  |
|------------------------|---------|-------------------------------------------------------------------------------|
| stop_at_step           | integer | The total number of training iterations. Default value: 100.                  |
| log_loss_every_n_iters | integer | The iterative frequency for printing the loss information. Default value: 10. |
| profile_every_n_iters  | integer | The iterative frequency for printing the timeline. Default                    |

|                        |         | value: 0.                                                                                                                |
|------------------------|---------|--------------------------------------------------------------------------------------------------------------------------|
| profile_at_task        | integer | The index of the machine<br>that outputs the timeline.<br>Default value: 0, which<br>corresponds to the chief<br>worker. |
| log_device_placement   | bool    | Specifies whether to print<br>the device placement<br>information. Default value:<br>False.                              |
| print_model_statistics | bool    | Specifies whether to print<br>the trainable variable<br>information. Default value:<br>False.                            |
| hooks                  | string  | The training hooks. Default<br>value:<br>StopAtStepHook,ProfilerHoo<br>k,LoggingTensorHook,Check<br>pointSaverHook.      |

#### 2.7 Performance tuning parameters

| #Parameter     | #Туре  | #Description                                                                                     |
|----------------|--------|--------------------------------------------------------------------------------------------------|
| use_fp16       | bool   | Specifies whether to perform semi-precision training.<br>Default value: True.                    |
| loss_scale     | float  | The coefficient of the loss<br>value scale during training.<br>Default value: 1.0.               |
| enable_paisoar | bool   | Specifies whether to use<br>PAISoar. Default value: True.                                        |
| protocol       | string | By default, the grpc.rdma<br>cluster can use grpc+verbs<br>to improve data access<br>efficiency. |

## 3. Master file development

If existing models cannot meet your needs, you can use the dataset, models, and preprocessing APIs for further development. Before that, you need to understand the basic process of the FastNN repository. Take images as an example. The code entry file is train\_image\_classifiers.py. The overall code architecture is as follows.

# Initialize the corresponding model in models based on model\_name to obtain the network\_fn. The input parameter train\_image\_size may be returned.

network\_fn = nets\_factory.get\_network\_fn( FLAGS.model\_name, num\_classes=FLAGS.num\_classes, weight decay=FLAGS.weight decay, is\_training=(FLAGS.task\_type in ['pretrain', 'finetune'])) # Initialize the corresponding data preprocessing function based on model\_name or preprocessing\_name to obtain preprocess\_fn. preprocessing\_fn = preprocessing\_factory.get\_preprocessing( FLAGS.model\_name or FLAGS.preprocessing\_name, is\_training=(FLAGS.task\_type in ['pretrain', 'finetune'])) # Select the correct tfrecord format based on dataset\_name and synchronously call preprocess\_fn to parse the dataset to obtain dataset\_iterator. dataset\_iterator = dataset\_factory.get\_dataset\_iterator(FLAGS.dataset\_name, train\_image\_size, preprocessing\_fn, data\_sources, # Call network\_fn and dataset\_iterator to define the function loss\_fn to calculate the loss. def loss fn(): with tf.device('/cpu:0'): images, labels = dataset\_iterator.get\_next() logits, end\_points = network\_fn(images) loss = tf.losses.sparse\_softmax\_cross\_entropy(labels=labels, logits=tf.cast(logits, tf.float32), weights=1.0) if 'AuxLogits' in end\_points: loss += tf.losses.sparse\_softmax\_cross\_entropy(labels=labels, logits=tf.cast(end\_points['AuxLogits'], tf.float32), weights=0.4) return loss # Call the PAI-Soar API to encapsulate the native optimizer of loss\_fn and tf. opt = paisoar.ReplicatedVarsOptimizer(optimizer, clip norm=FLAGS.max gradient norm) loss = optimizer.compute loss(loss fn, loss scale=FLAGS.loss scale) # Give a formal definition of training tensors based on opt and loss. train\_op = opt.minimize(loss, global\_step=global\_step)

# Use the FM algorithm of PAI to create a recommendation model

## Overview

The Factorization Machine (FM) algorithm can be used for regression and binary classification prediction. It is a nonlinear model that takes into account the interaction between features. Currently, the FM algorithm is one of the proven effective recommendation solutions and is widely used in the recommendation scenarios of e-commerce, advertising, and live streaming.

The FM algorithm used by Machine Learning Platform for AI (PAI) is developed based on big data within Alibaba. It features excellent performance and outstanding results. For the FM algorithm usage, see the corresponding template on the homepage.

| <u>æ</u> -    | 机器学习PAI华北2(北京) demo_sho | w ▼ 算法平台 前往运维                              |                                                              |                                      |
|---------------|-------------------------|--------------------------------------------|--------------------------------------------------------------|--------------------------------------|
| 会議員           | _                       | _                                          | _                                                            | _                                    |
| <br>实验        |                         |                                            |                                                              |                                      |
| ගු<br>otebook | 包括数据预处理、特征工程、模型训练       | 通过回归算法建立模型,预测农业贷款                          | 本实验主要是展示平台在线预测能力,                                            | 基于信用卡消费数据,利用评分卡进行                    |
| ₿<br>数据源      | 和预测等一套机器学习流程。           | 的发放。                                       | 通过中学生的在校园行为预测期末成绩<br>以及对于成绩的关键影响因子。<br>1900 位用户              | 分析。                                  |
| 亡<br>组件       | 从模版创建 查看文档              | 从模版创建 查看文档                                 | 从模版创建 查看文档                                                   | 人模版创建 查看文档                           |
| 査問            |                         |                                            |                                                              |                                      |
| (6)<br>1921   | 基于对象特征的推荐               | 发电场输出电力预测                                  | 用户窃电识别                                                       | FM算法实现推荐模型                           |
|               |                         | B                                          | 1 to the                                                     |                                      |
|               | 基于对象特征的推荐               | 通过预测发电机的输出电力来更好的评<br>估安排电力生产计划,避免资源的浪<br>弗 | 构建窃漏电用户的识别模型,就能自动<br>检查、判断用户是否存在窃漏电行为,大<br>士赔纸锦查工作上号的工作量。但随上 | 基于真实用户特征和行为数据,使用<br>FM算法实现推荐模型的训练和预测 |
|               | 111 位用户                 | 1 位用户                                      | 0 位用户                                                        | 0 位用户                                |
|               | 1.描版创建 查委文档             | 从模版创建 杏麦文档                                 | 从模版创建 查看文档                                                   | 从模版创建 查看文档                           |

The FM algorithm involves the FM training and prediction components, which can be used with the evaluation component.



## **Required input data**

Currently, the FM algorithm only supports data in the libsvm format. The data is divided into two columns: feature column and target column.

- Target column: double type

- Feature column: string type. Features must be entered in the k:v format and separated with commas (,).

#### See the following figure.

| 序号▲ | label 🔺 | features 🔺                                                           |
|-----|---------|----------------------------------------------------------------------|
| 1   | 0       | 3:1,11:1,14:1,19:1,39:1,42:1,55:1,64:1,67:1,73:1,75:1,76:1,80:1,83:1 |
| 2   | 0       | 3:1,6:1,17:1,27:1,35:1,40:1,57:1,63:1,69:1,73:1,74:1,76:1,81:1,103:1 |
| 3   | 0       | 4:1,6:1,15:1,21:1,35:1,40:1,57:1,63:1,67:1,73:1,74:1,77:1,80:1,83:1  |
| 4   | 0       | 5:1,6:1,15:1,22:1,36:1,41:1,47:1,66:1,67:1,72:1,74:1,76:1,80:1,83:1  |
| 5   | 0       | 2:1,6:1,16:1,22:1,36:1,40:1,54:1,63:1,67:1,73:1,75:1,76:1,80:1,83:1  |
| 6   | 0       | 2:1,6:1,14:1,20:1,37:1,41:1,47:1,64:1,67:1,73:1,74:1,76:1,82:1,83:1  |
| 7   | 0       | 1:1,6:1,14:1,22:1,36:1,42:1,49:1,64:1,67:1,72:1,74:1,77:1,80:1,83:1  |
| 8   | 0       | 1:1,6:1,17:1,19:1,39:1,42:1,53:1,64:1,67:1,73:1,74:1,76:1,80:1,83:1  |
| 9   | 0       | 2:1,6:1,18:1,20:1,37:1,42:1,48:1,64:1,71:1,73:1,74:1,76:1,81:1,83:1  |
| 10  | 1       | 5:1,11:1,15:1,32:1,39:1,40:1,52:1,63:1,67:1,73:1,74:1,76:1,78:1,83:1 |
|     |         |                                                                      |

## Components

#### 1. FM training

In Parameters Setting, you can set Regression or Binary Classification.



NEL 71N MIL

#### **PAI** commands

| Parameter     | Description                                                                                                                           | Value    |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------|----------|
| tensorColName | The name of the feature<br>column for training,<br>expressed by a string in the<br>k:v format, such as<br>1:1.0,3:1.0. The feature ID | Required |

|              | must be a non-negative<br>integer. The value range is [0,<br>Long.MAX_VALUE).<br>Nonconsecutive values are<br>allowed.                                                                                                                               |                                            |  |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--|
| labelColName | The name of the label<br>column. The value must be a<br>number. If the task type is<br>binary_classification, the<br>value is either 0 or 1.                                                                                                         | Required                                   |  |
| task         | The task type.<br>The task type.<br>Required. Valid values:<br>regression and<br>binary_classification                                                                                                                                               |                                            |  |
| numEpochs    | The number of iterations.                                                                                                                                                                                                                            | Optional. Default value: 10                |  |
| dim          | The number of factors,<br>expressed by a string that<br>consists of three integers<br>separated with commas (,) to<br>indicate the length of<br>constant term, linear term,<br>and quadratic term.                                                   | Optional. Default value:<br>1,1,10         |  |
| learnRate    | The learning rate.                                                                                                                                                                                                                                   | Optional. Default value: 0.01              |  |
| lambda       | The regularization<br>coefficient, expressed by a<br>string that consists of three<br>floating-point numbers<br>separated with commas (,) to<br>indicate the regularization<br>coefficients of constant term,<br>linear term, and quadratic<br>term. | Optional. Default value:<br>0.01,0.01,0.01 |  |
| initStdev    | The standard deviation of parameter initialization.                                                                                                                                                                                                  | Optional. Default value: 0.05              |  |

#### Note:

- Reduce the learning rate in the case of training divergence.

## 2. FM prediction

#### **PAI** commands

| Parameter         | Description                               | Value                                         |
|-------------------|-------------------------------------------|-----------------------------------------------|
| predResultColName | The name of the prediction result column. | Optional. Default value:<br>prediction_result |
| predScoreColName  | The name of the prediction score column.  | Optional. Default value:<br>prediction_score  |
| predDetailColName | The name of the prediction                | Optional. Default value:                      |

|              | detail column.                                | prediction_detail                    |
|--------------|-----------------------------------------------|--------------------------------------|
| keepColNames | The columns saved to the output result table. | Optional. Default value: all columns |

# **Result evaluation**

Using the data of the corresponding template on the homepage, the FM algorithm of PAI can create a model with an AUC close to 0.97.

|               | 指标数据 图表 等频详细信息 等宽详细信息 高分段关键信息                      |  |
|---------------|----------------------------------------------------|--|
|               | POC                                                |  |
|               | AUCIE: 0.9664643791191547 산 때 난<br>sensitivity/fpr |  |
| $\sim$        | 0.8                                                |  |
|               | 0.6                                                |  |
| n             | 0.4                                                |  |
|               | 0.2                                                |  |
| cision Recall |                                                    |  |

# Use FM-Embedding for recommendation - vector-based recall.md

# Background

The data and procedure of the experiment are built in the corresponding template on th home page of Machine Learning Platform for AI (PAI) Studio at https://data.aliyun.com/product/learn

Log on to PAI Studio. In the lower part of the **FM-Embedding for Rec-System** template, click **Create**. The template is ready for use.



AI-based recommendation is divided into two modules: sorting and recall. The recall module uses vectors to represent users and to-be-recommended items. The product of the vectorized user and item indicates the user' s interest in the item. The following experiment shows how to create descriptive vectors for users and items based on real-life recommendation data by using the Factorization Machine (FM) algorithm and the Embedding algorithm that are provided by PAI.

# Procedure

Flowchart:



#### 1. Data

#### Raw data:

| userid 🔺 | age 🔺 | gender 🔺 | itemid 🔺 | price 🔺 | size 🔺 | label 🔺 |
|----------|-------|----------|----------|---------|--------|---------|
| 1        | 64    | male     | А        | 500     | 10     | 1       |
| 2        | 42    | female   | в        | 200     | 4      | 0       |
| 3        | 42    | male     | С        | 425     | 6      | 1       |
| 4        | 53    | female   | D        | 474     | 3      | 0       |
| 5        | 57    | male     | E        | 64      | 7      | 0       |
| 6        | 86    | female   | F        | 532     | 3      | 0       |
| 7        | 34    | female   | G        | 42      | 4      | 1       |
| 8        | 23    | male     | н        | 364     | 6      | 0       |
| 9        | 14    | female   | 1        | 57      | 4      | 0       |
| 10       | 35    | male     | J        | 463     | 9      | 1       |

#### Data fields:

- userid: the ID of a user
- age: the age of the user
- gender: the gender of the user
- itemid: the ID of an item

- price: the price of the item
- size: the size of the item
- label: the target column, indicating whether the item is purchased. 1 indicates that the item is purchased. 0 indicates that the item is not purchased.

#### 2. One-hot encoding

One-hot encoding converts character-type data to numeric data. In the FM-Embedding solution, onehot encoding-1 is used to encode full data. An encoding model is created and imported to one-hot encoding-2 and one-hot encoding-3. In one-hot encoding-2, select features of the user for encoding. In one-hot encoding-3, select features of the item for encoding.

Enter userid, gender, and age in one-hot encoding-2, and select userid as the additional column.



Enter itemid, price, and size in one-hot encoding-3, and select itemid as the additional column.

|                 | ⇒ 返回旧版          |
|-----------------|-----------------|
| € € ⊕ ╬ 🗉 🖾 🕻 3 | IO/字段设置    参数设置 |
|                 | 选择二值化列 必选       |
|                 | 已选择 3 个字段       |
|                 | ま 固定 )          |
|                 | <br>已选择字段       |
|                 | 附itemid         |
|                 | price           |
|                 | size            |
|                 |                 |
| ◯ one-hot编码-3 ⊘ |                 |
|                 |                 |

#### 3. FM training



**Regularization coefficient** and **Dimension** each have three parameters: constant term, monomial term, and quadratic term. The third parameter "10" of Dimension indicates the dimensions of the created Embedding node.

#### 4. Embedding extraction



- Name of the Embedding Vector ID Column: Enter "feature\_id" of the model in FM training in the left pile.
- Embedding vector column name: Enter "feature\_weights" of the model in FM training in the left pile.
- Weight vector column name: Enter the sparse data column that corresponds to the right pile.
- Output result column name: Enter the name of the output Embedding field.

Final output:

| userid 🔺 | kv 🔺          | embedding 🔺                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1        | 10:1,7:1,37:1 | $0.04015407 - 0.17816195 - 0.037157465 - 0.06470604 - 0.24434555 - 0.019216094 - 0.049993407 - 0.06353192 - 0.08150465 \\ 0.001752859 \\ 0.3356 + 0.019216094 - 0.049993407 - 0.06353192 - 0.08150465 \\ 0.001752859 \\ 0.3356 + 0.019216094 - 0.049993407 - 0.06353192 - 0.08150465 \\ 0.001752859 \\ 0.3356 + 0.019216094 - 0.049993407 - 0.06353192 - 0.08150465 \\ 0.001752859 \\ 0.3356 + 0.019216094 - 0.049993407 - 0.06353192 - 0.08150465 \\ 0.001752859 \\ 0.3356 + 0.019216094 - 0.049993407 - 0.06353192 - 0.08150465 \\ 0.001752859 \\ 0.3356 + 0.019216094 - 0.049993407 - 0.06353192 - 0.08150465 \\ 0.001752859 \\ 0.3356 + 0.019216094 - 0.049993407 - 0.06353192 - 0.08150465 \\ 0.001752859 \\ 0.3356 + 0.019216094 - 0.049993407 - 0.06353192 - 0.08150465 \\ 0.001752859 \\ 0.3356 + 0.019216094 - 0.049993407 - 0.06353192 - 0.08150465 \\ 0.001752859 \\ 0.001752859 \\ 0.001752859 \\ 0.001752859 \\ 0.001752859 \\ 0.001752859 \\ 0.001752859 \\ 0.001752859 \\ 0.001752859 \\ 0.001752859 \\ 0.001752859 \\ 0.001752859 \\ 0.001752859 \\ 0.001752859 \\ 0.001752859 \\ 0.001752859 \\ 0.001752859 \\ 0.001752859 \\ 0.001752859 \\ 0.001752859 \\ 0.001752859 \\ 0.001752859 \\ 0.001752859 \\ 0.001752859 \\ 0.001752859 \\ 0.001752859 \\ 0.001752859 \\ 0.001752859 \\ 0.001752859 \\ 0.001752859 \\ 0.001752859 \\ 0.001752859 \\ 0.001752859 \\ 0.001752859 \\ 0.001752859 \\ 0.001752859 \\ 0.001752859 \\ 0.001752859 \\ 0.001752859 \\ 0.001752859 \\ 0.001752859 \\ 0.001752859 \\ 0.001752859 \\ 0.001752859 \\ 0.001752859 \\ 0.001752859 \\ 0.001752859 \\ 0.001752859 \\ 0.001752859 \\ 0.001752859 \\ 0.001752859 \\ 0.001752859 \\ 0.001752859 \\ 0.001752859 \\ 0.001752859 \\ 0.001752859 \\ 0.001752859 \\ 0.001752859 \\ 0.001752859 \\ 0.001752859 \\ 0.001752859 \\ 0.001752859 \\ 0.001752859 \\ 0.001752859 \\ 0.001752859 \\ 0.001752859 \\ 0.001752859 \\ 0.001752859 \\ 0.001752859 \\ 0.001752859 \\ 0.001752859 \\ 0.001752859 \\ 0.001752859 \\ 0.001752859 \\ 0.001752859 \\ 0.001752859 \\ 0.001752859 \\ 0.001752859 \\ 0.001752859 \\ 0.001752859 \\ 0.001752859 \\ 0.001752859 \\ 0.001752859 \\ 0.001752859 \\ 0.001752859 \\ 0.001752859 \\ $ |
| 2        | 9:1,4:1,39:1  | -0.067233436 -0.13599731 0.12928867 -0.014686654 -0.079268694 -0.1312892 -0.092644565 0.027404211 0.00232377 -0.109620675 0.0445                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 3        | 10:1,4:1,40:1 | $-0.004508253 - 0.046913035 - 0.07043892 \ 0.010427853 - 0.1450108 \ 0.021560092 - 0.10439287 \ 0.055663645 - 0.08991572 - 0.014287934 \ 0.440$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4        | 9:1,5:1,41:1  | 0.0050517395 -0.0021566674 -0.07513097 -0.10988943 0.031288043 -0.0033690166 -0.08820701 0.024628945 4.7708116E-4 0.048596375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5        | 10:1,6:1,42:1 | 0.043785967 0.10553776 -0.19826782 -0.041631583 -0.01759258 0.021906495 -0.03562168 0.04236281 -0.12950923 -0.13433275 0.15293656                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 6        | 9:1,8:1,43:1  | $-0.076507404 - 0.13286367 \ 0.075596735 - 0.039212134 \ 0.14426178 \ 0.025733178 - 0.015803259 \ 0.0065106675 - 0.024862044 - 0.12871072 - 0.0\ldots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 7        | 9:1,2:1,44:1  | $-0.18068565 - 0.096336134 \ 0.037038583 - 0.08846839 - 0.0439286 \ 0.015447946 - 0.24221739 - 0.08010515 - 0.008318255 - 0.05676799 \ 0.1933$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 8        | 10:1,1:1,45:1 | 0.052672688 -0.004056439 -0.09321347 -0.08363886 0.0086529665 0.01378352 -0.056089412 0.002947338 0.012545764 -0.036917157 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 9        | 9:1,0:1,46:1  | -0.06683848 -0.04957156 0.101151854 0.13750216 0.019501429 -0.0941189 -0.055305757 -0.02949195 0.067301184 -0.08456889 -0.045818195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 10       | 10:1,3:1,38:1 | -0.11435607 -0.076492555 -0.21123311 0.11723561 -0.15823722 0.011994862 0.02883054 -0.06578457 -0.1195012 0.05180212 0.5513177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

# Summary

PAI provides the FM-Embedding solution, allowing you to quickly mine the feature vectors of a user and an item. The recall module gives a score based on the product of feature vectors of the user and item.

# [Online prediction] Predict middle school students' final grades

The data in this topic is fictitious and is only used for experimental purposes.

## Background

This topic uses real middle school students' data and machine mining algorithms to determine the key factors affecting middle school students' academics. The factors include parents' occupation, parents' education, and whether Internet is available at home.

This example uses a dataset that contains information about student family backgrounds and students' behavior at school. This experiment uses the logistic regression algorithm to create an offline model and an academic performance assessment report, and uses this model to predict the students' final grades. This experiment also creates an online prediction API, which allows you to apply the trained model to your online business.

### Dataset

The dataset consists of 25 feature columns and 1 target column. The detailed fields are as follows.

| Field | Definition | Туре   | Description                                     |
|-------|------------|--------|-------------------------------------------------|
| sex   | Gender     | string | F indicates female,<br>and M indicates<br>male. |
| address    | Home address                                                                     | string | U indicates urban,<br>and R indicates rural.                                                  |
|------------|----------------------------------------------------------------------------------|--------|-----------------------------------------------------------------------------------------------|
| famsize    | Family size                                                                      | string | LE3 indicates less<br>than three members,<br>and GT3 indicates<br>more than three<br>members. |
| pstatus    | Living with parents or not                                                       | string | T indicates living<br>with parents, and A<br>indicates not living<br>with parents.            |
| medu       | Mother's education level                                                         | string | The value ranges from 0 to 4.                                                                 |
| fedu       | Father's education level                                                         | string | The value ranges from 0 to 4.                                                                 |
| mjob       | Mother's job                                                                     | string | It includes<br>education-related,<br>health-related, and<br>service industries.               |
| fjob       | Father's job                                                                     | string | It includes<br>education-related,<br>health-related, and<br>service industries.               |
| guardian   | The student's<br>guardian                                                        | string | Valid values: mother, father, and other.                                                      |
| traveltime | The travel time from home to school                                              | double | Unit: minutes.                                                                                |
| studytime  | The study time per week                                                          | double | Unit: hours.                                                                                  |
| failures   | Failed exams                                                                     | double | The number of failed exams.                                                                   |
| schoolsup  | Specifies whether<br>additional learning<br>aid is available                     | string | Valid values: yes and no.                                                                     |
| fumsup     | Specifies whether tutoring is available                                          | string | Valid values: yes and no.                                                                     |
| paid       | Specifies whether<br>tutoring related to<br>examination<br>subjects is available | string | Valid values: yes and no.                                                                     |
| activities | Specifies whether<br>extracurricular<br>activity classes are<br>available        | string | Valid values: yes and no.                                                                     |
| higher     | Specifies whether<br>the student has<br>interest in higher                       | string | Valid values: yes and no.                                                                     |

|          | education                                             |        |                                                                                                           |
|----------|-------------------------------------------------------|--------|-----------------------------------------------------------------------------------------------------------|
| internet | Specifies whether<br>Internet is available<br>at home | string | Valid values: yes and no.                                                                                 |
| famrel   | Family relationship                                   | double | The value ranges<br>from 1 to 5,<br>indicating from bad<br>to good family<br>relationship.                |
| freetime | Free time                                             | double | The value ranges<br>from 1 to 5,<br>indicating from little<br>to much free time.                          |
| goout    | Frequency for going out with friends                  | double | The value ranges<br>from 1 to 5,<br>indicating from<br>rarely to frequently<br>going out with<br>friends. |
| dalc     | Daily drinking                                        | double | The value ranges<br>from 1 to 5,<br>indicating from little<br>to much drinking on<br>a daily basis.       |
| walc     | Weekly drinking                                       | double | The value ranges<br>from 1 to 5,<br>indicating from little<br>to much drinking on<br>a weekly basis.      |
| health   | Health status                                         | double | The value ranges<br>from 1 to 5,<br>indicating from bad<br>to good health.                                |
| absences | Absences                                              | double | Value range: 0 to 93.                                                                                     |
| g3       | Final exam                                            | double | 20-point system.                                                                                          |

The following is a screenshot of the data.

| sex 🔺 | address 🔺 | famsize 🔺 | pstatus 🔺 | medu 🔺 | fedu 🔺 | mjob 🔺   | fjob 🔺   | guardian 🔺 | traveltime 🔺 | studytime 🔺 | failures 🔺 | schoolsup 🔺 | fumsup 🔺 |
|-------|-----------|-----------|-----------|--------|--------|----------|----------|------------|--------------|-------------|------------|-------------|----------|
| F     | U         | GT3       | A         | 4      | 4      | at_ho    | teacher  | mother     | 2            | 2           | 0          | yes         | no       |
| F     | U         | GT3       | т         | 1      | 1      | at_ho    | other    | father     | 1            | 2           | 0          | no          | yes      |
| F     | U         | LE3       | т         | 1      | 1      | at_ho    | other    | mother     | 1            | 2           | 3          | yes         | no       |
| F     | U         | GT3       | т         | 4      | 2      | health   | services | mother     | 1            | 3           | 0          | no          | yes      |
| F     | U         | GT3       | т         | 3      | 3      | other    | other    | father     | 1            | 2           | 0          | no          | yes      |
| м     | U         | LE3       | т         | 4      | 3      | services | other    | mother     | 1            | 2           | 0          | no          | yes      |
| М     | U         | LE3       | т         | 2      | 2      | other    | other    | mother     | 1            | 2           | 0          | no          | no       |
| F     | U         | GT3       | Α         | 4      | 4      | other    | teacher  | mother     | 2            | 2           | 0          | yes         | yes      |
| М     | U         | LE3       | Α         | 3      | 2      | services | other    | mother     | 1            | 2           | 0          | no          | yes      |
| М     | U         | GT3       | т         | 3      | 4      | other    | other    | mother     | 1            | 2           | 0          | no          | yes      |
| F     | U         | GT3       | т         | 4      | 4      | teacher  | health   | mother     | 1            | 2           | 0          | no          | yes      |

## **Offline training**

The following figure shows the experiment process.



The data flows through the experiment from top to bottom, for preprocessing, splitting, training, prediction, and evaluation in sequence.

#### 1. Data preprocessing

The SQL script is provided as follows.

select (case sex when 'F' then 1 else 0 end) as sex, (case address when 'U' then 1 else 0 end) as address, (case famsize when 'LE3' then 1 else 0 end) as famsize, (case Pstatus when 'T' then 1 else 0 end) as Pstatus, Medu, Fedu, (case Mjob when 'teacher' then 1 else 0 end) as Mjob, (case Fjob when 'teacher' then 1 else 0 end) as Fjob, (case guardian when 'mother' then 0 when 'father' then 1 else 2 end) as guardian, traveltime, studytime, failures, (case schoolsup when 'yes' then 1 else 0 end) as schoolsup, (case fumsup when 'yes' then 1 else 0 end) as fumsup, (case paid when 'yes' then 1 else 0 end) as paid, (case activities when 'yes' then 1 else 0 end) as activities, (case higher when 'yes' then 1 else 0 end) as higher, (case internet when 'yes' then 1 else 0 end) as internet, famrel, freetime, goout, Dalc, Walc, health, absences, (case when G3>14 then 1 else 0 end) as finalScore from \${t1};

Structure text data by using the SQL Script component.

- For example, the value assigned to a double type field can be Yes or No. You can use value 0 to represent Yes and value 1 to represent No.
- For some multi-value text fields, the data can be abstracted based on the scenario. For example, for the field "Mjob", 1 can indicate a teacher and 0 can indicate a non-teacher. After abstraction, this feature indicates whether the job is related to education.
- The target column is quantified so that 1 indicates more than 18 points, and 0 indicates the others. The goal is to find a model that can predict the score through training.

#### 2. Normalization

The purpose of the Normalization component is to remove the dimension and transform all the fields to 0 and 1. This eliminates the impact of the imbalance between the fields. The result is shown in the following figure.

| sex 🔺 | address 🔺 | famsize 🔺 | pstatus 🔺 | medu 🔺 | fedu 🔺 | mjob 🔺 | fjob 🔺 | guardian 🔺 | traveltime 🔺 | studytime 🔺 | failures 🔺 | schoolsup 🔺 | fumsup 🔺 |
|-------|-----------|-----------|-----------|--------|--------|--------|--------|------------|--------------|-------------|------------|-------------|----------|
| 1     | 1         | 0         | 0         | 1      | 1      | 0      | 1      | 0          | 0.333333333  | 0.33333333  | 0          | 1           | 0        |
| 1     | 1         | 0         | 1         | 0.25   | 0.25   | 0      | 0      | 0.5        | 0            | 0.33333333  | 0          | 0           | 1        |
| 1     | 1         | 1         | 1         | 0.25   | 0.25   | 0      | 0      | 0          | 0            | 0.33333333  | 1          | 1           | 0        |
| 1     | 1         | 0         | 1         | 1      | 0.5    | 0      | 0      | 0          | 0            | 0.66666666  | 0          | 0           | 1        |
| 1     | 1         | 0         | 1         | 0.75   | 0.75   | 0      | 0      | 0.5        | 0            | 0.33333333  | 0          | 0           | 1        |
| 0     | 1         | 1         | 1         | 1      | 0.75   | 0      | 0      | 0          | 0            | 0.33333333  | 0          | 0           | 1        |
| 0     | 1         | 1         | 1         | 0.5    | 0.5    | 0      | 0      | 0          | 0            | 0.33333333  | 0          | 0           | 0        |
| 1     | 1         | 0         | 0         | 1      | 1      | 0      | 1      | 0          | 0.333333333  | 0.33333333  | 0          | 1           | 1        |
| 0     | 1         | 1         | 0         | 0.75   | 0.5    | 0      | 0      | 0          | 0            | 0.33333333  | 0          | 0           | 1        |
| 0     | 1         | 0         | 1         | 0.75   | 1      | 0      | 0      | 0          | 0            | 0.33333333  | 0          | 0           | 1        |
| 1     | 1         | 0         | 1         | 1      | 1      | 1      | 0      | 0          | 0            | 0.33333333  | 0          | 0           | 1        |
| 1     | 1         | 0         | 1         | 0.5    | 0.25   | 0      | 0      | 0.5        | 0.666666666  | 0.66666666  | 0          | 0           | 1        |
| 0     | 1         | 1         | 1         | 1      | 1      | 0      | 0      | 0.5        | 0            | 0           | 0          | 0           | 1        |
| 0     | 1         | 0         | 1         | 1      | 0.75   | 1      | 0      | 0          | 0 333333333  | 0.33333333  | 0          | 0           | 1        |

#### 3. Splitting

The dataset is split in a ratio of 8:2, in which 80% is used for model training and 20% is used for prediction.

#### 4. Logistic regression

Use the Logistic Regression component to train and create an offline model. For more information

about the algorithm, see Wiki.

#### 5. Result analysis and evaluation

You can use the Confusion Matrix component to view the accuracy of the prediction made by your model. As shown in the following figure, the prediction accuracy of this experiment is 82.911%.

| 混淆矩阵 比 | 例矩阵统计信息 |      |     |         |         |         |         |
|--------|---------|------|-----|---------|---------|---------|---------|
|        |         |      |     |         |         |         |         |
| 模型▲    | 正确数 🔺   | 错误数▲ | 总计▲ | 准确率▲    | 准确率 🔺   | 召回率▲    | F1指标▲   |
| 0      | 126     | 25   | 151 | 82.911% | 83.444% | 98.438% | 90.323% |
| 1      | 5       | 2    | 7   | 82.911% | 71.429% | 16.667% | 27.027% |

According to the characteristics of the logistic regression algorithm, some valuable information can be mined through the model coefficients. Right-click the **Logistic Regression for Binary Classification** component and choose **Show Model**. The results are shown in the following figure.

| Culyou_dir         校重           で students_performance         字段名▲           学校名本         1▲                                                                                                                                    |                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| ▼                                                                                                                                                                                                                                |                  |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                            |                  |
| medu 2.196219307541352 -                                                                                                                                                                                                         |                  |
| Fedu -0.6209320272631076 -                                                                                                                                                                                                       |                  |
| ▶ ● 心脏病预测紊例_538 traveltime -0.1401344554844348 -                                                                                                                                                                                 |                  |
| ▶ ■ 已保存模型 studytime 0.2427716427155365 -                                                                                                                                                                                         |                  |
| failures -1.41108855780472 -                                                                                                                                                                                                     |                  |
| famrel 0.07782683210201805 -                                                                                                                                                                                                     |                  |
| freetime 0.3700338237892014 -                                                                                                                                                                                                    |                  |
| goout -0.6294895937934885 -                                                                                                                                                                                                      |                  |
| 1、PAI平台提供的逻辑回归可用于多分类的,采取的维略是OneVaAli,因此在多分类的情况下,会出<br>个方程,每个方程针对目标特征的某个value值,即权置(weight)下方对应的列名;<br>2、逻辑回归的完整公式为: o(2) = 1 / (1 + exp(-z)); z = w0 + w1 * x1 + w2 * x2 + + wm * xm。<br>x1, x2,, xm 是某样本数据的各个特征,w1, w2, 是特征的权重值) | 砚 <b>多</b><br>其中 |
|                                                                                                                                                                                                                                  | 关闭               |

According to the characteristics of the logistic regression algorithm, the greater the weight, the greater the impact of the feature on the result. A positive weight indicates a positive correlation to the result 1 (high score in final exam), and a negative weight indicates a negative correlation. Several features with large weights are analyzed in the following table.

| Field    | Definition        | Weight                      | Analysis                                                                         |
|----------|-------------------|-----------------------------|----------------------------------------------------------------------------------|
| mjob     | Mother's job      | -<br>0.799834177783371<br>7 | The mother being a teacher is disadvantageous for the child to get a high score. |
| fjob     | Father's job      | 1.422595764037065           | The father being a teacher is advantageous for the child to get a high score.    |
| internet | Specifies whether | 1.070938672974736           | Internet at home will                                                            |

|      | Internet is available<br>at home |                   | not only have no<br>negative impact on<br>the score, but will<br>also promote the<br>child's study.                                                                |
|------|----------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| medu | Mother's<br>education level      | 2.196219307541352 | The mother's<br>education level has<br>the greatest impact<br>on the child. The<br>higher the<br>mother's<br>education level, the<br>higher the child's<br>scores. |

Due to the small dataset in this experiment, the preceding analysis results are not necessarily accurate and are for reference only.

## **Online prediction deployment**

After the offline model has been created, deploy the model online and call **restful-api** to make online prediction.

## References

You can log on to Alibaba Cloud Machine Learning Platform for AI (PAI) to experience this product and go to Yunqi Community to discuss with us.

## [Text analysis] - Perform news classification

#### The data in this topic is fictitious and is only used for experimental purposes.

This experiment is intended to introduce text components. To improve the final results, please contact us. We will provide you with complete solutions and business cooperation.

## Background

News classification is a common scenario in the field of text mining. At present, many media or content producers often use manual tagging for news text classification, which consumes a lot of human resources. This topic classifies news text through smart text mining algorithms. It is completely implemented by the machine without any manual tagging.

In this document, automatic news classification is implemented through the PLDA algorithm and topic weights clustering. It includes processes such as word breaking, word type conversion, deprecated word filtering, topic mining, and clustering.

## Dataset

The data screenshot is shown as follows.

| 蚁塘採草 - nip | _news_analyze - | (汉亚示刖一目亲)                                                                          | 23 8 |
|------------|-----------------|------------------------------------------------------------------------------------|------|
|            |                 |                                                                                    |      |
| category 🔺 | title 🔺         | content 🔺                                                                          |      |
| 财经         | 让监会将有序推进        | 本报记者 侯捷宁中国址监绘新闻发言人日前表示,中国址监绘将全面并展址券业和资本市场对外并放评估,继续完善有天对外并放成资,标极稳妥地推进证据             | ş    |
| 财经         | 把握两条线索 挖        | ○华龙证券研究中心 张晓目前,不少投资者在板块轮动中迷失了方向,但越是市场扑朔迷离时,越应该把握好游离于股价变化之外的主线,才能有提前布局、             |      |
| 娱乐         | 电影节特别论坛         | 娱乐讯 6月14日下午1点30分,因为汶川大地震而将主题确定为"汇聚影人力量,点燃生命之光"的第11届上海国际电影节,举行了第一个与地震灾情相            | 8    |
| 体育         | 蓝军斯科拉里阴谋        | 体育讯 在法国南部海边度假的弗格森爵士肯定已经知道了斯科拉里入住切尔西的消息,这恐怕足以扫去苏格兰人这个夏天的良好心情。《镜报》称斯科拉里正             | E    |
| 财经         | 食品饮料:子行业        | 在通账背景下,食品饮料各子行业盈利将出现分化,呈现出"一半是海水,一半是火焰"的特点。啤酒洗糠提价 今年1-4月份,全国啤酒产量达1128万千            | F    |
| 财经         |                 | 证券机构:九鼎德盛公司是国内规模最大同时具备研制和生产光、电两类连接器产品专业化企业,是国内最大研制和生产光连接器专业化厂商,是国内最小               | ē    |
| 女性         |                 | F间休息,区区一两个小时光景,用于闲扯八卦太过奢侈,休闲购物又太显怪吝。当困顿反应夹塞进办公室,午休后的那几个工时就越发缥缈——虽然在眼               | R    |
| 体育         | 广西日报:不必太        | 前几天,中国足球队 0 比 1 输给卡塔尔队,几乎宣判了中国队在冲击南非世界杯道路上的"死刑"。尽管 4 个小时之后,伊拉克队在迪拜 1 比 0 战胜澳大利亚队,  |      |
| 财经         | 成都出台规定: 单       | 如何收养地震孤儿?地震孤儿又将享受到哪些方面的权益保护?昨日,记者从(成都)市民政局获悉,为维护地震孤儿合法权益,促进地震孤儿健康成长,市民             | ₹    |
| 体育         | 欧洲杯第8日综述        | 体育讯 北京时间6月15日凌晨,2008欧洲杯小组赛第2轮D组赛事结束,西班牙队以摧枯拉朽之势再胜瑞典取得两连胜,提前一轮小组第一出线,西班             | 狂    |
| 财经         | 当市场恐慌时,我        | 来源:证券机构:广州万隆资金流向与热点板块前瞻提要:两市今日的成交金额为690.4亿元,比前一交易日增加約18.0亿元,资金净流出約82.(             | D    |
| 财经         | 南航认沽权证跌九        | 本报记者 周松林 上海报道南航认沽权证(南航JTP1580989)终于走完了长达一年的归零过程,以0.003元的收盘价结束了最后的交易日。              | 亥    |
| 体育         | 葡萄牙一心凭借进        | 欧洲杯之前,葡萄牙和德国的对决原本被认为是一场精彩的半决赛,但随着德国输给克罗地亚,半决赛提前到了四分之一决赛。明天凌晨的巴塞尔,将成为葡 <sup>萄</sup> | 暄    |
| 财经         | 基金经理认为市场        | 六月初,消息面可谓风雨飘摇。内有流动性紧缩、融资压力两大压力,外有油价暴涨、越南经济不稳定两大隐患。这两大不利因素将如何影响后市?信达演银器             | 靑    |
| 娱乐         | 大兵: 相声革命        | 自创自演相声剧《夺宝熊兵》24日首演,集聚周卫星、赵卫国一干笑星引子15日下午1点,解放西路酒吧一条街。这个时候每个酒吧都安静下来,被这些流             | ā    |
| 财经         | 左小蕾:从美国次        | 本着公平、公正、公开、科学的原则推出"金贝奖--年度金融理财产品评选"、"《2007年度中国金融理财报告》"等系列活动,并于6月13日在北京盛也           | ±    |
| 财经         | 易宪容:成品油价        | 6月19日,成品油价格上调终于姗姗来迟。当时,我曾预计国内股市20日应该完全收复19日暴跌的那根阴线。结果,尽管20日股市有明显上涨,而且」             | E    |
| 1.75       |                 |                                                                                    |      |

The following table describes the fields:

| Field    | Definition | Туре   | Description                                             |
|----------|------------|--------|---------------------------------------------------------|
| category | News type  | string | Sports, women,<br>society, military, and<br>technology. |
| title    | Title      | string | News title.                                             |
| content  | Content    | string | News content.                                           |

关闭

## Data exploration procedure

The following figure shows the experiment process.

|            | pai_online_project                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ☞ 类型转换-1 ④ | ※ Split Word-1 ② ② ③ ③ ③ ③ ③ ③ ③ ③ ⑤ ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 送 过速与映射-1  | 5 6 K均值聚类-1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

The experiment is roughly divided into the following five steps:

- 1: Add an ID column
- 2 : Perform word breaking and word frequency analysis
- 3 : Filter deprecated words
- 4 : Mine text topics
- 5 : Analyze and evaluate results

#### 1. Add an ID column

The data source of this experiment is based on a single news unit. It is necessary to add an ID column as a unique identifier for each news unit, which is convenient for computing the following algorithm.

#### 2. Perform word breaking and word frequency analysis

This step is a common practice in the field of text mining.

Use the Split Word component to break the **content** field (news content). Filtered words include punctuation marks and auxiliary words. The following figure shows the result.

| append_id 🔺 | word 🔺 | count 🔺 |
|-------------|--------|---------|
| v           | ш      | I       |
| 0           | 分分     | 1       |
| 0           | 别墅     | 1       |
| 0           | 勇敢     | 1       |
| 0           | 包装     | 1       |
| 0           | 博爱     | 1       |
| 0           | 却      | 1       |
| 0           | 又      | 2       |
| 0           | 发      | 1       |
| 0           | 句      | 4       |

#### 3. Filter deprecated words

Use the Deprecated Word Filtering component to filter the input deprecated-word lexicon. This typically filters punctuation and auxiliary words that have less impact on the news content.

#### 4. Mine text topics

1. Before using the PLDA component, convert the text to a ternary form (text to numeral), as shown in the following figure.

| VIULTAR - Pul |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| append_id 🔺   | key_value 🔺                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 213           | 337:1,412:1,667:3,861:1,1096:2,1582:1,1693:1,2109:1,2283:1,2371:1,2659:1,3054:3,3092:1,3232:1,4170:1,4376:1,4889:1,5206:1,5427:1,5595:1,5692:1,5739:1,6116:1,6133:1,6529                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 216           | 10:1,127:1,436:1,675:1,891:1,915:1,1096:2,1468:1,1757:1,2013:1,2109:1,2562:1,2783:1,3054:1,3400:1,3427:1,3443:1,3459:1,4597:1,6116:1,6183:1,6190:1,6529:1,6552:1,6652:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,652:1,652:1,652:1,652:1,652:1,652:1,652:1,652:1,652:1,652:1,652:1,652:1,652:1,652:1,652:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552:1,6552 |
| 219           | 228:1,339:1,394:1,430:2,539:3,862:1,926:1,1224:1,1421:1,1488:2,1528:1,1670:2,1822:1,1909:2,2109:1,2301:1,2325:1,2411:1,2763:1,2959:1,2963:2,3209:1,4168:1,4168:1,5111:1,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 221           | 10:1,18:1,200:1,387:1,412:1,436:1,450:2,472:4,555:2,563:2,637:1,639:2,667:1,813:1,856:1,913:1,1416:1,1502:1,1604:1,1636:1,2448:1,2641:2,2659:1,2929:1,3054:3,3092:2,3100:1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 224           | 1582:1,3288:1,3702:1,5582:1,5932:1,6077:1,6249:1,6430:1,6529:1,6734:1,7636:1,8888:1,9418:1,9425:1,9925:1,10017:1,10176:1,11681:1,11683:1,12744:2,12748:2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 227           | 10:1,368:1,539:1,675:1,915:1,926:1,960:1,1096:2,1423:1,1757:1,1759:1,2057:1,2109:1,2812:1,3024:1,3092:1,3181:1,3359:1,3591:1,4514:1,5464:1,6077:1,6116:1,6295:1,6529:1,65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 23            | 10:10,18:3,23:1,30:1,36:1,99:2,102:6,146:1,181:2,183:1,234:1,299:1,430:1,436:1,539:2,667:2,753:1,813:5,854:1,917:1,920:1,922:1,969:5,978:2,996:1,998:1,1001:4,1096:1,11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 232           | 12:1,13:1,18:1,69:2,146:1,200:1,234:2,329:1,370:2,565:2,571:2,605:1,608:2,667:7,813:3,891:6,1008:5,1065:1,1096:1,1104:1,1189:5,1190:2,1293:1,1572:1,1636:1,1816:1,2117:1,21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 235           | 12:2,13:2,18:1,88:1,204:1,478:1,523:1,558:1,575:1,506:1,667:2,670:1,754:2,803:1,872:1,921:1,1119:1,1398:2,1421:1,1498:1,1704:1,1947:1,2109:2,2132:1,2352:1,2783:3,3019:1,30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 238           | 10:3,202:2,539:1,667:1,892:1,1096:3,1127:1,1684:1,1806:2,2109:1,2122:1,2143:1,3024:1,3054:2,3364:1,3701:2,3765:1,3879:1,3984:1,5500:1,5685:1,6116:1,6529:1,66832:1,7460:1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 240           | 10-1 107-1 115-1 146-1 412-1 430-1 450-2 596-1 667-1 800-1 931-1 1478-1 1584-1 1604-1 1652-2 1848-1 2352-1 2641-1 2676-1 2783-1 3000-2 3019-1 3054-2 3078-1 3677-1 3901-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

- append\_id is the unique identifier of each news unit.
- The number preceding the colon in the key\_value field indicates the numeral identifier that the word is abstracted into, and the colon is followed by the frequency at which the corresponding word appears.

Apply the PLDA algorithm to the data.

The PLDA algorithm is also known as topic model, which can locate words that represent the topic of each news unit. This experiment sets 50 topics. PLDA has six output piles, and the fifth output pile outputs the probability of each topic corresponding to each news unit, as shown in the following figure.

| docid 🔺 | topic_0 🔺 | topic_1 🔺 | topic_2 🔺 | topic_3 🔺 | topic_4 🔺 | topic_5 🔺 | topic_6 🔺 | topic_7 🔺 | topic_8 🔺 | topic_9 🔺 | topic_10 🔺 | topic_11 🔺 | topi |
|---------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------|------------|------|
| 0       | 0.0015625 | 0.0015625 | 0.0015625 | 0.0171875 | 0.0015625 | 0.0484375 | 0.0015625 | 0.0015625 | 0.0015625 | 0.0015625 | 0.0015625  | 0.0328125  | 0.00 |
| 1       | 0.001298  | 0.014285  | 0.001298  | 0.014285  | 0.001298  | 0.001298  | 0.014285  | 0.001298  | 0.001298  | 0.014285  | 0.1831168  | 0.0012987  | 0.00 |
| 2       | 0.011224  | 0.021428  | 0.001020  | 0.011224  | 0.011224  | 0.001020  | 0.001020  | 0.001020  | 0.001020  | 0.011224  | 0.0010204  | 0.0214285  | 0.00 |
| 3       | 0.000884  | 0.000884  | 0.000884  | 0.000884  | 0.000884  | 0.000884  | 0.000884  | 0.000884  | 0.000884  | 0.000884  | 0.0716814  | 0.0008849  | 0.00 |
| 4       | 0.039285  | 0.003571  | 0.003571  | 0.289285  | 0.003571  | 0.003571  | 0.003571  | 0.003571  | 0.003571  | 0.039285  | 0.0035714  | 0.075      | 0.05 |
| 5       | 0.001408  | 0.001408  | 0.001408  | 0.001408  | 0.001408  | 0.001408  | 0.001408  | 0.001408  | 0.001408  | 0.043661  | 0.0295774  | 0.0014084  | 0.11 |
| 6       | 0.002736  | 0.010199  | 0.010199  | 0.000248  | 0.000248  | 0.040049  | 0.000248  | 0.000248  | 0.000248  | 0.000248  | 0.0201492  | 0.0002487  | 0.00 |
| 7       | 0 000543  | 0 000543  | 0 000543  | 0 000543  | 0 000543  | 0.027717  | 0 000543  | 0 000543  | 0 000543  | 0 000543  | 0.0548913  | 0 0059782  | 0.00 |

#### 5. Analyze and evaluate the mining results

The preceding steps represent the news unit as a vector from the dimension of the topic.

News units can be classified by clustering the distances of the vectors. The classification results of the K-means Clustering component are shown in the following figure.

| docid 🔺 | cluster_index 🔺 |
|---------|-----------------|
| 115     | 0               |
| 292     | 0               |
| 248     | 0               |
| 166     | 0               |
| 116     | 2               |
| 210     | 3               |
| 8       | 4               |
| 15      | 4               |

- cluster\_index indicates the name of each class.

- Find class 0. There are a total of 4 news units with the **docid** of 115, 292, 248, and 166.

The 4 news units 115, 292, 248, and 166 are queried through the Filtering and Mapping component. The following figure shows the result.

| append_id 🔺 | category 🔺 | title 🔺 | content A                                                                        |
|-------------|------------|---------|----------------------------------------------------------------------------------|
| 115         | 体育         | "欧洲通    | 来源:重庆晚报"欧洲通行证"考验门将每次大赛,新推出的用球都会成为球员和市场关注的焦点,此次欧洲杯的用球"欧洲通行证"估计也会让门将们大伤脑           |
| 166         | 财经         | 新旗舰     | 机构:周四上证指数快速击穿新低进一步摧毁了市场在3000点一带进行抵抗的信心,大盘如同自由落体,直至2900点附近才出现抵抗,最终当天再             |
| 248         | 体育         | 图文:     | 来源:体育体育讯 北京时间6月15号凌晨,08欧洲杯D组第二轮开战,在奥地利因斯布鲁克的蒂沃利球场,西班牙2比1险胜瑞典,斗牛士军团以6             |
| 292         | 科技         | L G第    | 赛迪网讯 6 月 3 0 日消息,据台湾媒体报道,随着第二季度摩托罗拉在全球的手机市场的表现持续低迷,LG电子第二季度手机出货量有望突破 3 , 0 0 0 … |

The experiment results are unsatisfactory. In the preceding figure, a financial news unit, a technology news unit, and two sports news units are grouped together.

The main reasons are as follows.

- There is no detailed optimization.
- There is no feature engineering for the data.
- The data volume is too small.

# Mine headline news through the Online Learning solution of PAI

# Mine headline news through the Online Learning solution of PAI

News websites often push headlines to viewers. As a news website publishes a large amount of news in real time,

it is necessary to mine headlines from the latest news. This determines the quality of news recommendations.



Machine learning algorithms are required to identify potential headlines from among massive amounts of news. A conventional approach is to download historical consultations that are collected every day, train a model offline based on the collected data, and push the created headline discovery model online for use on the next day. However, this offline trained model lacks timeliness because it predicts daily headlines that are reported in real time based on historical data.

To solve this problem, Machine Learning Platform for AI (PAI) introduces the Online Learning solution that combines streaming and offline algorithms. The solution processes massive data through offline training and updates real-time models by using streaming algorithms of machine learning. This enables simultaneous running of different batches of streams. The following experiment shows how to use the Online Learning solution of PAI to mine headline news.

## **Experiment process**

#### 1. Activate and use the Online Learning solution

Currently, the Online Learning solution of PAI is in public review. If you want to use the solution, please fill out the questionnaire:

After activating the Online Learning solution, click Try New Version to start the trial.



### 2. Experiment process



Note: The offline computation components of PAI are marked in blue, and the stream computation components are marked in green. The stream components are interconnected to form a computing group and must all be in the running or stopped state.

#### Step 1: Train an offline model

This experiment uses 30,000 news items from UCI open datasets.

#### URL: https://archive.ics.uci.edu/ml/datasets/Online+News+Popularity

The used data includes the URLs and publication time of news, 58 features, and 1 target value. The target value "share" indicates the number of news item shares. During the modeling process, use the SQL Script component to perform binary classification based on the "share" field and classify news into headlines (with more than 10,000 shares) and non-headlines (with less than 10,000 shares).

The following figure shows the feature composition.

| Feature                            | Type (#)     | Feature                                     | Type (#)     |  |  |  |  |
|------------------------------------|--------------|---------------------------------------------|--------------|--|--|--|--|
| Words                              |              | Keywords                                    |              |  |  |  |  |
| Number of words in the title       | number (1)   | Number of keywords                          | number (1)   |  |  |  |  |
| Number of words in the article     | number (1)   | Worst keyword (min./avg./max. shares)       | number (3)   |  |  |  |  |
| Average word length                | number (1)   | Average keyword (min./avg./max. shares)     | number (3)   |  |  |  |  |
| Rate of non-stop words             | ratio (1)    | Best keyword (min./avg./max. shares)        | number (3)   |  |  |  |  |
| Rate of unique words               | ratio (1)    | Article category (Mashable data channel)    | nominal (1)  |  |  |  |  |
| Rate of unique non-stop words      | ratio (1)    | Natural Language Processing                 | g            |  |  |  |  |
| Links                              | (-)          | Closeness to top 5 LDA topics               | ratio (5)    |  |  |  |  |
| Number of links                    | number (1)   | Title subjectivity                          | ratio (1)    |  |  |  |  |
| Number of Mashable article links   | number $(1)$ | Article text subjectivity score and         |              |  |  |  |  |
| Minimum average and maximum number |              | its absolute difference to 0.5              | ratio (2)    |  |  |  |  |
| of shares of Mashable links        | number (3)   | Title sentiment polarity                    | ratio (1)    |  |  |  |  |
| Digital Media                      | number (0)   | Rate of positive and negative words         |              |  |  |  |  |
| Number of images                   | mumber (1)   | Pos. words rate among non-neutral words     | ratio (1)    |  |  |  |  |
| Number of images                   | number (1)   | Neg. words rate among non-neutral words     | ratio (1)    |  |  |  |  |
| Number of videos                   | number (1)   | Polarity of positive words (min./avg./max.) | ratio (3)    |  |  |  |  |
| Time                               |              | Polarity of negative words (min./avg./max.) |              |  |  |  |  |
| Day of the week                    | nominal (1)  | Article text polarity score and             |              |  |  |  |  |
| Published on a weekend?            | bool (1)     | its absolute difference to 0.5              | ratio (2)    |  |  |  |  |
|                                    |              | m                                           | (H)          |  |  |  |  |
|                                    |              | larget                                      | Type (#)     |  |  |  |  |
|                                    |              | Number of article Machable charge           | l number (1) |  |  |  |  |

Use the logistic regression model to train and create a binary classification model, which is used to evaluate whether a piece of news will become a headline.

Note: Currently, the Online Learning solution of PAI only supports the logistic regression algorithm.

#### Step 2: Convert the offline model to a streaming model

Use the Model Conversion component to convert the offline logistic regression model to a streaming model that can be read by streaming algorithms.

#### Step 3: Generate streaming data

Step 3 and subsequent steps involve streaming algorithms. PAI provides multiple streaming data sources. This experiment uses Datahub as an example.

Datahub URL: https://datahub.console.aliyun.com/datahub

Datahub is a type of streaming data queue that supports multiple languages such as Java and Python. You can use Datahub to link user-created real-time data and the training service of PAI. Note: The data streams imported by Datahub must be in the same format as the fields of the data streams used for offline training so that offline models can be updated in real time.

#### Step 4: Train a streaming model

The Follow the Regularized Leader (FTRL) algorithm is basically equivalent to the streaming logistic regression algorithm. Set parameters based on the logistic regression algorithm. Pay attention to the Model Save Time Interval parameter, which determines the time interval at which models are created through real-time computing.

| 学习率参数alpha 默认值0.1<br>学习率参数beta 默认值0.1 |         |
|---------------------------------------|---------|
| 学习率参数beta 默认值0.1                      |         |
|                                       |         |
| L1正则化系数 默认值0.1                        |         |
| L2正则化系数 默认值0.1                        |         |
| 模型保存时间间隔 可选,默认:1                      | 800 (s) |

#### Step 5: Export the streaming model

Export the classification model in the PMML format and write the model to Object Storage Service (OSS). The write interval is the same as the model creation interval. Model write example:

|  | newsRec_2019-01-10-11:00:00_0.dat | 13.872KB | 标准存储 | 2019-01-10 11:00 | 预览 | 更多 🗸 |
|--|-----------------------------------|----------|------|------------------|----|------|
|  | newsRec_2019-01-10-11:30:00_1.dat | 13.873KB | 标准存储 | 2019-01-10 11:30 | 预览 | 更多 🗸 |
|  | newsRec_2019-01-10-12:00:00_0.dat | 13.873KB | 标准存储 | 2019-01-10 12:00 | 预览 | 更多 🗸 |
|  | newsRec_2019-01-10-12:30:00_1.dat | 13.815KB | 标准存储 | 2019-01-10 12:30 | 预览 | 更多 🗸 |

If streaming evaluation data is available, the system can store real-time model evaluation metrics together with the model in OSS.

### 3. Model usage

After the headline prediction model is created and stored in OSS, you can deploy the model through Elastic Algorithm Service (EAS) of PAI or download the model to be used by the local prediction engine. Perform feature engineering on incoming news data based on the instructions in "Step 1: Train an offline model." Enter the feature engineering result in Headline Mining Service, and you can see whether the news is a potential headline.

## Perform public opinion risk control based on the feedback from a takeaway platform

## Background

Currently, many merchants provide online platforms for consumers to write comments and give feedback on purchased items. Consumer feedback includes praises and criticisms. Merchants need to determine whether the product quality meets consumer needs based on consumers' opinions on products, and read consumer comments to analyze the consumer opinion trend and guide future product development.

## **Business pain points**

At present, a large number of comments are created on the comment platforms of hotels, restaurants, and retail stores every day. The approach of manually collecting statistics on public opinion is inefficient and fails to produce accurate data on extensive public opinion. We need to devise an approach to automatically collect statistics on public opinion to determine the public opinion trend of comment platforms.

## Solution

Machine Learning Platform for AI (PAI) provides a set of algorithms based on text vectorization and classification, which are used to create a classification model based on the positive (praising) and negative (critical) comments with historical flags. The created model can be used to automatically predict new comments. The overall modeling framework has been developed based on PAI by using 11,987 labeled comments collected from a takeaway comment platform. The framework implements risk control of positive and negative public opinions, with an accuracy of about 75%.

Required knowledge: basic knowledge of natural language processing (NLP) and classification algorithms, especially how such knowledge is applied to model debugging.

Development cycle: one to two days.

Required data: more than one thousand labeled data items. The prediction effect is better when more labeled data items are available.

#### Data

| 序号▲ | label 🔺 | review 🔺                               |
|-----|---------|----------------------------------------|
| 29  | 1       | 这次的麻辣教父一点也的不辣诶。。。不知道为啥。。。              |
| 30  | 1       | 真的是太好吃了太帅了吃的我美美的送餐也很快以后外卖就百度这家餐厅了      |
| 31  | 1       | 今天的牛肉烧烤饭,感觉牛肉有些不新鲜,送餐员的速度还是很快的。        |
| 32  | 1       | 大雾霾,外卖小哥记得带口罩哦!给爸妈带回天津尝尝稻香村的的小肚~~~     |
| 33  | 1       | "棒棒哒棒棒哒棒棒哒,师傅辛苦"                       |
| 34  | 1       | 挺好的,不错                                 |
| 35  | 1       | "外卖速度快,饭菜依然好吃,点赞"                      |
| 36  | 1       | 饭菜很好吃                                  |
| 37  | 1       | 前几天点的卤肉饭要是单卖里面的泡菜就更好了                  |
| 38  | 0       | "糟糕,继续努力吧"                             |
| 39  | 0       | 这个很难吃                                  |
| 40  | 0       | 菜明显是剩菜,跟之前买的完全不一样                      |
| 41  | 0       | 卷饼不错,但等了两个小时,什么情况                      |
| 42  | 0       | 晚上七点订的外卖,九点还没送到,电话说是忘了我的订单,说好的退款一直没有退还 |
| 43  | 0       | 卷饼的量太小了,,                              |
| 44  | 0       | 因为楼层很多所以让人去校门口自取,好懒                    |
| 45  | 0       | 香菇鸡肉不太好吃,果汁也太袖珍了吧不过速度巨快                |

| Parameter | Description                                                                |
|-----------|----------------------------------------------------------------------------|
| label     | Label. 1 indicates a positive comment, and 0 indicates a negative comment. |
| review    | Actual comment data.                                                       |

#### Procedure

Log on to PAI Studio at https://pai.data.aliyun.com/console

The solution data and experiment environment are built in the corresponding template on the homepage .

## 基于外卖评论的舆情风控



利用NLP算法分析外卖评论,判断用户 的正负情感

## 0 位用户



Open the experiment:

| pai_onysis           | -1 ② 1.数据源                                                                | 2 ②<br>2.停用词 |
|----------------------|---------------------------------------------------------------------------|--------------|
| ¥ Split<br>※ 增加序号列-1 | Word-1 ⊘<br>③ 3.文本向量化<br>④ 次 Doc2Vec-1 ④                                  | -1 📀         |
| □ 逻辑回类-1 ②           | ▲ JOIN-1 ② ▲ 拆分-1 ② 4.分类模型生成                                              |              |
|                      | <ul> <li>○ 预测-1</li> <li>○</li> <li>5.模型效果验证</li> <li>● 混淆矩阵-1</li> </ul> | -            |

1. Data source

The data source is the comments described in the preceding sections.

1. Deprecated words

Manually upload the deprecated word table to filter auxiliary verbs and punctuation marks.

| 序号▲ | stop_word 🔺 |
|-----|-------------|
| 9   | 7           |
| 10  | 8           |
| 11  | 9           |
| 12  | ?           |
| 13  | -           |
| 14  | ĸ           |
| 15  | 30          |
| 16  | s           |
| 17  | o           |
| 18  | «           |
| 19  | 2           |

1. Text vectorization

Use the Doc2vector algorithm to convert each comment to a semantic vector. Each line includes a vector, and each vector represents the meaning of a comment.

| f0 🔺 | fl 🔺                   | f2 🔺         | f3 🔺 | f4 🔺 | f5 🔺 | f6 🔺 | f7 🔺 | f8 🔺 | f9 🔺 | f10 🔺 | f11 🔺 | f12 🔺 | f13 🔺 | f14 🔺 | f15 🔺 | f16 🔺 | f17 🔺 |
|------|------------------------|--------------|------|------|------|------|------|------|------|-------|-------|-------|-------|-------|-------|-------|-------|
| 0.0  | -0.03756009414792061   | 0.012046359  | -0   | -0   | 0.0  | -0   | 0.0  | -0   | 0.0  | 0.00  | -0.0  | 0.06  | 0.02  | -0.0  | -0.0  | 0.00  | 0.00  |
| 0.0  | -0.015270709991455078  | 0.008787018  | -0   | -0   | 0.0  | -0   | -0   | -0   | 0.0  | -0.0  | -0.0  | 0.03  | 0.00  | -0.0  | 0.00  | 0.00  | 0.00  |
| 0.0  | -0.02618148736655712   | 0.003506168  | -0   | 0.0  | 0.0  | -0   | 0.0  | -0   | 0.0  | 0.00  | -0.0  | 0.04  | -0.0  | -0.0  | -0.0  | -0.0  | 0.00  |
| 0.0  | -0.016501447185873985  | -0.00243335  | -0   | 0.0  | 0.0  | -0   | 0.0  | -0   | 0.0  | -0.0  | 0.00  | 0.01  | -0.0  | -0.0  | -0.0  | -0.0  | 0.00  |
| 0.0  | -0.008959046564996243  | 0.0065372115 | -0   | -0   | 0.0  | -0   | -0   | -0   | -0   | -0.0  | -0.0  | 0.00  | 0.00  | -0.0  | -0.0  | 0.00  | 0.00  |
| 0.0  | -0.008599202148616314  | 0.0009298113 | -0   | -0   | 0.0  | 0.0  | 0.0  | -0   | 0.0  | 0.00  | -0.0  | 0.01  | 0.00  | -0.0  | -0.0  | -0.0  | -0.0  |
| 0.0  | -0.020256049931049347  | 0.0144845861 | -0   | -0   | 0.0  | -0   | 0.0  | -0   | -0   | -0.0  | -0.0  | 0.02  | 0.01  | -0.0  | 0.01  | -0.0  | 0.01  |
| 0.0  | -0.010314139537513256  | 0.004535630  | -0   | -0   | 0.0  | -0   | 0.0  | -0   | 0.0  | -0.0  | -0.0  | 0.01  | 0.00  | -0.0  | -0.0  | 0.00  | 0.00  |
| 0.0  | -0.04055945202708244   | 0.028456654  | -0   | -0   | 0.0  | -0   | 0.0  | -0   | 0.0  | -0.0  | -0.0  | 0.03  | 0.01  | -0.0  | 0.00  | -0.0  | 0.02  |
| 0.0  | -0.015246668830513954  | -0.00390523  | -0   | -0   | 0.0  | -0   | 0.0  | -0   | 0.0  | 0.00  | -0.0  | 0.02  | 0.00  | -0.0  | 0.00  | -0.0  | -0.0  |
| 0.0  | -0.04092860966920853   | 0.0108231166 | -0   | -0   | 0.0  | -0   | 0.0  | -0   | 0.0  | -0.0  | 0.00  | 0.04  | 0.00  | -0.0  | 0.01  | -0.0  | 0.01  |
| 0.0  | -0.009084475226700306  | -0.00076219  | -0   | 0.0  | 0.0  | -0   | 0.0  | -0   | 0.0  | 0.00  | 0.00  | 0.00  | -0.0  | -0.0  | 0.00  | 0.00  | 0.00  |
| 0.0  | -0.0124673992395401    | -0.00044502  | -0   | 0.0  | 0.0  | -0   | 0.0  | -0   | 0.0  | -0.0  | 0.00  | 0.00  | -0.0  | -0.0  | -0.0  | -0.0  | -0.0  |
| 0.0  | -0.05390368402004242   | 0.0249195415 | -0   | -0   | 0.0  | -0   | 0.0  | -0   | 0.0  | -0.0  | -0.0  | 0.07  | 0.02  | -0.0  | -0.0  | 0.00  | 0.01  |
| -0   | -0.0014472039183601737 | -0.00728650  | -0   | -0   | 0.0  | -0   | 0.0  | -0   | 0.0  | -0.0  | 0.01  | -0.0  | -0.0  | 0.00  | 0.00  | -0.0  | 0.00  |
| 0.0  | -0.047522492706775665  | 0.012986063  | -0   | -0   | 0.0  | -0   | 0.0  | -0   | 0.0  | -0.0  | 0.00  | 0.04  | 0.00  | -0.0  | 0.00  | -0.0  | 0.01  |
| 0.0  | 0.00107560406000010    | 0.010604775  | 0    | 0    | 0.0  | 0    | 0.0  | 0    | 0.0  | 0.00  | 0.0   | 0.04  | 0.0   | 0.0   | 0.00  | 0.0   | 0.00  |

1. Create a classification model

Use the splitting algorithm to split vectorized text into the training set and test set. Train the training set by using the logistic regression algorithm to create a binary classification model. This model can be used to determine whether a comment is a positive or negative comment.

1. Model effect verification

Use the confusion matrix algorithm to verify the actual effect of the model.

| 混 | 清矩阵    |          |      |      |         |         |         |         | 5 A<br>12 S |
|---|--------|----------|------|------|---------|---------|---------|---------|-------------|
|   | 混淆矩阵 比 | 例矩阵 统计信息 |      |      |         |         |         |         |             |
|   | 模型▲    | 正确数▲     | 错误数▲ | 总计▲  | 准确率▲    | 精确率▲    | 召回率▲    | F1指标▲   |             |
|   | 0      | 2069     | 705  | 2774 | 71.166% | 74.585% | 86.208% | 79.977% |             |
|   | 1      | 488      | 331  | 819  | 71.166% | 59.585% | 40.905% | 48.509% |             |

## Summary

The public opinion risk control approach based on comments analysis can be developed in one to two days through PAI. The approach can intelligently analyze comments in batches. The accuracy of the model is improved with the increase in comments. This approach is applicable to textual analysis, such as spam classification and classification of positive and negative public opinions on news.

# Perform recommendation based on features of recommendation targets and objects

This experiment uses data from real-life e-commerce scenarios that has been anonymized. The data is only used for learning and shall not be used for commercial purposes.

The previous issue describes how to use Machine Learning Platform for AI (PAI) to build a recommendation system based on collaborative filtering. This topic describes recommendation methods based on the features of recommendation objects and targets.

The following figure shows the general flowchart of recommendation based on object features.



- Import the supervised, structured data to MaxCompute.
- Perform feature engineering, including data preprocessing and feature derivation. Feature derivation aims to expand data dimensions so that data can reflect business features to the maximum extent.
- Split the data into two parts. One part is used to create a binary classification model by using the classification algorithm. The other part is used to test the model effect.
- Determine the model effect by using the evaluation component.

### 1. Business scenario

Create a prediction model by training the April and May data of a real-life e-commerce scenario.

Evaluate the prediction model based on the shopping statistics in June to determine the optimal model. Deploy the optimal model as an online HTTP service to be called in business scenarios.

This experiment is conducted in PAI Studio to build a recommendation system based on object features simply by dragging and dropping components. The data and complete business flow in this experiment are built in the corresponding template on the homepage. The template is ready for use.



## 2. Dataset

This experiment uses data provided by Tianchi Competition, including the shopping behavior statistics before July and the data since July. The fields are as follows.

| Field   | Definition | Туре   | Description        |
|---------|------------|--------|--------------------|
| user_id | User ID    | string | The ID of a buyer. |

| item_id     | Item ID                 | string | The ID of the purchased item.                                            |
|-------------|-------------------------|--------|--------------------------------------------------------------------------|
| active_type | Shopping behavior       | string | 0: Click; 1: Buy; 2:<br>Add to Favorites; 3:<br>Add to Shopping<br>Cart. |
| active_date | The time of<br>shopping | string | The time when the shopping occurs.                                       |

Data entries:

| 10944750 | 8689  | 2 | 5月2日 |
|----------|-------|---|------|
| 10944750 | 25687 | 2 | 5月8日 |
| 10944750 | 7150  | 1 | 6月7日 |
| 10944750 | 13451 | 0 | 6月4日 |
| 10944750 | 13451 | 0 | 6月4日 |
| 10944750 | 13451 | 0 | 6月4日 |
| 10944750 | 13451 | 0 | 6月4日 |
| 10944750 | 13451 | 0 | 6月4日 |

## 3. Data exploring

This experiment is conducted in PAI Studio. It allows you to build a recommendation system simply by dragging and dropping components based on collaborative filtering. PAI Studio supports automatic parameter tuning and one-click model deployment.

The following figure shows the experiment flowchart.



### (1) Feature engineering

Perform feature engineering to expand the dimensions of the raw data with only four fields. The recommendation scenario includes two types of features: the features of the targets to which items are recommended and the features of the items that are recommended.

In the case of item recommendation:

- The recommendation object is an item. The expanded dimensions include the number of purchases of this item, the number of clicks on this item, and the purchase-to-click ratio of this item, which is calculated by dividing the purchase quantity by the click quantity.
- The recommendation target is a user. The expanded dimensions include the total number of purchases made by this user, the total number of clicks by this user, and the purchase-to-click ratio of this user, which is calculated by dividing the click quantity by the purchase quantity. The purchase-to-click ratio indicates the number of times that the user clicks before buying an item. It describes the user' s purchase intention.

The data is expanded from 4 fields to 10 fields.

| user_id 🔺       |                    |               | item_id 🔺      |                  |      | active_         | _type 🔺         | active_month A     |         |                  |                       |  |
|-----------------|--------------------|---------------|----------------|------------------|------|-----------------|-----------------|--------------------|---------|------------------|-----------------------|--|
| 1094475         | 50                 |               | 13451          |                  |      | 0               |                 |                    |         | 6                |                       |  |
| 10944750        |                    |               | 13451          |                  |      | 2               |                 |                    |         | 6                |                       |  |
| 1094475         | 50                 |               | 13451          |                  |      | 2               |                 |                    |         | 6                |                       |  |
| 1094475         | 50                 |               | 13451          |                  |      | 0               |                 |                    |         | 6                |                       |  |
| 1094475         | 50                 |               | 13451          |                  |      | 0               |                 | 6                  |         |                  |                       |  |
| 1094475         | 50                 |               | 13451          |                  |      | 0               |                 | 6                  |         |                  |                       |  |
| 1094475         | 50                 |               | 13451          |                  |      | 0               |                 |                    |         | 6                |                       |  |
|                 |                    |               |                |                  |      |                 |                 |                    |         |                  |                       |  |
| item_id 🔺       | user_id 🔺          | active_type 🔺 | active_month + | item_total_buy 🔺 | iten | n_total_count 🔺 | item_buy_rate 🔺 | user_total_count A | user_to | otal_buy_count 🔺 | user_buy_rate 🔺       |  |
| 1000            | 12016750           | 0             | 5              | 1                | 4    |                 | 0.25            | 221                | 18      |                  | 0.08144796380090498   |  |
| 1000            | 12016750           | 0             | 5              | 1                | 4    |                 | 0.25            | 221                | 18      |                  | 0.08144796380090498   |  |
| 1000            | 12016750           | 0             | 5              | 1                | 4    |                 | 0.25            | 221                | 18      |                  | 0.08144796380090498   |  |
| 1000            | 12016750           | 0             | 5              | 1                | 4    |                 | 0.25            | 221                | 18      |                  | 0.08144796380090498   |  |
| 10000 5901250 0 |                    | 6             | 0              | 2                |      | 0               | 50              | 0                  |         | 0                |                       |  |
| 10000           | 0 5901250 0 6 0 2  |               |                | 0                | 50   | 0               |                 | 0                  |         |                  |                       |  |
| 10000           | 00 5901250 0 6 0 2 |               |                | 0                | 50   | 0               |                 | 0                  |         |                  |                       |  |
| 10000           | 5901250            | 0             | 6              | 0                | 2    |                 | 0               | 50                 | 0       |                  | 0                     |  |
| 10010           | 2921750            | 0             | 5              | 0                | 2    |                 | 0 528 11        |                    | 11      |                  | 0.0208333333333333333 |  |

#### (2) Model training

Feature engineering produces a large wide table with structured data, which can be used for model training. This experiment uses the logistic regression algorithm. Model training requires proper parameter setting. It is necessary to properly set the following logistic regression parameters for optimal effect of model training.

| 正则项 可选                 |   |
|------------------------|---|
| None                   | ŧ |
| 最大迭代次数 可选              |   |
| 100                    |   |
| 正则系数 可选 正则类型为None时此值无效 |   |
| 1                      |   |
| 最小收敛误差                 |   |
| 0.000001               |   |
|                        |   |

PAI provides the AutoML engine for parameter tuning. Open AutoML and set the parameter value range and evaluation criteria of the algorithm that requires parameter tuning. Then, the engine finds the most suitable parameter settings with minimum resource consumption. See the following figure.

| 学习pai_dev | ~ 算                    | 法平台    | 流式算法平台      | 算法订阅 | 算法市场 | 前往运维    | 在线预测 | 数据标注 |   |        | C        | 2    |
|-----------|------------------------|--------|-------------|------|------|---------|------|------|---|--------|----------|------|
|           | △ 雾霾天會                 | ₹预测_92 | 7×          |      |      |         |      |      | 6 | ③ 字段设置 | E (      | \$\$ |
|           | <ul> <li>运行</li> </ul> | 自动     | 调参          |      | _    |         |      | ×    |   | 选择特征   | 列 支持dou  | ible |
|           |                        |        |             |      |      |         |      |      |   |        | 已进       | 择    |
|           |                        | 0      | 算法选择        |      |      |         |      |      |   | 选择标签   | 列 支持bigi | int; |
|           |                        |        | ● GBDT二分类-1 |      |      |         |      |      |   | _c2    |          |      |
|           |                        |        |             | ŀ.   |      |         |      |      |   | 选择分组   | 列(可选) 3  | 支持   |
| 测_927     |                        |        |             |      |      |         |      |      |   |        |          |      |
| 案例_2638   |                        |        |             |      |      |         |      |      |   |        |          |      |
| ing       |                        | 2      | 调参配置        |      |      |         |      |      |   |        |          |      |
| 流群问题分析    |                        | 3      | 调参模型输出选择    |      |      |         |      |      |   |        |          |      |
|           |                        |        |             |      |      |         |      |      |   |        |          |      |
| _2217     |                        |        |             |      |      |         | 取消   | 下一步  |   |        |          |      |
|           |                        |        |             |      | GBDT | _分类-1 ⊘ | )    |      |   |        |          |      |
|           |                        |        |             |      | 0    | 0       |      |      |   |        |          |      |
|           |                        |        |             |      |      |         |      |      |   | GBDT二分 | ·英       |      |
|           | _                      |        |             |      |      |         |      |      | Z | 1      | 赞 13     |      |

#### (3) Model evaluation

The model evaluation module uses the reserved data that is not used for model training to evaluate the model quality. The experiment on recommendation involves binary classification. You can use the confusion matrix and the Binary Classification Evaluation component to evaluate the model quality.

Binary classification evaluation: Choose **Components** and click the **Charts** tab. The ROC curve shown in the following figure appears. The blue area indicates the AUC value. The larger the area, the higher the model quality.



The confusion matrix can be used to determine specific metrics such as the prediction accuracy, recall rate, and F1-Score.



### (4) Online model deployment

If the model effect meets expectation, deploy the model as an online service in one click through Elastic Algorithm Service (EAS) of PAI. Then, the model can be accessed over HTTP. On the canvas, click **Deploy**, select **Deploy Model Online**, and select the target model.

After the model is deployed as an online service, it can be accessed through HTTP requests in business scenarios. This streamlines the process from model training through PAI to business application.

# Perform risk control on abnormal behaviors of a system

## Background

A user system may encounter abnormal metrics when the CPU utilization of the O&M system increases suddenly, the user system is flooded with illegal information, or some users frequently make bargain speculation. The user system may be far less exposed to risks if we can take preventive measures and implement real-time warning for abnormal metrics through Machine Learning Platform for AI (PAI).

## **Business pain points**

Real-time and effective measures are unavailable to monitor the metrics of user systems and improve the intelligent defense capability of user systems.

## Solution

PAI provides a set of classification algorithms based on metric monitoring. These algorithms are used to abstract abnormal metric monitoring into a binary classification scenario and deploy the monitoring model to an online system for real-time calling. This helps implement near-line risk control.

Required knowledge: knowledge of the classic algorithms in machine learning, especially feature engineering and binary classification algorithms.

Development cycle: one to two days.

Required data: one thousand labeled data items, including abnormal data and normal data.

#### Data

The following experiment uses a system-level monitoring log with 22,544 data items, of which 9,711 are abnormal data items.

| service 🔺 | flage 🔺 | a2 🔺 | a3 🔺 | a4 🔺 | a5 🔺 | a6 🔺 | a7 🔺 | a8 🔺 | a9 🔺 | a10 🔺 | a11 🔺 | a12 🔺 | a13 🔺 | a14 🔺 | a15 🔺 | a16 🔺 | a17 🔺 | a18 🔺 | a19 🔺 | а2  |
|-----------|---------|------|------|------|------|------|------|------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-----|
| private   | REJ     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 22  |
| private   | REJ     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 13  |
| ftp_data  | SF      | 12   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 1   |
| eco_i     | SF      | 20   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 1   |
| teinet    | RSTO    | 0    | 15   | 0    | 0    | 0    | 0    | 0    | 0    | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 1   |
| http      | SF      | 267  | 14   | 0    | 0    | 0    | 0    | 0    | 1    | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 4   |
| smtp      | SF      | 1022 | 387  | 0    | 0    | 0    | 0    | 0    | 1    | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 1   |
| telnet    | SF      | 129  | 174  | 0    | 0    | 0    | 0    | 1    | 0    | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 1   |
| http      | SF      | 327  | 467  | 0    | 0    | 0    | 0    | 0    | 1    | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 33  |
| ftp       | SF      | 26   | 157  | 0    | 0    | 0    | 0    | 1    | 0    | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 1     | 1   |
| telnet    | SF      | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 1   |
| smtp      | SF      | 616  | 330  | 0    | 0    | 0    | 0    | 0    | 1    | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 1   |
| private   | REJ     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 111 |
| teinet    | S0      | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 12  |
| teinet    | SF      | 773  | 36   | 0    | 0    | 0    | 0    | 0    | 1    | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 1   |
| http      | SF      | 350  | 3610 | 0    | 0    | 0    | 0    | 0    | 1    | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 8   |
| http      | SF      | 213  | 659  | 0    | 0    | 0    | 0    | 0    | 1    | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 24  |

#### Data:

| Parameter     | Description                                                                                      |
|---------------|--------------------------------------------------------------------------------------------------|
| protocol_type | The protocol used for network connection.<br>Valid values: TCP, ICMP, and UDP.                   |
| service       | The service protocol. Valid values: HTTP,<br>Finger, POP, Private, and SMTP.                     |
| flage         | Valid values: SF, RSTO, and REJ.                                                                 |
| a2-a38        | Different system metrics.                                                                        |
| class         | The label field. "normal" indicates a normal sample, and "anomaly" indicates an abnormal sample. |

#### Procedure

Log on to PAI Studioat https://pai.data.aliyun.com/console

The solution data and experiment environment are built in the corresponding template on the homepage.





通过算法判别系统中的异常行为

## 位用户



Open the experiment:



#### 1. Data source

The data source is the data described in the "Data" section.

#### 2. Feature engineering

The One-Hot Encoding component converts character-type features to the numeric type. This is the most common mode of data encoding in machine learning.

The Normalization component limits all data within the range of 0 to 1, without the impact of dimensions. The following figure shows the normalized data.

| a1 🔺    | a2 🔺     | a3 🔺 | a4 🔺 | a5 🔺 | a6 🔺 | a7 🔺 | a8 🔺 | a9 🔺 | a10 🔺 | a11 🔺 |
|---------|----------|------|------|------|------|------|------|------|-------|-------|
| 0       | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0     | 0     |
| 0       | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0     | 0     |
| 0.00003 | 0.00020  | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0     | 0     |
| 0       | 3.183413 | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0     | 0     |
| 0.00001 | 0        | 0.0  | 0    | 0    | 0    | 0    | 0    | 0    | 0     | 0     |
| 0       | 0.00000  | 0.0  | 0    | 0    | 0    | 0    | 0    | 1    | 0     | 0     |
| 0       | 0.00001  | 0.0  | 0    | 0    | 0    | 0    | 0    | 1    | 0     | 0     |
| 0       | 0.00000  | 0.0  | 0    | 0    | 0    | 0    | 0.25 | 0    | 0     | 0     |
| 0       | 0.00000  | 0.0  | 0    | 0    | 0    | 0    | 0    | 1    | 0     | 0     |
| 0       | 4.138437 | 0.0  | 0    | 0    | 0    | 0    | 0.25 | 0    | 0     | 0     |
| 0       | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0     | 0     |
| 0       | 0.00000  | 0.0  | 0    | 0    | 0    | 0    | 0    | 1    | 0     | 0     |
| 0       | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0     | 0     |
| 0       | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0     | 0     |
| 0.00064 | 0.00001  | 0.2  | 0    | 0    | 0    | 0    | 0    | 1    | 0     | 0     |
| 0       | 0.00000  | 0.0  | 0    | 0    | 0    | 0    | 0    | 1    | 0     | 0     |
| 0       | 0.00000  | 0.0  | 0    | 0    | 0    | 0    | 0    | 1    | 0     | 0     |

Use the SQL Script component to mark metric labeled "anomaly" as 1 and those labeled "normal" metrics as 0 in the target column.

select (case class when 'anomaly' then 1 else 0 end) as class from  ${t1};$ 

#### 3. Model training

The binary logistic regression algorithm of logistic regression in machine learning is effective in training a monitoring model based on normal and abnormal samples.

| 梼 | 模型描述      |                                                                                                                                                                                     | × |
|---|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|   | 模型名称      | 逻辑回归二分类–1–Model                                                                                                                                                                     | _ |
|   | ODPS 模型名称 | pai_online_project/pai_model_1664081855183111/partition_1146807/xlab_m_<br>logisticregres_1146807_v0.xml                                                                            |   |
|   | 对应节点名称    | 逻辑回归二分类1                                                                                                                                                                            |   |
|   | 算法来源      | 逻辑回归二分类                                                                                                                                                                             |   |
|   | 特征        | a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12,a13,a14,a15,a16,a17,a18,a19,a20,a2                                                                                                           |   |
|   | 目标列       | class                                                                                                                                                                               |   |
|   | 参数        | epsilon: 0.000001<br>enableSparse: false<br>regularizedLevel: 1<br>maxIter: 100<br>kvDelimiter: :<br>_label#labelColName: class@bigint<br>itemDelimiter: ,<br>regularizedType: None |   |
|   | 创建时间      | 2019–12–04 12:14:11                                                                                                                                                                 |   |
|   | 更新时间      | 2019–12–04 12:14:11                                                                                                                                                                 |   |
|   |           | 关E                                                                                                                                                                                  | 利 |

#### 4. Model evaluation

PAI provides the Binary Classification Evaluation component to evaluate the model effect based on metrics such as AUC, KS, and F1Score. The model used by this experiment reaches a prediction accuracy of more than 90%.

| 平估报告           |      |            |              | 23 X |
|----------------|------|------------|--------------|------|
|                | 指标数据 | 等频详细信息 等宽计 | 羊细信息 高分段关键信息 |      |
| Index 🔺        |      | Value      |              |      |
| AUC            |      | 0.9829     |              |      |
| KS             |      | 0.8845     |              |      |
| F1 Score       |      | 0.951      |              |      |
| evaluate_nsmpl |      | 1987       |              |      |
| evaluate_tsmp1 |      | 4509       |              |      |
| evaluate_psmpl |      | 2522       |              |      |

## Summary

PAI provides comprehensive functions such as feature encoding, model training, and model evaluation, allowing you to create a metric anomaly monitoring model by extracting and labeling the features of abnormal behaviors of the target system.

## Use ALS to predict ratings of songs

#### Use ALS to predict ratings of songs

Many people will visit a movie recommendation website to check the rating of a movie before they watch it. After they watch a movie, they will also assign a rating to the movie. Everyone has a rating system in their mind. The rating of a commodity, song, or movie reflects whether the user likes or dislikes it. If a content provider can estimate the ratings to be assigned by its users, it can understand its users in a better way and then make more precise recommendations. This topic describes how to use Alternating Least Square (ALS), a factorization algorithm, to predict the ratings of a song or movie assigned by users.

## **ALS introduction**

ALS is a model-based recommendation algorithm. It factorizes models through sparse matrix factorization, and predicts the values of missing entries. In this way, a basic model is trained. The model is then used to make predictions based on new user and item data. ALS uses the alternating least squares method to calculate missing entries. The alternating least squares method is developed based on the least squares method.

ALS is a type of user-item based collaborative filtering, also known as hybrid collaborative filtering.

In this topic, we use music rating as an example to introduce how ALS works. The source dataset, Matrix A, contains the ratings of songs assigned by all listeners. The ratings may be sparse because not every listener has listened to all the songs in the library and not all the songs are rated by every listener.

|     | 痴心绝对 | 小酒窝 | 红豆 | 明天你好 | 浮夸 |
|-----|------|-----|----|------|----|
| 听众1 | 5    |     |    | 4    |    |
| 听众2 |      | 6   |    |      | 3  |
| 听众3 | 3    |     | 7  |      |    |
| 听众4 |      |     |    | 4    |    |
| 听众5 |      | 4   |    |      | 6  |

ALS factorizes Matrix A to the product of the transposes of Matrix X and Matrix Y.

Matrix A = Transpose of Matrix X × Transpose of Matrix Y

The columns in Matrix X and rows in Matrix Y are known as factors in ALS. These factors have implicit definitions. Matrix X and Matrix Y contain three factors: personality, education level, and interests. Matrix X and Matrix Y factorized from Matrix A are expressed as follows.
|     | 性格              | 教育程度            | 兴趣爱好            |
|-----|-----------------|-----------------|-----------------|
| 听众1 | X <sub>11</sub> | X <sub>12</sub> | X <sub>13</sub> |
| 听众2 | X <sub>21</sub> | X <sub>22</sub> | X <sub>23</sub> |
| 听众3 | X <sub>31</sub> | X <sub>32</sub> | X <sub>33</sub> |
| 听众4 | X <sub>41</sub> | X <sub>42</sub> | X <sub>43</sub> |
| 听众5 | X <sub>51</sub> | X <sub>52</sub> | X <sub>53</sub> |

(Matrix X)

|      | 痴心绝对            | 小酒窝             | 红豆              | 明天你好            | 浮夸              |
|------|-----------------|-----------------|-----------------|-----------------|-----------------|
| 性格   | Y <sub>11</sub> | Y <sub>12</sub> | Y <sub>13</sub> | Y <sub>14</sub> | Y <sub>15</sub> |
| 教育程度 | Y <sub>21</sub> | Y <sub>22</sub> | Y <sub>23</sub> | Y <sub>24</sub> | Y <sub>25</sub> |
| 兴趣爱好 | Y <sub>31</sub> | Y <sub>32</sub> | Y <sub>33</sub> | Y <sub>34</sub> | Y <sub>35</sub> |

(Matrix Y)

Based on the factorized data, rating predictions can be easily made. For example, Listener 6 has never listened to the song Red Bean but we have obtained the Vector M of Listener 6 from Matrix X. To predict the rating of Red Bean by Listener 6, we only need to multiply Vector M of Listener 6 by Vector M of Red Bean in Matrix Y.

# Use ALS in Alibaba Cloud Machine Learning Platform for AI (PAI)

Now we create an experiment in Alibaba Cloud PAI based on the preceding ALS use case. The experiment consists of the input data and ALS components. You can find the template of this use case on the Home page of PAI Studio.

| ALS实现        | <b>민音乐推荐</b> |          |   |
|--------------|--------------|----------|---|
|              | 6            |          |   |
| 利用ALS<br>荐   | 实现音乐、电       | 电影相关的内容推 | ł |
| 2 位用户<br>从模制 | 反创建          | 查看文档     |   |
|              |              |          |   |

The following figure shows the created experiment.



#### 1. Data source

The input data contains the following fields.

| id 🔺 | <u>user</u> 🔺 | score 🔺 | item 🔺    |
|------|---------------|---------|-----------|
| 5    | 3249          | 1       | 978245916 |
| 5    | 3176          | 2       | 978243085 |
| 5    | 1719          | 3       | 978244205 |
| 5    | 2806          | 2       | 978243085 |
| 5    | 2734          | 2       | 978242788 |
| 5    | 1649          | 4       | 978244667 |
| 5    | 321           | 3       | 978245863 |

- user: user ID.

- item: song ID.

- score: the rating of the song assigned by the relevant user.

## 2. ALS matrix factorization

You must specify the fields as shown in the following figure.

| 字段设置   | 参数设置 | 执行调优      | ĺ |
|--------|------|-----------|---|
| user列名 |      |           |   |
| user   |      | $\otimes$ | ( |
| item列名 |      |           |   |
| item   |      |           |   |
| 打分列名   |      |           |   |
| score  |      |           |   |

| Parameter    | Description                                                       | Valid value                                                                                      | Required or not and default value  |
|--------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------|
| userColName  | The name of the user column.                                      | The column type<br>must be bigint. The<br>entries do not need<br>to be continuously<br>numbered. | Required.                          |
| itemColName  | The name of the item column.                                      | The column type<br>must be bigint. The<br>entries do not need<br>to be continuously<br>numbered. | Required.                          |
| rateColName  | The name of the score column.                                     | The column type must be numeric.                                                                 | Required.                          |
| numFactors   | The number of factors.                                            | Positive integer.                                                                                | Optional. Default<br>value: 100.   |
| numIter      | The number of iterations.                                         | Positive integer.                                                                                | Optional. Default<br>value: 10.    |
| lambda       | Regularization coefficient.                                       | Floating point.                                                                                  | Optional. Default value: 0.1.      |
| implicitPref | Specifies whether<br>the implicit<br>preference model is<br>used. | Boolean.                                                                                         | Optional. Default<br>value: false. |
| alpha        | Implicit preference                                               | Floating point larger                                                                            | Optional. Default                  |

| coefficient. | than 0. | value: 40. |
|--------------|---------|------------|

### 3. Prediction result analysis

In this experiment, two tables are output, which correspond to Matrix X and Matrix Y described in the ALS introduction.

#### The Matrix X table is as follows.

| user 🔺 | factors 🔺                                                                                                                   |
|--------|-----------------------------------------------------------------------------------------------------------------------------|
| 1      | [-0.14220297, 0.8327106, 0.5352268, 0.6336995, 1.2326205, 0.7112976, 0.9794858, 0.8489773, 0.330319, 0.7426911]             |
| 2      | [0.7714355, 0.8170629, 0.14070371, 0.78157544, 0.40145266, 0.22435305, 0.5998539, 0.87861717, 0.9321072, 0.60098845]        |
| 3      | [0.06963833, 0.37125903, 0.66982716, 0.2325376, 0.036257666, 0.58954036, 0.65054536, 0.024004433, 0.0033932994, 0.57789034] |
| 4      | [0.64207155, 0.8115232, 0.32260254, 0.3855561, 0.25163174, 0.40492404, 0.5162408, 0.3814767, 0.67290497, 0.50865084]        |
| 5      | [0.517571, 0.48458508, 0.098304495, 0.16832124, 0.9891444, 0.6789138, 1.0585984, 0.92578393, 0.81489587, 0.69474304]        |
| 6      | [0.86565155, 0.52865344, 0.51986974, 0.39816418, 0.5968873, 0.31424767, 0.74578124, 0.6733258, 0.55831975, 0.5425565]       |
| 7      | [0.4147453, -0.27837437, 0.4839715, 0.7758234, 0.6311068, 0.84274673, 0.4438908, 0.8602465, 0.3978993, 1.4290581]           |
| 10     | [0.47920293, 0.91401875, 0.95837015, 0.7224187, 0.5349992, 0.7437093, 0.33653644, 1.0294899, 0.4823215, 0.41025826]         |
| 11     | [0.54607016, 0.23469958, 0.32390735, 0.5483177, 0.07322444, 0.87607765, 0.25690663, 0.75714564, 0.19066288, 0.2303486]      |

#### The Matrix Y table is as follows.

| item 🔺     | factors 🔺                                                                                                                   |
|------------|-----------------------------------------------------------------------------------------------------------------------------|
| 1009669227 | [0.3043724, 0.9211403, 0.9649405, 1.0043586, 0.2320434, 0.21626948, 0.54844594, -0.3672228, 0.09937295, 0.9076632]          |
| 1009669181 | [0.7098306, 1.0229378, 0.39896926, 0.21804416, 0.59587604, 0.9355453, 0.41796923, 0.3523143, 0.6874485, 0.6521343]          |
| 1009669116 | [0.3661423, 0.3652928, 0.8348509, 0.9079304, 0.7299789, 0.2659982, 0.26861745, 0.65150297, 0.6419628, 1.2271518]            |
| 1009669115 | [1.1625334, 0.48568162, 0.6818684, 0.6328848, 0.356604, -0.14263554, 0.30305552, 0.88706565, 0.42701712, 0.07457363]        |
| 1009669071 | [0.39142805, 0.06098657, 0.3756292, 1.0510693, 0.42343494, 0.86710936, 0.4328914, 0.09838692, -0.034022175, 0.4868143]      |
| 994556636  | [0.71699333, 0.5847747, 0.96564907, 0.36637592, 0.77271074, 0.52454436, 0.69028413, 0.2341857, 0.73444265, 0.8352135]       |
| 994556598  | [0.5234192, 0.40755722, 0.55578834, 0.4585709, 0.55235267, 0.73103094, 0.40249807, 0.30472404, 0.5356546, 0.63388145]       |
| 993707035  | [0.13577692, 0.31376198, 0.23644955, 0.060735635, -0.083099656, 0.16841954, 0.1623567, 0.21238364, 0.18928273, 0.123004556] |
| 993707016  | [0.1835768, 0.74266636, 0.49669686, 0.2840153, 0.8125185, 0.36599895, 0.31735852, 0.31228343, 0.9716536, 0.11837222]        |
| 993706986  | [0.171457, 0.7812586, 0.36249438, 0.24480419, 0.68455917, 0.079008356, 0.6320103, 0.60387015, 0.280187, 0.38793203]         |

To predict the rating of item 994556636 made by user1, you only need to multiply the following vectors together.

- User1: [-

0.14220297,0.8327106,0.5352268,0.6336995,1.2326205,0.7112976,0.9794858,0.8489773,0.330 319,0.7426911]

- item994556636:

[0.71699333,0.5847747,0.96564907,0.36637592,0.77271074,0.52454436,0.69028413,0.234185 7,0.73444265,0.8352135]

# Monitor user loss

## Background

How to increase the user base while retaining existing users is key to business growth. Many technical measures are required to retain existing users. An important measure is to create a user loss model to learn the features of lost users in the past and train a risk control model through machine learning to predict the user loss trend. This helps formulate measures to prevent user loss.

## **Business pain points**

Many businesses take warning and monitoring measures to prevent user loss, but these measures are not intelligent enough. Rule-based warning is widely used but fails to discover potential user loss in an accurate manner.

# Solution

Machine Learning Platform for AI (PAI) provides a set of solutions for feature encoding, classification model training, and model evaluation based on labeled data.

Required knowledge: basic modeling knowledge.

Development cycle: one to two days.

Required data: more than one thousand labeled data items that indicate the situations under which users are lost. The prediction effect is better when more labeled data items are available.

#### Data

数据探查 pei epline preject teles queterner shurp (///日二前一百名)

In this example, data is collected on the behaviors of 7,043 user samples in the real-life telecommunications field. The collected data includes the user attributes and the status of user loss (whether users are lost or retained).

| stomerid 🔺 | gender 🔺 | senioroitizen 🔺 | partner 🔺 | dependents 🔺 | tenure 🔺 | phoneservice 🔺 | multiplelines 🔺  | Internetservice * | onlinesecurity a    | onlinebackup 🔺  | deviceprotection A  | techsupp  |
|------------|----------|-----------------|-----------|--------------|----------|----------------|------------------|-------------------|---------------------|-----------------|---------------------|-----------|
| 90-VHVEG   | Female   | 0               | Yes       | No           | 1        | No             | No phone service | DSL               | No                  | Yes             | No                  | No        |
| 75-GNVDE   | Male     | 0               | No        | No           | 34       | Yes            | No               | DSL               | Yes                 | No              | Yes                 | No        |
| 68-QPYBK   | Male     | 0               | No        | No           | 2        | Yes            | No               | DSL               | Yes                 | Yes             | No                  | No        |
| 95-CFOCW   | Male     | 0               | No        | No           | 45       | No             | No phone service | DSL               | Yes                 | No              | Yes                 | Yes       |
| 37-HQITU   | Female   | 0               | No        | No           | 2        | Yes            | No               | Fiber optic       | No                  | No              | No                  | No        |
| 05-CDSKC   | Female   | 0               | No        | No           | 8        | Yes            | Yes              | Fiber optic       | No                  | No              | Yes                 | No        |
| 52-KIOVK   | Male     | 0               | No        | Yes          | 22       | Yes            | Yes              | Fiber optic       | No                  | Yes             | No                  | No        |
| 13-OKOMC   | Female   | 0               | No        | No           | 10       | No             | No phone service | DSL               | Yes                 | No              | No                  | No        |
| 92-POOKP   | Female   | 0               | Yes       | No           | 28       | Yes            | Yes              | Fiber optic       | No                  | No              | Yes                 | Yes       |
| 88-TABGU   | Male     | 0               | No        | Yes          | 62       | Yes            | No               | DSL               | Yes                 | Yes             | No                  | No        |
| 63-GRSKD   | Male     | 0               | Yes       | Yes          | 13       | Yes            | No               | DSL               | Yes                 | No              | No                  | No        |
| 69-LKBCI   | Male     | 0               | No        | No           | 16       | Yes            | No               | No                | No internet service | No internet ser | No internet service | No inter  |
| 91TTVAX    | Male     | 0               | Yes       | No           | 58       | Yes            | Yes              | Fiber optic       | No                  | No              | Yes                 | No        |
| 80-XJGEX   | Male     | 0               | No        | No           | 49       | Yes            | Yes              | Fiber optic       | No                  | Yes             | Yes                 | No        |
| 29-JLPIS   | Male     | 0               | No        | No           | 25       | Yes            | No               | Fiber optic       | Yes                 | No              | Yes                 | Yes       |
| 55-SNQYZ   | Female   | 0               | Yes       | Yes          | 69       | Yes            | Yes              | Fiber optic       | Yes                 | Yes             | Yes                 | Yes       |
| 91-XWSZG   | Female   | 0               | No        | No           | 52       | Yes            | No               | No                | No internet service | No internet ser | No internet service | No interr |
| 59-WOFKT   | Male     | 0               | No        | Yes          | 71       | Yes            | Yes              | Fiber optic       | Yes                 | No              | Yes                 | No        |
| 90-MFLUW   | Female   | 0               | Yes       | Yes          | 10       | Yes            | No               | DSL               | No                  | No              | Yes                 | Yes       |
| 33-MYFRB   | Female   | 0               | No        | No           | 21       | Yes            | No               | Fiber optic       | No                  | Yes             | Yes                 | No        |

Feature data:

| Parameter        | Description                                                                                                                                        |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| customerid       | The ID of a user.                                                                                                                                  |
| gender           | The gender of the user.                                                                                                                            |
| SeniorCitizen    | Specifies whether the user is a city resident. 1 indicates that the user is a city resident, and 0 indicates that the user is not a city resident. |
| Partner          | Specifies whether the user has a partner.                                                                                                          |
| Dependents       | Specifies whether the user is affiliated.                                                                                                          |
| tenure           | The duration when the user has dealings with the company.                                                                                          |
| PhoneService     | Specifies whether the user subscribes to mobile phone services.                                                                                    |
| MultipleLine     | Specifies whether the user has multiple lines.                                                                                                     |
| InternetService  | Specifies whether the user subscribes to<br>services from Internet service providers (ISPs).<br>Valid values include DSL, Fiber optic, and No.     |
| OnlineSecurity   | Specifies whether the user faces Internet security issues.                                                                                         |
| OnlineBackup     | Specifies whether the user has access to online support.                                                                                           |
| DeviceProtection | Specifies whether the user has access to service protection.                                                                                       |
| TechSupport      | Specifies whether the user has applied for technical support.                                                                                      |
| StreamingTV      | Specifies whether the user has access to streaming TV programs.                                                                                    |
| StreamingMovies  | Specifies whether the user has access to streaming movies.                                                                                         |
| Contract         | The time limit of the user's contract. Values:<br>Month-to-month and Two year.                                                                     |
| PaperlessBilling | Specifies whether the user receives electronic bills.                                                                                              |
| PaymentMethod    | The payment method used by the user.                                                                                                               |
| MonthlyCharges   | The monthly expenses of the user.                                                                                                                  |
| TotalCharges     | The total expenses of the user.                                                                                                                    |

Target data:

| Parameter Description |
|-----------------------|
|-----------------------|

churn

Specifies whether the user is lost.

### Procedure

Log on to PAI Studio at https://pai.data.aliyun.com/console

The solution data and experiment environment are built in the corresponding template on the homepage .



Open the experiment:



1. Data source

The data source is the streaming data received by users.

1. Feature encoding

Use the One-Hot Encoding and SQL Script components to create a feature engineering model and convert original character-type features to numeric features.

| chum 🔺 | contract_month_to_0 ▲ | contract_one_year_1 A | contract_two_year_2 A | dependents_no_3 🔺 | dependents_yes_4 | deviceprotection_no_5 | deviceprotection_no_inter_6 | deviceprotection_yes_7 | gender_female_8 |
|--------|-----------------------|-----------------------|-----------------------|-------------------|------------------|-----------------------|-----------------------------|------------------------|-----------------|
| 0      | 1                     | 0                     | 0                     | 1                 | 0                | 1                     | 0                           | 0                      | 1               |
| 0      | 0                     | 1                     | 0                     | 1                 | 0                | 0                     | 0                           | 1                      | 0               |
| 1      | 1                     | 0                     | 0                     | 1                 | 0                | 1                     | 0                           | 0                      | 0               |
| 0      | 0                     | 1                     | 0                     | 1                 | 0                | 0                     | 0                           | 1                      | 0               |
| 1      | 1                     | 0                     | 0                     | 1                 | 0                | 1                     | 0                           | 0                      | 1               |
| 1      | 1                     | 0                     | 0                     | 1                 | 0                | 0                     | 0                           | 1                      | 1               |
| 0      | 1                     | 0                     | 0                     | 0                 | 1                | 1                     | 0                           | 0                      | 0               |
| 0      | 1                     | 0                     | 0                     | 1                 | 0                | 1                     | 0                           | 0                      | 1               |
| 1      | 1                     | 0                     | 0                     | 1                 | 0                | 0                     | 0                           | 1                      | 1               |
| 0      | 0                     | 1                     | 0                     | 0                 | 1                | 1                     | 0                           | 0                      | 0               |
| 0      | 1                     | 0                     | 0                     | 0                 | 1                | 1                     | 0                           | 0                      | 0               |
| 0      | 0                     | 0                     | 1                     | 1                 | 0                | 0                     | 1                           | 0                      | 0               |
| 0      | 0                     | 1                     | 0                     | 1                 | 0                | 0                     | 0                           | 1                      | 0               |
| 1      | 1                     | 0                     | 0                     | 1                 | 0                | 0                     | 0                           | 1                      | 0               |
| 0      | 1                     | 0                     | 0                     | 1                 | 0                | 0                     | 0                           | 1                      | 0               |
| 0      | 0                     | 0                     | 1                     | 0                 | 1                | 0                     | 0                           | 1                      | 1               |
| 0      | 0                     | 1                     | 0                     | 1                 | 0                | 0                     | 1                           | 0                      | 1               |
| 0      | 0                     | 0                     | 1                     | 0                 | 1                | 0                     | 0                           | 1                      | 0               |
| 1      | 1                     | 0                     | 0                     | 0                 | 1                | 0                     | 0                           | 1                      | 1               |
| 0      | 1                     | 0                     | 0                     | 1                 | 0                | 0                     | 0                           | 1                      | 1               |

The target field "churn" is used as an example. Run the following SQL statement to convert the original values Yes and No to 1 and 0, respectively:

select (case churn when 'Yes' then 1 else 0 end) as churn from  ${t1};$ 

#### 1. Model training

Divide the data into two parts: a training set for model training, and a prediction set to verify the model effect. User loss warning falls in binary classification because a user is either lost or retained. Use the binary classification algorithm to create a classification model, which can be deployed in one click as a RESTful API service to be called in business scenarios.

#### 1. Model effect verification

Use the Binary Classification Evaluation component to verify the model accuracy. An AUC of 0.83 indicates a prediction accuracy of about 80%.



## Summary

User loss warning is widely used in business scenarios. PAI provides a full set of algorithms based on user features, helping customers to quickly train a user loss model in one to two days. This accelerates the process of experiment setup.

# Predict the output power of generators from a wind power plant

## Preface

Machine learning is widely used in industrial scenarios, with satisfying results. This experiment analyzes the power generation data of a combined cycle power plant to show how machine learning is applied to actual scenarios in industrial production.

This experiment uses the data of hybrid power plants collected from UCI machine learning datasets. For power plants, the output wind power determines the energy that a unit generator can produce. Power plants can collect metrics to predict the final output power. Power plants can also make production schedules with minimum resource waste by effectively predicting the output power of generators.

## Load and explore data

Load the dataset, which includes 9,568 data samples from a combined cycle power plant. Each data item occupies five columns: AT (atmospheric temperature), V (voltage), AP (atmospheric pressure), RH (relative humidity), and PE (output power). The following figure shows the data preview.

| JPS         at _         at _           1         14.96         4           2         25.18         5           3         5.11         3           4         20         4           5         10.82         3           6         26         4           7         15.89         4           9         14.64         4 | V         Bp           4         10           6         10           3         101           5         101           5         101           4         101           5         101           4         101           4         101     | rh *           73.17           59           92.14           76           96           58           75           66 | pe▲<br>463.26<br>444.37<br>488.56<br>446.48<br>473.9<br>443.67<br>473.9<br>473.9<br>473.9                            |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--|
| 序号本 at 本<br>1 14.96 4<br>2 25.18 4<br>3 5.11 3<br>4 20 4<br>5 10.82 3<br>6 26 4<br>7 15.89 4<br>8 9.48 4<br>9 14.64 4                                                                                                                                                                                                  | Y ▲         ap ▲           4         10           6         10           3         101           3         101           5         101           4         101           4         101           4         101           4         101 | rh *<br>73.17<br>59<br>92.14<br>76<br>96<br>58<br>58<br>58<br>56                                                   | pak       463.26       444.37       488.56       464.48       473.9       443.67       473.9       473.9       473.9 |  |
| 1     14.96       2     25.18       3     5.11       4     20                                                                                                                                                                                                                                                          | 4         10           6         10           3         101           5         101           4         101           4         101           4         101                                                                            | 73.17       59       92.14       76       96       58       75       66                                            | 463.26<br>444.37<br>488.56<br>446.48<br>437.9<br>443.67<br>473.9<br>473.9<br>473.9<br>473.9                          |  |
| 2         25.18         4           3         5.11         3           4         20         4           5         10.82         3           6         26         4           7         15.89         4           9         14.64         4                                                                             | 6         10           3         101           5         101           3         10           4         101           4         101           4         101                                                                            | 59<br>92.14<br>76<br>96<br>58<br>58<br>75<br>66                                                                    | 444.37<br>488.56<br>446.48<br>437.39<br>443.67<br>473.9<br>473.9<br>473.9<br>473.9                                   |  |
| 3         5.11         3           4         20         3           5         10.82         3           6         26         3           7         15.89         3           8         9.48         3           9         14.64         3                                                                              | 3         101           5         101           3         10           5         101           4         101           4         101                                                                                                   | 92.14<br>76<br>96<br>58<br>58<br>75<br>66                                                                          | 488.56<br>446.48<br>473.9<br>443.67<br>467.35<br>478.42                                                              |  |
| 4         20           5         10.82           6         26           7         15.89           8         9.48           9         14.64                                                                                                                                                                             | 5         101           3         10           5         101           4         101           4         101           45         10                                                                                                   | 76       96       58       75       66                                                                             | 446.48<br>473.9<br>443.67<br>467.35<br>478.42                                                                        |  |
| 5         10.82         3           6         26         5           7         15.89         4           8         9.48         4           9         14.64         4                                                                                                                                                  | 3         10           5         101           4         101           4         101           45         10                                                                                                                           | 96<br>58<br>75<br>66                                                                                               | 473.9<br>443.67<br>467.35<br>478.42                                                                                  |  |
| 6 26 9<br>7 15.89 -<br>8 9.48 -<br>9 14.64 -                                                                                                                                                                                                                                                                           | 5         101           4         101           4         101           45         10                                                                                                                                                  | 58<br>75<br>66                                                                                                     | 443.67 473.9<br>467.35 473.9<br>478.42                                                                               |  |
| 7         15.89         4           8         9.48         4           9         14.64         4                                                                                                                                                                                                                       | <ol> <li>4 101</li> <li>4 101</li> <li>45 10</li> </ol>                                                                                                                                                                                | 66                                                                                                                 | 467.35 <b>473.9</b><br>478.42                                                                                        |  |
| 8 9.48 9<br>9 14.64                                                                                                                                                                                                                                                                                                    | 4 101<br>45 10                                                                                                                                                                                                                         | 66                                                                                                                 | 478.42                                                                                                               |  |
| 9 14.64                                                                                                                                                                                                                                                                                                                | 45 10                                                                                                                                                                                                                                  | 11.05                                                                                                              | 175.00                                                                                                               |  |
| 10 11 01                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                        | 41.25                                                                                                              | 475.98                                                                                                               |  |
| 10 11.74                                                                                                                                                                                                                                                                                                               | 4 101                                                                                                                                                                                                                                  | 70                                                                                                                 | 477.5                                                                                                                |  |
| 11 17.99                                                                                                                                                                                                                                                                                                               | 4 10                                                                                                                                                                                                                                   | 75                                                                                                                 | 453.02                                                                                                               |  |
| 12 20.14                                                                                                                                                                                                                                                                                                               | 4 101                                                                                                                                                                                                                                  | 64                                                                                                                 | 453.99                                                                                                               |  |
| 13 24                                                                                                                                                                                                                                                                                                                  | 7 101                                                                                                                                                                                                                                  | 84.15                                                                                                              | 440.29                                                                                                               |  |
| 14 25.71                                                                                                                                                                                                                                                                                                               | 5 101                                                                                                                                                                                                                                  | 61.83                                                                                                              | 451.28                                                                                                               |  |
| 15 26.19                                                                                                                                                                                                                                                                                                               | 6 10                                                                                                                                                                                                                                   | 87                                                                                                                 | 433.99                                                                                                               |  |
| 16 21.42                                                                                                                                                                                                                                                                                                               | 4 101                                                                                                                                                                                                                                  | 43                                                                                                                 | 462.19                                                                                                               |  |
| 17 18.21                                                                                                                                                                                                                                                                                                               | 45 10                                                                                                                                                                                                                                  | 48                                                                                                                 | 467.54                                                                                                               |  |

In the left-side navigation pane, choose **Components** > **Statistical Analysis**, and drag and drop **Correlation Coefficient Matrix** to the right section. View the features related to PE (output power) to find the factor that has the greatest impact on PE (output power).



Right-click the completed component and select View Analytics Report to obtain the correlation

analysis result. The correlation chart shows the degree of correlation to PE (output power) in descending order: AT (atmospheric temperature) -> V (voltage) -> RH (relative humidity) -> AP (atmospheric pressure).

# Model data

 $\odot$ 

🖸 线性回归-1

6 预测-2

 $\odot$ 

 $\odot$ 

In the left-side navigation pane, choose **Components** > **Data Preprocessing**, and drag and drop **Split** to the right section to split data into the training set and test set. Then, choose **Components** > **Machine Learning** > **Regression**, and drag and drop **Linear Regression** to the right section to perform regression modeling on the data. Select the feature columns (X) and label column (Y).



## Predict and evaluate the regression model

After modeling is complete, choose **Components** > **Machine Learning** and drag and drop **Prediction** to the right section to predict the effect of the model on the test dataset. Select AT, V, AP, and RH for Feature Columns, and select all options for **Reserved Output Column**.

| 已选择 4 个字段                   |  |
|-----------------------------|--|
| 原样输出列 推荐添加label列,方便评估       |  |
| 已选择 5 个字段                   |  |
| 输出结果列名                      |  |
| prediction_result           |  |
| 输出分数列名                      |  |
| prediction_score            |  |
| 输出详细列名                      |  |
| prediction_detail           |  |
| THE TREE ME LET _ LA A LO O |  |

Right-click the model and choose Show Model to view the weights of different features on the

number of results.

In the left-side navigation pane, choose **Components** > **Machine Learning** > **Evaluation**, and drag and drop **Regression Model Evaluation** to the right section to view the model effect. Right-click **Regression Model Evaluation** and choose **View Analytics Report**. The RMSE value reaches 4.57. The following figure shows the completed experiment.



This completes the experiment of using the linear regression model to create a power prediction model for a hybrid power plant. After being deployed, the model can predict the power generation of the power plant in real time. This helps the power plant make a better power production schedule with minimum resource waste.