
Enterprise Distributed
Application Service (EDAS)

Quick Start

-

-

●

●

●

●

Quick Start

Preparation

Activate EDAS

When using the EDAS service for the first time, follow these steps to activate it.

Log on to the EDAS console.

On the homepage of EDAS, click Buy Now.

On the sales page of EDAS, select the configuration specifications based on the information
in Product Series.The options are EDAS - Pay-As-You-Go and EDAS - Subscription Billing.

EDAS - Pay-As-You-Go: In this billing method, EDAS services are charged
according to the number of instances with applications deployed. Two instances
are provided for free and each additional instance has a charge of 1 RMB per day.
EDAS - Subscription Billing:

Current Environment: The default value is Public Cloud and cannot be
modified.
Series: Select Professional Edition or Platinum Edition as needed.For the
functional differences between these series, see Product Series.
Number of Application Instances: Select a number of instances for
application deployment as needed.We recommend that you select one to
five instances when you use EDAS for the first time. Later, you can scale
up this service based on your growing business needs.
Subscription Validity Period: Select a subscription validity period for the
EDAS service.

Log on to your Alibaba Cloud account and finish purchasing the EDAS service as prompted.
For EDAS pricing information, see Pricing.

Enterprise Distributed Application Service (EDAS) Quick Start

1

After EDAS is activated, click Console to go to the EDAS console.

Note: When you use EDAS for the first time, the Security Authorization Tip dialog box is
displayed after you log on to the console. Click Authorize Now. On the Cloud Resource
Access Authorization page that is displayed, click Agree to Authorize.

Create resources

To deploy an application in EDAS, you must create the required resources.

To help simplify resource utilization, the following describes the basic concepts of EDAS resources.

Basic concepts

Resources Definition Scenarios

Elastic Compute Service
(ECS)

ECS is a computing service
provided by Alibaba Cloud
that has elastic processing
capabilities.

The applications that you
publish in EDAS are
deployed on ECS instances.

EDAS Agent

EDAS Agent is a Daemon
program provided by EDAS
for communication between
applications and EDAS
service clusters and between
applications and the EDAS
console.

EDAS Agent is installed on
an ECS instance, so you can
use and manage the ECS
instance in EDAS.

Clusters
In EDAS, a cluster is a
collection of ECS instances
used to deploy applications.

To meet demanding security
requirements, you must
specify a namespace and a
VPC network when creating a
cluster.

Namespace
A namespace is an isolated
resource environment built
in a region.

To meet demanding
resource security
requirements, you must
create a namespace.

Virtual Private Cloud (VPC)
A VPC network is an isolated
network environment built in
Alibaba Cloud.

To meet demanding network
security requirements, we
recommend that you create
a VPC network and add ECS
instances.

Server Load Balancer (SLB)
SLB is a load balancing
service provided by Alibaba
Cloud for distributing traffic

SLB instances are used to
achieve load balancing
among ECS instances.Your

Enterprise Distributed Application Service (EDAS) Quick Start

2

By default, all of the preceding resources must be created.The exceptions to this rule are described at
the beginning of the relevant sections.

Note： Chrome browser is recommended for operations in EDAS console.

Create VPCs

To create an ECS cluster and publish a common application without special network security
requirements, you can skip this step and use a classic network.

Log on to the VPC console to create a VPC network.For detailed instructions, see Deploy a
VPC.

Note: If you have not activated the VPC service, click Activate VPC Service.On the VPC sales
page, read and agree to the VPC Activation Agreement and then click Open Now.

Synchronize the VPC network to the EDAS console.

Log on to the EDAS console. In the left-side navigation pane, choose Resource
Management > VPC.

On the VPC page, select the region where the created VPC is located, for example,
East China 1. Then, click Synchronize VPC in the upper-right corner.

Verify that the created VPC network has been synchronized to the EDAS console.

Create ECS instances

Log on to the EDAS console.

In the left-side navigation pane, choose Resource Management > ECS.

Select a region and namespace (optional) for the ECS instance to be created. Then, click
Create Instance in the upper-right corner.

among multiple ECS
instances.

application is accessible on
the Internet through the IP
address and port of an
Internet SLB instance.

Enterprise Distributed Application Service (EDAS) Quick Start

3

On the ECS purchase page, select ECS type and configuration and pay for it. See Create ECS
instances for details.

The application configuration specifications are as follows:

Cluster type Configuration
requirement Attach data disk Notes

ECS cluster
CPU≥1 vCPU
Memory size ≥1
GB

Supported

JVMs are

multi-

thread

applicatio

ns that

may cause

problems

when they

run out of

memory.T

herefore,

avoid

applying

the

minimum

configurat

ions to

the ECS

instances

added to

the cluster

created in

the

productio

n

environm

ent.

-

When all

target ECS

instances

are added

to the

cluster,

set the

swap

partition.T

his

-

Enterprise Distributed Application Service (EDAS) Quick Start

4

prevents

the log

process

and other

processes

from

using a lot

of

memory

resources

and thus

from

causing

running

faults in

the

operating

system.

Swarm Cluster
CPU≥1 vCPU
Memory size ≥1
GB

Not supported.
Plan disk space in
advance.

JVMs are

multi-

thread

applicatio

ns that

may cause

problems

when they

run out of

memory.T

herefore,

avoid

applying

the

minimum

configurat

ions to

the ECS

instances

added to

the cluster

created in

the

productio

-

Enterprise Distributed Application Service (EDAS) Quick Start

5

n

environm

ent.

When all

target ECS

instances

are added

to the

cluster,

set the

swap

partition.T

his

prevents

the log

process

and other

processes

from

using a lot

of

memory

resources

and thus

from

causing

running

faults in

the

operating

system.

-

Container Service
Kubernetes
cluster

CPU≥1 vCPU
Memory size ≥ 2
GB

Supported

When all

target ECS

instances

are added

to the

cluster,

set the

swap

partition.T

his

prevents

the log

-

Enterprise Distributed Application Service (EDAS) Quick Start

6

Note: After you create the ECS instance, it is added to the default namespace and cluster.

Create namespaces

You can skip this step if you have no special resource security requirements.In this case, you can use
the default namespace of a region.

Log on to the EDAS console.

In the left-side navigation pane, choose Application Management > Namespace.

On the Namespace page, select Region and click Create Namespace in the upper-right
corner.

In the Create Namespace dialog box, set Namespace Name (required), Namespace ID
(required), and Namespace Type (to Normal Namespace), and enter descriptions as
needed.Click Confirm.

Note: The prefix of a namespace ID is determined by the specified region (target region)
and cannot be modified. Instead, only the custom part can be modified.

process

and other

processes

from

using a lot

of

memory

resources

and thus

from

causing

running

faults in

the

operating

system.

Enterprise Distributed Application Service (EDAS) Quick Start

7

Create clusters

Create clusters

In the left-side navigation pane, choose Resource Management > Cluster.

On the Clusters page, select a region and click Create Cluster in the upper-right corner.

In the Create Cluster dialog box, set the cluster parameters and click Create to save the
settings.

Configuration Description

Cluster Name
Name of a cluster, which contains a maximum of
64 characters consisting of letters, digits,
underscores (_), hyphens (-), and periods (.).

Cluster Type

Select ECS for common applications and Swarm
for Docker applications.Note: A Container Service
Kubernetes cluster must be created in Container
Service and then synchronized to the EDAS
console. For more information, see Create
Container Service Kubernetes clusters.

Network Type

If Cluster Type is set to ECS, Network Type can be
VPC or Classic Network. If Cluster Type is set to
Swarm, Network Type can only be VPC because
Swarm clusters in EDAS do not support classic
networks.

VPC Select the VPC you created.

Namespace This parameter is selected on the Clusters page
and cannot be modified here.If no namespace is

Enterprise Distributed Application Service (EDAS) Quick Start

8

-

-

-

-

-

-

-

Add ECS instances

You can add ECS instances to a cluster on the EDAS in either of the following ways:

Directly import instances to the cluster without image conversion.

Re-install the system with the EDAS official image. After re-installation, all data in the
instance will be deleted and a new password for logging on to the instance must be
configured.

You cannot import an instance directly to a cluster in any of the following conditions:

The ECS instance was created before December 1, 2017.
The instance of classic network type is imported into a cluster of classic network type.
The instance is not running, for example, the instance is in Stopped, Starting, or Stopping
status.
If you create a Windows instance or another instance that does not support simple shell
commands, it cannot be imported to EDAS and converted successfully.
The instance is not imported from an ECS cluster.

On the Clusters page, select a region, such as East China 1, and click the name of the
created cluster.

On the Cluster Details page, click Add ECS Instance in the upper-right corner.

On the Select Cluster and ECS page, select an instance addition method and ECS instance in
the instance list, and then click Next.

Import ECS: You cannot modify the namespace and the imported cluster. Also, ECS
instances are imported from the default namespace and cluster under this region.
From Existing Cluster: A namespace and a cluster are selected from the
region.Then, the ECS instance is moved from the left pane to the right pane on the
page.

If no instances meet the necessary conditions, click Create ECS Instance in the upper-right
corner of the page. This takes you to the ECS purchase page on the Alibaba Cloud official
website, where you can purchase and create a new ECS instance.For more information, see
Create ECS instances.

configured, the default namespace of the region is
selected by default and displayed as the region
name, for example East China 1.

Enterprise Distributed Application Service (EDAS) Quick Start

9

-

-

-

-

On the Ready to Import Page, view the information of the selected instance.

If the ECS instance can be imported directly, click Confirm and Import.
If the instance needs to be converted, select I agree to convert the above instances,
and fully understand that the data in the original systems will be lost after
conversion.Then, enter a new password for root user logon after the
conversion.Click Confirm and Import.

On the Import tab page, view the import progress of the instance.

If the ECS instance supports direct import, you can view its import progress on the
Import tab page. If the message Instance transfer succeeded is displayed, the ECS
instance has been imported successfully.Click Click to return to the Cluster Details
page. When the ECS instance status changes to Running, the ECS instance is
imported to the cluster successfully.
For an ECS instance that needs to be converted before being imported, the import
progress of the ECS instance displayed on the Import page is Converting now. This
may take 5 minutes.If you click Click to return to the Cluster Details page before
the import is completed, the health check status Converting and the conversion
progress in percentage are displayed. When the import is completed, the health
check status Running is displayed.

Synchronize SLB instances to EDAS

Log on to the SLB console to create an SLB instance.For detailed instructions, see Create
SLB instances.

Synchronize the SLB instance to the EDAS console.

Log on to the EDAS console. In the left-side navigation pane, choose Resource
Management > SLB.

On the SLB page, select the region where the created SLB instance is located, such
as East China 1. Then, click Synchronize SLB in the upper-right corner.

Verify that the created SLB instance has been synchronized to the EDAS console.

Deploy Spring Cloud Applications to EDAS

Enterprise Distributed Application Service (EDAS) Quick Start

10

-

-

-

Taking a Spring Cloud application that contains a service provider and a service consumer as an
example, this topic describes how to develop, including add dependencies and required
configuration items, and test an application locally and then deploy it to EDAS to implement service
registration and discovery, as well as consumer calls to providers.

Even if you know nothing about Spring Cloud and only the basics about Spring and Maven,
after going through this article, you will learn how to implement service registration and
discovery for Spring Cloud applications, as well as consumer calls to providers through
Spring Cloud Alibaba Nacos Discovery.

If you are familiar with service registration components in Spring Cloud such as Eureka,
Consul, and ZooKeeper, but have not used the service registration component Nacos
Discovery of Spring Cloud Alibaba, you only need to replace the dependencies and
configuration items of these service registration components with Spring Cloud Alibaba
Nacos Discovery, without modifying any code.

Spring Cloud Alibaba Nacos Discovery also implements the standard interfaces and
specifications of Spring Cloud Registry, which are basically the same as the methods that you
use to access service registration and discovery in Spring Cloud.

If you are familiar with how to use the open source Spring Cloud Alibaba Nacos Discovery
component to register and discover services for Spring Cloud applications, you can directly
deploy the applications to EDAS to use the commercial version of service registration and
discovery capabilities provided by EDAS. For more information about how to deploy
applications to EDAS, see Deploy an application to EDAS.

Spring Cloud Alibaba Nacos Discovery is the commercial version of the open source Nacos Server
provided by the EDAS service registry. It allows you to directly use the business edition of service
registry provided by EDAS.

The commercial EDAS service registry has the following advantages over Nacos, Eureka, and Consul:

Components sharing, which saves you the costs of deploying, operating, and maintaining
Nacos, Eureka, or Consul.
Your services are protected from being discovered by unauthorized applications by link
encryption for the calls to use service registration and discovery.
The EDAS service registry is tightly integrated with other EDAS components to provide you
with a complete set of microservice solutions, including environment isolation, smooth
connection and disconnection, and canary deployment.

Local development

Enterprise Distributed Application Service (EDAS) Quick Start

11

-

-

-

i.

ii.

●

●

This section describes key information for developing Spring Cloud applications locally. For more
information about Spring Cloud, download service-provider and service-consumer.

Preparations

Before you start developing, be sure to complete the following tasks:

Download Maven and set environment variables.
Download the latest version of Nacos Server.
To start Nacos Server, follow these steps.

Decompress the downloaded Nacos Server package.
Go to the nacos/bin directory and start Nacos Server.

For Linux/UNIX/Mac: Run the sh startup.sh -m standalone command.
For Windows: Double-click the startup.cmd file to run it.

Create a service provider

Create a local service provider application project, add dependencies, enable service registration and
discovery, and specify Nacos Server as the registry.

Procedure

Create a Maven project named Nacos-service-provider.

Add dependencies to the pom.xml file.

Take Spring Boot 2.1.4.RELEASE and Spring Cloud Greenwich.SR1 as an example. The
dependencies are as follows:

 <parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>2.1.4.RELEASE</version>
<relativePath/>
</parent>

<dependencies>
<dependency>
<groupId>com.alibaba.cloud</groupId>
<artifactId>spring-cloud-starter-alibaba-nacos-discovery</artifactId>
<version>2.1.0.RELEASE</version>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
</dependencies>

Enterprise Distributed Application Service (EDAS) Quick Start

12

-

-

This example uses Spring Cloud Greenwich, and the corresponding Spring Cloud Alibaba
version is 2.1.0.RELEASE.

If you are using Spring Cloud Finchley, the corresponding Spring Cloud Alibaba
version is 2.0.0.RELEASE.
If you are using Spring Cloud Edgware, the corresponding Spring Cloud Alibaba
version is 1.5.0.RELEASE.

Note: The Spring Cloud Edgware release will reach end-of-life in August 2019. We do not
recommend that you use this release to develop applications.

Create a package named com.aliware.edas in src\main\java.

In the com.aliware.edas package, create a startup class named ProviderApplication for the
service provider, and add the following code:

The @EnableDiscoveryClient annotation indicates that the service registration and discovery
feature must be enabled for the application.

<dependencyManagement>
<dependencies>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-dependencies</artifactId>
<version>Greenwich.SR1</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>

<build>
<plugins>
<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
</plugin>
</plugins>
</build>

package com.aliware.edas;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.cloud.client.discovery.EnableDiscoveryClient;

@SpringBootApplication
@EnableDiscoveryClient
public class ProviderApplication {

Enterprise Distributed Application Service (EDAS) Quick Start

13

In the com.aliware.edas package, create EchoController, and specify {/echo/{String} as the
URL mapping and GET as the HTTP method. Retrieve the method parameter from the URL,
and echo the received parameter.

In src\main\resources, create a file named application.properties and add the following
configuration to application.properties to specify the Nacos Server address.

127.0.0.1 is the IP address of Nacos Server. If your Nacos Server is deployed on another
machine, change the IP address to the corresponding one. If you have other requirements,
refer to Configuration item reference for adding configuration items to the
application.properties file.

Verify the result

Run the main function of ProviderApplication in nacos-service-provider to start the
application.

Log on to the Nacos Server console at http://127.0.0.1:8848/nacos while noting that both
the default username and password of the local Nacos console are “nacos”. In the left-
side navigation pane, choose Service Management > Services. You can see service-provider

public static void main(String[] args) {
SpringApplication.run(ProviderApplication.class, args);
}
}

package com.aliware.edas;

import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;
import org.springframework.web.bind.annotation.RestController;

@RestController
public class EchoController {
@RequestMapping(value = "/echo/{string}", method = RequestMethod.GET)
public String echo(@PathVariable String string) {
return string;
}
}

 spring.application.name=service-provider
server.port=18081
spring.cloud.nacos.discovery.server-addr=127.0.0.1:8848

Enterprise Distributed Application Service (EDAS) Quick Start

14

in the list of services and query the details of the service in Details.

Create a service consumer

This section demonstrates the service registration function and explains how Nacos service discovery
works with the RestTemplate and FeignClient clients.

Procedure

Create a Maven project named nacos-service-consumer.

Add dependencies to the pom.xml file.

 <parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>2.1.4.RELEASE</version>
<relativePath/>
</parent>

<dependencies>
<dependency>
<groupId>com.alibaba.cloud</groupId>
<artifactId>spring-cloud-starter-alibaba-nacos-discovery</artifactId>
<version>2.1.0.RELEASE</version>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-openfeign</artifactId>
</dependency>
</dependencies>

<dependencyManagement>
<dependencies>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-dependencies</artifactId>
<version>Greenwich.SR1</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>

<build>
<plugins>
<plugin>

Enterprise Distributed Application Service (EDAS) Quick Start

15

i.

ii.

iii.

In src\main\java, create a package named com.aliware.edas.

In the com.aliware.edas package, set RestTemplate and FeignClient.

Create an interface class named EchoService in ‘com.aliware.edas’, add the
@FeignClient annotation, and configure the corresponding HTTP URL and HTTP
method.

Create a startup class named ConsumerApplication in the com.aliware.edas
package and add related configuration items.

Use the @EnableDiscoveryClient annotation to enable service
registration and discovery.
Use the @EnableFeignClients annotation to activate FeignClient.
Add the @LoadBalanced annotation to integrate RestTemplate with
service discovery.

<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
</plugin>
</plugins>
</build>

package com.aliware.edas;

import org.springframework.cloud.openfeign.FeignClient;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;

@FeignClient(name = "service-provider")
public interface EchoService {
@RequestMapping(value = "/echo/{str}", method = RequestMethod.GET)
String echo(@PathVariable("str") String str);
}

package com.aliware.edas;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.cloud.client.discovery.EnableDiscoveryClient;
import org.springframework.cloud.client.loadbalancer.LoadBalanced;
import org.springframework.cloud.openfeign.EnableFeignClients;
import org.springframework.context.annotation.Bean;
import org.springframework.web.client.RestTemplate;

@SpringBootApplication
@EnableDiscoveryClient
@EnableFeignClients

Enterprise Distributed Application Service (EDAS) Quick Start

16

Create a class named TestController in the com.aliware.edas package to demonstrate and
verify the service discovery feature.

In src\main\resources, create a file named application.properties and add the following
configuration to specify the address of Nacos Server.

127.0.0.1:8848 is the IP address of Nacos Server. If your Nacos Server is deployed on
another machine, change the IP address to the corresponding one. If you have other
requirements, refer to Configuration item reference for adding configuration items to the

public class ConsumerApplication {

@LoadBalanced
@Bean
public RestTemplate restTemplate() {
return new RestTemplate();
}

public static void main(String[] args) {
SpringApplication.run(ConsumerApplication.class, args);
}
}

 package com.aliware.edas;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;
import org.springframework.web.bind.annotation.RestController;
import org.springframework.web.client.RestTemplate;

@RestController
public class TestController {

@Autowired
private RestTemplate restTemplate;
@Autowired
private EchoService echoService;

@RequestMapping(value = "/echo-rest/{str}", method = RequestMethod.GET)
public String rest(@PathVariable String str) {
return restTemplate.getForObject("http://service-provider/echo/" + str,
String.class);
}

@RequestMapping(value = "/echo-feign/{str}", method = RequestMethod.GET)
public String feign(@PathVariable String str) {
return echoService.echo(str);
}

}

Enterprise Distributed Application Service (EDAS) Quick Start

17

application.properties file.

Verify the result

Run the main function of ConsumerApplication in nacos-service-consumer to start the
application.

Log on to the Nacos Server console that starts locally at http://127.0.0.1:8848/nacos. Note
that both the default username and password of the local Nacos console are “nacos”. In
the left-side navigation pane, choose Service Management > Services. You can see service-
consumer in the list and query the details of the service in Details.

Test the result locally

Test the result of service call to the provider made by the consumer in a local environment.

For Linux/UNIX/Mac: Run curl http://127.0.0.1:18082/echo-rest/rest-rest and curl
http://127.0.0.1:18082/echo-feign/feign-rest.

For Windows: In the address bar of your browser, enter http://127.0.0.1:18082/echo-
rest/rest-rest and http://127.0.0.1:18082/echo-feign/feign-rest.

Deploy an application to EDAS

After developing and testing your application locally, you can package and deploy it to EDAS. You
can choose to deploy your Spring Cloud application to an ECS cluster, Container Service Kubernetes
cluster, or EDAS Serverless cluster based on your needs. For detailed steps to deploy an application,
see Application deployment overview.

Note: We recommend that you use the console for your initial deployment. If you choose to use JAR
packages for this purpose, make sure to select Standard Java application runtime environment for

 spring.application.name=service-consumer
server.port=18082
spring.cloud.nacos.discovery.server-addr=127.0.0.1:8848

Enterprise Distributed Application Service (EDAS) Quick Start

18

Application Runtime Environment when creating an application.

The EDAS service registry provides a GA release of Nacos Server. When you deploy an application to
EDAS, EDAS sets the IP address and service port of Nacos Server, as well as other information such as
the namespace, access-key, secret-key, and context-path with higher priority. You do not need to
make any additional configurations, and you can choose to retain or delete your original
configuration.

Verify the result

After the deployment is completed, in the left-side navigation pane of the EDAS console, choose
Microservice Management > Service Query. On the Service Query page, select Region and
Namespace , and then search for your deployed application by entering service-provider and service-
consumer.

Configuration item reference

Configuration item Key Default value Description

Server address spring.cloud.nacos.d
iscovery.server-addr None

The IP address and
port of the server
that Nacos Server
listens to.

Service name spring.cloud.nacos.d
iscovery.service

${spring.application.
name}

The name of the
current service.

Network interface
name

sspring.cloud.nacos.
discovery.network-
interface

None

The registered IP
address is the IP
address of the
corresponding
network interface
when an IP is not
configured. If this
item is not
configured, the IP
address of the first
network interface is
used by default.

Enterprise Distributed Application Service (EDAS) Quick Start

19

For more information about Spring Cloud Alibaba Nacos Discovery, see Spring Cloud Alibaba Nacos
Discovery documentation.

Registered IP
address

spring.cloud.nacos.d
iscovery.ip None Highest priority

Registered port spring.cloud.nacos.d
iscovery.port -1

No configuration is
required by default.
The system
automatically
detects the port.

Namespace spring.cloud.nacos.d
iscovery.namespace None

One of the common
use cases is the
isolation of
registration in
different
environments, for
example, the
isolation of the
resources (such as
configurations and
services) in
development, test,
and production
environments.

Metadata spring.cloud.nacos.d
iscovery.metadata None

This item is
configured in the
Map format. You
can customize
metadata
information related
to your services as
needed.

Cluster
spring.cloud.nacos.d
iscovery.cluster-
name

DEFAULT Set it to the name of
a Nacos cluster.

Endpoint spring.cloud.nacos.d
iscovery.endpoint UTF-8

The domain name of
the entry of a service
in the region. You
can dynamically
retrieve the server
address through this
domain name. This
configuration item is
not required when
an application is
deployed to EDAS.

Enable Ribbon
integration

ribbon.nacos.enable
d true

You do not need to
modify this item in
most cases.

Enterprise Distributed Application Service (EDAS) Quick Start

20

FAQ

Use other versions

This example uses Spring Cloud Greenwich, and the corresponding Spring Cloud Alibaba
version is 2.1.0.RELEASE. Spring Cloud Finchley must be used with Spring Cloud Alibaba
2.0.0.RELEASE, and Spring Cloud Edgware with Spring Cloud Alibaba 1.5.0.RELEASE.

Note: The Spring Cloud Edgware release will reach end-of-life in August 2019. We do not
recommend that you use this release to develop applications.

Migrate from ANS

The EDAS registry configures the data structures of ANS and Nacos in a way that the two
are compatible on servers. In the same namespace and when a group is not set up in Nacos,
the Nacos client and the ANS client can discover each other’s registration services.

Deploy Dubbo applications to EDAS

You can host Dubbo microservice applications in EDAS and take advantage of shared components,
enterprise-class security hardening, and full microservice solutions provided by EDAS to reduce O&M
costs and improve security and development efficiency. This topic describes how to develop a Dubbo
microservice sample application on-premises through XML configuration items and deploy it to
EDAS. The sample application contains a service provider and a service consumer.

Why host applications in EDAS

By hosting Dubbo applications in EDAS, you can focus on building the logic of Dubbo applications
rather than concerning yourself with creating and maintaining the registry, configuration center, and
metadata center. Also, you can take advantage of EDAS capabilities such as elastic scaling, rate
limiting and degradation, monitoring, and microservice governance for various management
purposes. The entire hosting process is completely transparent to you, does not require you to learn
anything, and does not increase your development costs.

Preparations

Before you start developing, be sure to complete the following tasks:

Enterprise Distributed Application Service (EDAS) Quick Start

21

i.

ii.

●

●

Download Maven and set environment variables.

Download the latest version of Nacos Server.

To start Nacos Server, follow these steps.

Decompress the downloaded Nacos Server package.
Go to the nacos/bin directory and start Nacos Server.

For Linux/UNIX/Mac: Run the sh startup.sh -m standalone command.
For Windows: Double-click the startup.cmd file to run it.

Create a service provider

Create a provider application project on-premises, add dependencies, configure service registration
and discovery, and specify Nacos as the registry.

Create a Maven project and add dependencies.

Create a Maven project by using an integrated development environment (IDE),
such as IntelliJ IDEA or Eclipse.

Add dubbo, dubbo-registry-nacos, and nacos-client to the pom.xml file.

Note: Dubbo 2.7.3 or later is required.

<dependencies>

<dependency>
<groupId>org.apache.dubbo</groupId>
<artifactId>dubbo</artifactId>
<version>2.7.3</version>
</dependency>

<dependency>
<groupId>org.apache.dubbo</groupId>
<artifactId>dubbo-registry-nacos</artifactId>
<version>2.7.3</version>
</dependency>

<dependency>
<groupId>com.alibaba.nacos</groupId>
<artifactId>nacos-client</artifactId>
<version>1.1.1</version>
</dependency>

</dependencies>

Enterprise Distributed Application Service (EDAS) Quick Start

22

Develop a Dubbo service provider.

All services in Dubbo are provided as interfaces.

In src/main/java, create a package named com.alibaba.edas.

In com.alibaba.edas, create an interface named IHelloService that contains a
SayHello method.

Create a class named IHelloServiceImpl in com.alibaba.edas to implement the
interface.

Configure the Dubbo service.

In src/main/resources, create a file named provider.xml and open it.

In provider.xml, add the Spring-related XML namespace (xmlns) and XML schema
instance (xmlns:xsi), as well as the Dubbo-related XML namespace (xmlns:dubbo)
and XML schema instance (xsi:schemaLocation).

In provider.xml, expose the interface and implementation class as a Dubbo
service.

package com.alibaba.edas;

public interface IHelloService {
String sayHello(String str);
}

package com.alibaba.edas;

public class IHelloServiceImpl implements IHelloService {
public String sayHello(String str) {
return "hello " + str;
}
}

<beans xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:dubbo="http://dubbo.apache.org/schema/dubbo"
xmlns="http://www.springframework.org/schema/beans"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-4.3.xsd
http://dubbo.apache.org/schema/dubbo http://dubbo.apache.org/schema/dubbo/dubbo.xsd">

Enterprise Distributed Application Service (EDAS) Quick Start

23

i.

ii.

In provider.xml, specify Nacos Server that starts locally as the registry.

127.0.0.1 is the IP address of Nacos Server. If your Nacos Server is
deployed on another machine, change the IP address to the
corresponding one. When an application is deployed to EDAS, the
registry address will be replaced with the address of the registry in EDAS.
You do not need to make any changes.
8848 is the port number of Nacos Server, which cannot be changed.

Start the service.

In com.alibaba.edas, create the Provider class and load Spring context to the main
function of Provider based on the following code to expose the configured Dubbo
service.

Execute the main function of Provider to start the service.

Log on to the Nacos console http://127.0.0.1:8848, in the left-side navigation pane, click
Services to view the list of providers. You can see com.alibaba.edas.IHelloService in the list
and can query the Service Group and Provider IP of the service.

<dubbo:application name="demo-provider"/>

<dubbo:protocol name="dubbo" port="28082"/>

<dubbo:service interface="com.alibaba.edas.IHelloService" ref="helloService"/>

<bean id="helloService" class="com.alibaba.edas.IHelloServiceImpl"/>

<dubbo:registry address="nacos://127.0.0.1:8848" />

 package com.alibaba.edas;

import org.springframework.context.support.ClassPathXmlApplicationContext;

public class Provider {
public static void main(String[] args) throws Exception {
ClassPathXmlApplicationContext context = new ClassPathXmlApplicationContext(new String[]
{"provider.xml"});
context.start();
System.in.read();
}
}

Enterprise Distributed Application Service (EDAS) Quick Start

24

Create a service consumer

Create a consumer application project locally, add dependencies, and configure it to subscribe to the
Dubbo service.

Create a Maven project and add dependencies.

The procedure is the same as that for creating a provider. For more information, see the
procedure for creating a provider.

Develop the Dubbo service.

All services in Dubbo are provided as interfaces.

In src/main/java, create a package named com.alibaba.edas.

In com.alibaba.edas, create an interface named IHelloService, which contains a
SayHello method.

Note: Generally, an interface is defined in an independent module. The provider
and consumer reference the same module through Maven dependencies. In this
topic, two identical interfaces are created for the provider and consumer for ease
of description. However, we do not recommend this procedure in actual use.

Configure the Dubbo service.

In src/main/resources, create a file named consumer.xml and open it.

In consumer.xml, add the Spring-related XML namespace (xmlns) and XML
schema instance (xmlns:xsi), as well as the Dubbo-related XML namespace
(xmlns:dubbo) and XML schema instance (xsi:schemaLocation).

package com.alibaba.edas;

public interface IHelloService {
String sayHello(String str);
}

<beans xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:dubbo="http://dubbo.apache.org/schema/dubbo"
xmlns="http://www.springframework.org/schema/beans"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-4.3.xsd

Enterprise Distributed Application Service (EDAS) Quick Start

25

i.

Add the following configuration to ‘consumer.xml’ to subscribe to the Dubbo
service:

Start and verify the service.

Create the Consumer class in com.alibaba.edas and load Spring context to the
main function of Consumer based on the following code to subscribe to and
consume the Dubbo service:

Execute the main function of Consumer to start the Dubbo service.

Verify the creation result.

After Dubbo is started, the console outputs hello world continuously, indicating
successful service consumption.

http://dubbo.apache.org/schema/dubbo http://dubbo.apache.org/schema/dubbo/dubbo.xsd">

<dubbo:application name="demo-consumer"/>

<dubbo:registry address="nacos://127.0.0.1:8848"/>

<dubbo:reference id="helloService" interface="com.alibaba.edas.IHelloService"/>

package com.alibaba.edas;

import org.springframework.context.support.ClassPathXmlApplicationContext;

import java.util.concurrent.TimeUnit;

public class Consumer {
public static void main(String[] args) throws Exception {
ClassPathXmlApplicationContext context = new ClassPathXmlApplicationContext(new String[]
{"consumer.xml"});
context.start();
while (true) {
try {
TimeUnit.SECONDS.sleep(5);
IHelloService demoService = (IHelloService)context.getBean("helloService");
String result = demoService.sayHello("world");
System.out.println(result);
} catch (Exception e) {
e.printStackTrace();
}
}
}
}

Enterprise Distributed Application Service (EDAS) Quick Start

26

Log on to the Nacos console at http://127.0.0.1:8848. Then, in the left-side
navigation pane, choose Services. On the Services page, select Callers.

You can see com.alibaba.edas.IHelloService in the list and query the Service Group
 and Caller IP of the service.

Deploy the application to EDAS

You can deploy the application that uses local Nacos as the registry directly to EDAS without making
any changes. This registry will be automatically replaced with the registry in EDAS.

Based on your actual needs, you can choose the type of cluster to deploy the application to, which is
mainly ECS cluster or Container Service Kubernetes cluster, as well as the deployment method, which
can be in the console or with tools. For more information, see Application deployment overview.

If you use the console for deployment, complete the following steps in your local application before
deploying it:

Add the following packaging plug-in configuration to the pom.xml file.

Provider

Consumer

<build>
<plugins>
<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
<executions>
<execution>
<goals>
<goal>repackage</goal>
</goals>
<configuration>
<classifier>spring-boot</classifier>
<mainClass>com.alibaba.edas.Provider</mainClass>
</configuration>
</execution>
</executions>
</plugin>
</plugins>
</build>

<build>
<plugins>
<plugin>

Enterprise Distributed Application Service (EDAS) Quick Start

27

Execute mvn clean package to package your local program into a JAR file.

After deploying Dubbo microservice applications to EDAS, you can use EDAS for microservice
governance.

More information

You can also use Spring Boot to develop Dubbo applications. For more information, see Use
Spring Boot to develop Dubbo applications.

If you are familiar with Dubbo and only want to try hosting applications in EDAS, you can use
Alibaba Cloud Toolkit to create a demo sample and deploy it to EDAS.

If you are using edas-dubbo-extension, see Host Dubbo applications in EDAS with EDAS-
Dubbo-extension. With edas-dubbo-extension, you are unable to use related capabilities
provided by EDAS, such as Dubbo service governance. Therefore, we recommend that you
migrate to Nacos instead.

<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
<executions>
<execution>
<goals>
<goal>repackage</goal>
</goals>
<configuration>
<classifier>spring-boot</classifier>
<mainClass>com.alibaba.edas.Consumer</mainClass>
</configuration>
</execution>
</executions>
</plugin>
</plugins>
</build>

Enterprise Distributed Application Service (EDAS) Quick Start

28

	Quick Start
	Preparation
	Activate EDAS
	Create resources
	Basic concepts
	Create VPCs
	Create ECS instances
	Create namespaces
	Create clusters
	Create clusters
	Add ECS instances

	Synchronize SLB instances to EDAS

	Deploy Spring Cloud Applications to EDAS
	Local development
	Preparations
	Create a service provider
	Procedure
	Verify the result

	Create a service consumer
	Procedure

	Verify the result

	Test the result locally
	Deploy an application to EDAS
	Verify the result
	Configuration item reference
	FAQ

	Deploy Dubbo applications to EDAS
	Why host applications in EDAS
	Preparations
	Create a service provider
	Create a service consumer
	Deploy the application to EDAS
	More information

