
Enterprise Distributed
Application Service (EDAS)

Application Development

Application Development

Develop applications in Spring Cloud

Spring Cloud overview

EDAS supports the native Spring Cloud microservice framework. For the microservices developed
under this framework, you only need to add dependencies and modify their configurations to obtain
EDAS microservice hosting, microservice management, monitoring and alarm, application diagnosis,
and other capabilities. This ensures zero code intrusion.

Spring Cloud provides a series of standards and specifications to simplify application
development,covering service discovery, load balancing, fusion, configuration management, message
event triggering, and message bus. In addition, Spring Cloud provides implementation components
for service gateways, distributed tracing, security, distributed task scheduling, and distributed task
coordination.

Currently, the most popular Spring Cloud implementation components in the industry include Spring
Cloud Netflix, Spring Cloud Consul, Spring Cloud Gateway, and Spring Cloud Sleuth. Spring Cloud
Alibaba, an open source middleware recently developed by Alibaba, is also a very popular
implementation component in the industry.

For the applications developed by using Spring Cloud components such as Spring Cloud Netflix and
Spring Cloud Consul, you can directly deploy them to EDAS and enable the application hosting
capability. In addition, you can directly use the advanced monitoring functions provided by EDAS
without modifying any code, enabling monitoring functions such as distributed tracing, monitoring
and alarm, and application diagnosis.

To use more service management functions in EDAS to manage your Spring Cloud applications,
replace your Spring Cloud components with those in Spring Cloud Alibaba or add the Spring Cloud
Alibaba component.

Compatibility

Enterprise Distributed Application Service (EDAS) Application Development

1

Currently, EDAS supports Spring Cloud Greenwich, Spring Cloud Finchley and Spring Cloud Edgware.
The details for version mapping relationship of Spring Cloud, Spring Boot and Spring Cloud Alibaba,
see Version mapping notes.

The following table shows the compatibility between Spring Cloud functions, other implementation
components, and EDAS.

Function Component Compatibility
with EDAS Description

Common
functions

Service
registration
and discovery

Netflix

Eureka

-

Consul

Discov

ery

-
Compatible,
with an
equivalent
component

EDAS provides
ANS for
replacement.In
addition to the
service
registration
and discovery
function of
Spring Cloud,
ANS also
provides many
other service
management
functions.

Load balancing Netflix Ribbon Compatible

You can
directly use
Spring Cloud
with the service
registration
and discovery
component of
EDAS.

Service call

Feign-

RestTe

mplate

- Compatible

You can
directly use the
service
discovery and
distributed
tracing
functions of
EDAS.

Configuration management

Config

Server

-

Consul

Config

-

Compatible,
with an
equivalent
component

EDAS provides
ACM for
replacement.In
addition to the
service
registration
and discovery
function of
Spring Cloud,
ACM also
allows
configuration
management in
the EDAS
console and

Enterprise Distributed Application Service (EDAS) Application Development

2

provides real-
time refreshing
and push track
viewing.

Service gateway

Spring

Cloud

Gatew

ay

-

Netflix

Zuul

-

Compatible

You can
directly use the
service
discovery,
configuration
management,
and distributed
tracing
functions of
EDAS.

Distributed tracing Spring Cloud
Sleuth

Compatible,
with an
equivalent
component

EDAS provides
ARMS for
replacement.To
use ARMS, you
only need to
enable
advanced
monitoring in
the EDAS
console,
without
modifying any
code or
dependencies.I
n addition to
the distributed
tracing
function, ARMS
also provides
functions such
as complete
troubleshootin
g and thread
analysis.

Message-driven: Spring Cloud
Stream

Rabbit

MQ

binder

-

Kafka

binder

-

Compatible,
with an
equivalent
component

EDAS provides
RocketMQ
Binder for
replacement. It
can be used
with other
components.

Message bus: Spring Cloud Bus

Rabbit

MQ

-

Kafka-

Compatible,
with an
equivalent
component

EDAS provides
RocketMQ Bus
for
replacement. It
can be used
with other
components.

Security Spring Cloud
Security Compatible -

Enterprise Distributed Application Service (EDAS) Application Development

3

Version mapping notes

The mapping relation among Spring Cloud, Spring Boot, Sring Cloud Alibaba and EDAS commercial
components is shown in the following table.

Note: Spring Cloud Alibaba Nacos Discovery and Spring Cloud Alibaba Nacos Config are the
corresponding open-source components of ANC and ACM.

Documentation

To replace the service discovery component (such as Spring Cloud Eureka or Spring Cloud
Consul) with the spring-cloud-alicloud-ans component provided by EDAS, you only need to
modify the dependencies and configurations, and not the code.For more information, see
Service discovery.

To replace the configuration management component (such as Spring Cloud Config or
Spring Cloud Consul) with the spring-cloud-alicloud-acm component provided by EDAS, you
only need to modify the dependencies and configurations, and not the code. For more
information, see Configuration management.

If you are using a service gateway but want to use the service registration and discovery,
configuration management, and rate limiting and degradation functions provided by EDAS,
you only need to introduce the starter dependencies and modify the configurations. For
more information, see Service gateways.

Distributed task scheduling Spring Cloud
Task Compatible -

Distributed coordination Spring Cloud
Cluster Compatible -

Spring
Cloud Spring Boot

Spring
Cloud
Alibaba

EDAS commercial components

ANS ACM SchedulerX

Greenwich 2.1.x 0.9.0.RELEA
SE

0.9.0.RELEA
SE

0.9.0.RELEA
SE

0.9.0.RELEA
SE

Finchley 2.0.x 0.2.2.RELEA
SE

0.2.2.RELEA
SE

0.2.2.RELEA
SE

0.2.2.RELEA
SE

Edgware 1.5.x 0.1.2.RELEA
SE

0.1.2.RELEA
SE

0.1.2.RELEA
SE

0.1.2.RELEA
SE

Enterprise Distributed Application Service (EDAS) Application Development

4

Quick start

You can simply add basic dependencies and configurations to your Spring Cloud applications to
deploy them to EDAS, and use the EDAS service registry for service discovery.For detailed steps, see
Deploy Spring Cloud Applications to EDAS.

Implement load balancing

Spring Cloud uses the Ribbon component for load balancing. Ribbon mainly provides client-side
software load balancing algorithms.In Spring Cloud, load balancing is achieved for the underlying
RestTemplate and Feign clients through Ribbon.

Spring Cloud Alibaba ANS integrates the functions of Ribbon and AnsServerList implements the
com.netflix.loadbalancer.ServerList API provided by Ribbon.

This API is generic and other similar service discovery components, such as Nacos, Eureka, Consul,
and ZooKeeper, implement ServerList APIs such as NacosServerList, DomainExtractingServerList,
ConsulServerList, and ZookeeperServerList.

Implementing the com.netflix.loadbalancer.ServerList API is equivalent to accessing the load
balancing specifications of Spring Cloud. These specifications are generic.This means that no code
modification is required to change the service discovery solution from Eureka, Consul, or ZooKeeper
to Spring Cloud Alibaba, including RestTemplate, FeignClient, and the outdated AsyncRestTemplate.

The following describes how to implement load balancing of RestTemplate and Feign in your
application.

You can download service-provider and service-consumer for complete demos.

RestTemplate

RestTemplate is a client provided by Spring Cloud to access RESTful services. It provides multiple
ways to conveniently access remote HTTP services, greatly improving the writing efficiency of client-
side code.

To use the load balancing feature of RestTemplate, you need to modify the code in your application
based on the following example.

public class MyApp {

Enterprise Distributed Application Service (EDAS) Application Development

5

Feign

Feign is an HTTP client written in Java to simplify RESTful calls.

Use @EnableFeignClients and @FeignClient to initiate a load balancing request.

Enable the functions of Feign with the @EnableFeignClients annotation.

Build a FeignClient with the @FeignClient annotation.

Inject EchoService and call the echo method.

Calling the echo method is equivalent to initiating an HTTP request.

// Inject the RestTemplate you built with the @LoadBalanced annotation
// This annotation adds the LoadBalancerInterceptor to RestTemplate
// Internally, LoadBalancerInterceptor uses the implementation class RibbonLoadBalancerClient of the
LoadBalancerClient API for load balancing
@Autowired
private RestTemplate restTemplate;

@LoadBalanced //Modify the built RestTemplate with this annotation to enable its load balancing function.
@Bean
public RestTemplate restTemplate() {
return new RestTemplate();
}

// RestTemplate calls services in load balancing mode internally
public void doSomething() {
Foo foo = restTemplate.getForObject("http://service-provider/query", Foo.class);
doWithFoo(foo);
}

...
}

@SpringBootApplication
@EnableFeignClients // Enable the functions of Feign
public class MyApplication {
...
}

@FeignClient(name = "service-provider")
public interface EchoService {
@RequestMapping(value = "/echo/{str}", method = RequestMethod.GET)
String echo(@PathVariable("str") String str);
}

Enterprise Distributed Application Service (EDAS) Application Development

6

Implement configuration management

This topic describes how to connect your Spring Cloud applications to ACM and use ACM to manage
their configurations.

Why is ACM used?

Application Configuration Management (ACM) is a configuration management product of Alibaba
Cloud, which is a commercial version of open source Nacos configuration management.

Compared with other similar products, ACM offers certain advantages.For more information, see
ACM product comparison.

Local development

Spring Cloud Alicloud ACM implements the integration of ACM with Spring Cloud framework and
supports the injection of native Spring configurations.

Preparation

Download, start, and configure the lightweight configuration center.

To facilitate local development, EDAS provides a lightweight configuration center that has
the basic features of the EDAS service registry.You can deploy the applications developed
based on the lightweight configuration center to EDAS without making any modifications to
code or configurations.

For more information about how to download, start, and configure the lightweight
configuration center, see Configure a lightweight configuration center.The latest version is

public class MyService {
@Autowired // Inject the EchoService you built with the @FeignClient annotation
private EchoService echoService;

public void doSomething() {
// This is equivalent to initiating an "http://service-provider/echo/test" request
echoService.echo("test");
}
...
}

Enterprise Distributed Application Service (EDAS) Application Development

7

●

●

●

recommended.

Log on to the console of the lightweight configuration center. In the left-side navigation
pane, click Configuration List. On the Configuration List page, click Add. On the Create
Configuration page, enter the following information.

Group: DEFAULT_GROUP
DataId: acm-example.properties
Content: user.id=amctest

Use ACM for configuration management

Create a Maven project named acm-example.

The following takes Spring Boot 2.0.6 RELEASE and Spring Cloud Finchley.SR1 as an
example. Add the following dependencies to the pom.xml file.

If you need to use Spring Boot 1.x, use Spring Boot 1.5.x, Spring Cloud Edgware, and Spring

 <parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>2.0.6.RELEASE</version>
<relativePath/>
</parent>

<dependencies>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-alicloud-acm</artifactId>
<version>0.2.1.RELEASE</version>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
</dependencies>

<dependencyManagement>
<dependencies>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-dependencies</artifactId>
<version>Finchley.SR1</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>

Enterprise Distributed Application Service (EDAS) Application Development

8

Cloud Alibaba 0.1.1. RELEASE.

Note: Spring Boot 1.x will expire in August 2019, so we recommend that you use a later
version to develop applications.

Develop the startup class AcmExampleApplication of acm-example.

Create a simple controller and specify a UserId from the key in the configuration file named
user.id.

Add the following configuration to the bootstrap.properties file and specify the EDAS
lightweight configuration center as the registry.

where, 127.0.0.1 is the address of the lightweight configuration center, which must be
changed to the corresponding IP address if your lightweight configuration center is
deployed on another instance.The lightweight configuration center does not support port
modification, so port 8080 must be used.

Execute the main function in the startup class AcmExampleApplication to enable the service.

 @SpringBootApplication
public class AcmExampleApplication {
public static void main(String[] args) {
SpringApplication.run(AcmExampleApplication.class, args);
}
}

 @RestController
public class EchoController {

@Value("${user.id}")
private String userId;

@RequestMapping(value = "/")
public String echo() {
return userId;
}
}

 spring.application.name=acm-example
server.port=18081
spring.cloud.alicloud.acm.server-list=127.0.0.1
spring.cloud.alicloud.acm.server-port=8080

Enterprise Distributed Application Service (EDAS) Application Development

9

Result verification

In your browser, enter the address http://127.0.0.1:18081/. The value acmtest is returned, which
indicates the value of user.id you configured in the lightweight configuration center.

Deploy applications to EDAS

ACM is designed for migrating applications from the development environment to EDAS. It allows
you to directly deploy applications to EDAS without any code or configuration modifications.

Add the following configuration to the pom.xml file of acm-example. Then, run mvn clean
package to package native programs into executable JAR packages.

Deploy applications based on the appropriate documents for the corresponding cluster
types.

Reference configuration items

 <build>
<plugins>
<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
</plugin>
</plugins>
</build>

Configuration item Key Default value Description

Extension spring.cloud.alicloud
.acm.file-extension properties

Indicates the
configuration file
extension, typically
being properties or
yaml

Timeout spring.cloud.alicloud
.acm.timeout 3000

Indicates the
timeout period for
configuration
retrieval

Refresh or not
spring.cloud.alicloud
.acm.refresh-
enabled

true

Indicates whether
the Spring context is
to be refreshed
when the
configuration
changes

Endpoint spring.cloud.alicloud
.acm.endpoint None For more

information, see

Enterprise Distributed Application Service (EDAS) Application Development

10

-

-

FAQ

What is the relationship between ACM and EDAS?

A: ACM is an independent Alibaba Cloud product and EDAS can provide a runtime
environment for applications using ACM.

Deploy service gateways

This topic describes how to, based on Spring Cloud Gateway and Netflix Zuul, deploy service
gateways for applications from scratch by using ANS.

[TOC]

Why do service gateways use ANS as the registry?

Application Naming Service (ANS) is a service discovery component provided by EDAS, which is a
commercial version of open source Nacos.

org.springframework.cloud:spring-cloud-starter-alicloud-ans implements the standard APIs and
specifications of Spring Cloud Registry. ANS can completely replace the service discovery function
provided by Spring Cloud Eureka or Spring Cloud Consul.

In addition, ANS offers the following advantages over Spring Cloud Eureka and Spring Cloud Consul:

ANS is a shared component that saves you the cost of deploying, operating, or maintaining
Spring Cloud Eureka or Spring Cloud Consul.
ANS provides link encryption for both service registration and discovery calls, protecting
your service from being detected by others.

ACM-SDK
documentation.

Namespace spring.cloud.alicloud
.acm.namespace None

For more
information, see
ACM-SDK
documentation.

RAM role spring.cloud.alicloud
.acm.ram-role-name None

For more
information, see
ACM-SDK
documentation.

Enterprise Distributed Application Service (EDAS) Application Development

11

- ANS is fully integrated with other EDAS components to provide you with a complete set of
microservice solutions.

Preparation

Download, start, and configure the lightweight configuration center

To facilitate local development, EDAS provides a lightweight configuration center that has
the basic features of the EDAS service registry.You can deploy the applications developed
based on the lightweight configuration center to EDAS without making any modifications to
code or configurations.

For more information about how to download, start, and configure the lightweight
configuration center, see Configure the lightweight configuration center.The latest version is
recommended.

Download Maven and set environment variables (skip this step if Maven is installed locally).

Deploy service gateways based on Spring Cloud Gateway

The following describes how to use ANS to deploy service gateways from scratch based on Spring
Cloud Gateway.

Create a service gateway

Create a Maven project named spring-cloud-example-ans-gateway.

Add Spring Boot and Spring Cloud Finchley dependencies to the pom.xml file.

The following takes Spring Boot 2.0.6 RELEASE and Spring Cloud Finchley.SR1 as an
example.

Note: Spring Cloud Gateway is a component developed based on Spring Boot 2.0. If you are
using Spring Cloud Gateway as the service gateway, select Spring Boot 2.0 or later.If you are
using Spring Boot 1.x, we recommend that you upgrade it to Spring Cloud 2.0.

 <parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>2.0.6.RELEASE</version>
 <relativePath/>
 </parent>

Enterprise Distributed Application Service (EDAS) Application Development

12

Develop the service gateway startup class AnsGatewayApplication.

 <properties>
 <spring-cloud.version>Finchley.SR1</spring-cloud.version>
 <spring-cloud-alibaba-cloud.version>0.2.1.RELEASE</spring-cloud-alibaba-cloud.version>
 </properties>

 <dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-dependencies</artifactId>
 <version>${spring-cloud.version}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-alibaba-dependencies</artifactId>
 <version>${spring-cloud-alibaba-cloud.version}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
 </dependencyManagement>

 <dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-webflux</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-gateway</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-alicloud-ans</artifactId>
 <exclusions>
 <! - Spring Cloud Gateway uses Netty as its HTTP server, so you need to **exclude** dependencies
on spring-boot-starter-web to prevent startup failures. -->
 <exclusion>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 </exclusion>
 </exclusions>
 </dependency>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-alicloud-context</artifactId>
 </dependency>
 </dependencies>

 @SpringBootApplication

Enterprise Distributed Application Service (EDAS) Application Development

13

Add the following configuration to the application.yaml file and specify the EDAS
lightweight configuration center as the registry.

where, 127.0.0.1 is the address of the lightweight configuration center, which must be
changed to the corresponding IP address if your lightweight configuration center is
deployed on another instance.The lightweight configuration center does not support port
modification, so port 8080 must be used.

Execute the main function in the startup class AnsGatewayApplication to enable the service.

Log on to the console of the lightweight configuration center (http://127.0.0.1:8080). In the
left-side navigation pane, click Services to view the list of service providers.spring-gateway-
example exists in the list of service providers.

Create a service provider

Create an application that serves as the service provider.For more information, see Quick start.

Sample service provider:

 @EnableDiscoveryClient
 <! - Service registration and discovery functions must be enabled for the application -->
 public class AnsGatewayApplication {
 public static void main(String[] args) {

 SpringApplication.run(AnsGatewayApplication.class, args);
 }
 }

 server:
 port: 15012
 spring:
 application:
 name: spring-gateway-example
 cloud:
 gateway: # config the routes for gateway
 routes:
 - id: lb_service-provider
 uri: lb://service-provider
 predicates:
 - Path=/**
 alicloud:
 ans:
 server-list: 127.0.0.1
 server-port: 8080

@SpringBootApplication
@EnableDiscoveryClient

Enterprise Distributed Application Service (EDAS) Application Development

14

Result verification

Locally verify the result.

Locally start the developed service gateway and service provider and access Spring Cloud
Gateway to forward the request to the backend service. The result indicating a successful
call is returned.

Verify the result in EDAS.

Deploy the developed service gateway and service provider to EDAS and access Spring
Cloud Gateway to forward the request to the backend service. The result indicating a
successful call is returned.

Use Spring Boot 2.x to deploy service gateways based on
Zuul

The following describes how to use ANS to deploy service gateways from scratch in Spring Boot 2.x
based on Netflix Zuul.

Create a service gateway

public class AnsProviderApplication {

 public static void main(String[] args) {

 SpringApplication.run(AnsProviderApplication.class, args);
 }

 @RestController
 public class EchoController {
 @RequestMapping(value = "/echo/{string}", method = RequestMethod.GET)
 public String echo(@PathVariable String string) {
 return string;
 }
 }
}

Enterprise Distributed Application Service (EDAS) Application Development

15

Create a Maven project named spring-cloud-example-ans-zuul.

Add Spring Boot and Spring Cloud Finchley dependencies to the pom.xml file.

The following takes Spring Boot 2.0.6 RELEASE and Spring Cloud Finchley.SR1 as an
example.

 <parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>2.0.6.RELEASE</version>
 <relativePath/>
 </parent>

 <properties>
 <spring-cloud.version>Finchley.SR1</spring-cloud.version>
 <spring-cloud-alibaba-cloud.version>0.2.1.RELEASE</spring-cloud-alibaba-cloud.version>
 </properties>

 <dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-dependencies</artifactId>
 <version>${spring-cloud.version}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-alibaba-dependencies</artifactId>
 <version>${spring-cloud-alibaba-cloud.version}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
 </dependencyManagement>

 <dependencies>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-alicloud-ans</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-alicloud-context</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-netflix-zuul</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>

Enterprise Distributed Application Service (EDAS) Application Development

16

If you need to use Spring Boot 1.x, use Spring Boot 1.5.x, Spring Cloud Edgware, and
org.springframework.cloud:spring-cloud-starter-alicloud-ans version 0.1.1. RELEASE.

Note: Spring Boot 1.x will expire in August 2019, so we recommend that you use a later
version to develop applications.

Develop the service gateway startup class AnsZuulTwoXApplication.

Add the following configuration to the application.properties file and specify the EDAS
lightweight configuration center as the registry.

where, 127.0.0.1 is the address of the lightweight configuration center, which must be
changed to the corresponding IP address if your lightweight configuration center is
deployed on another instance.The lightweight configuration center does not support port
modification, so port 8080 must be used.

Execute the main function AnsZuulTwoXApplication in spring-cloud-example-ans-zuul to
enable the service.

Log on to the console of the lightweight configuration center http://127.0.0.1:8080. In the
left-side navigation pane, click Services to view the list of service providers.spring-cloud-
ans-gateway exists in the list of service providers.

 </dependency>
 </dependencies>

 @SpringBootApplication
 @EnableDiscoveryClient
 <! - Enable the service registration and discovery functions -->
 @EnableZuulProxy
 <! - Enable the Zuul Server agent -->
 public class AnsZuulTwoXApplication {

 public static void main(String[] args) {

 SpringApplication.run(AnsZuulTwoXApplication.class, args);
 }
 }

 spring.application.name=spring-cloud-ans-gateway
 server.port=13012
 spring.cloud.alicloud.ans.server-list=127.0.0.1
 spring.cloud.alicloud.ans.server-port=8080
 # config zuul
 zuul.routes.service-provider.path=/**

Enterprise Distributed Application Service (EDAS) Application Development

17

Create a service provider

For more information about how to quickly create a service provider, see Quick start.

Sample service provider startup class:

Result verification

Locally verify the result.

Access the API provided by the backend service through Netflix Zuul. The result indicating a
successful call is returned.

Verify the result in EDAS.

Deploy the developed service gateway and service provider to EDAS and access the
backend service through the service gateway. The result indicating a successful call is
returned.

Use Spring Boot 1.x to deploy service gateways based on

@SpringBootApplication
@EnableDiscoveryClient
public class AnsProviderApplication {

 public static void main(String[] args) {

 SpringApplication.run(AnsProviderApplication.class, args);
 }

 @RestController
 public class EchoController {
 @RequestMapping(value = "/echo/{string}", method = RequestMethod.GET)
 public String echo(@PathVariable String string) {
 return string;
 }
 }
}

Enterprise Distributed Application Service (EDAS) Application Development

18

Netflix Zuul

The following describes how to use ANS to deploy service gateways from scratch in Spring Boot 1.x
based on Netflix Zuul.

If you need to use Spring Boot 1.x, use Spring Boot 1.5.x, Spring Cloud Edgware, and
org.springframework.cloud:spring-cloud-starter-alicloud-ans version 0.1.1. RELEASE.The content in
the pom.xml file is as follows:

<parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>1.5.13.RELEASE</version>
 <relativePath/>
</parent>

<properties>
 <spring-cloud.version>Edgware.SR4</spring-cloud.version>
 <spring-cloud-alibaba-cloud.version>0.1.1.RELEASE</spring-cloud-alibaba-cloud.version>
</properties>
<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-dependencies</artifactId>
 <version>${spring-cloud.version}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-alibaba-dependencies</artifactId>
 <version>${spring-cloud-alibaba-cloud.version}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

<dependencies>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-alicloud-ans</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-alicloud-context</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-netflix-zuul</artifactId>
 </dependency>
 <dependency>

Enterprise Distributed Application Service (EDAS) Application Development

19

Note: In contrast to using Spring Boot 2.x to integrate ANS based on Zuul, this method uses different
versions of Spring Boot, Spring Cloud, and org.springframework.cloud:spring-cloud-starter-alicloud-
ans, but follows the same main method and the same application.properties file.

Result verification

Locally verify the result.

Access the API provided by the backend service through Netflix Zuul. The result indicating a
successful call is returned.

Verify the result in EDAS.

Deploy the developed service gateway and service provider to EDAS and access the
backend service through the service gateway. The result indicating a successful call is
returned.

Develop applications in Dubbo

Dubbo overview

EDAS supports native Dubbo microservice framework. You need only add dependencies and modify
few configurations for the microservices developed in the Dubbo framework and deploy the
microservices onto EDAS, then the microservices can be managed, governed, monitored and

 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 </dependency>
</dependencies>

Enterprise Distributed Application Service (EDAS) Application Development

20

1.

2.

3.

4.

5.

6.

diagnosed on EDAS console.

Dubbo architecture

The following figure shows the Dubbo architecture.

The service running container starts, load, and runs provider services.
During startup, the provider registers with the registry.
During startup, the consumer registers with the registry.
The registry returns a list of provider addresses to the consumer.When changes occur, the
registry pushes changed data to the consumer based on persistent connection.
The consumer selects a provider from the list of provider addresses based on the software
load balancing algorithm.If the call fails, the consumer can call another provider.
The consumer and provider store the accumulated call count and call time in the memory,
and send statistical data to the monitoring center periodically (every minute).

Use Spring Boot to develop Dubbo
applications

Spring Boot simplifies the configuration and deployment of microservice applications. Meanwhile,
Nacos also provides the service registration and discovery as well as configuration management
functions. Together, both functions can help you improve development efficiency. This topic
describes how to use Spring Boot annotations to develop a Dubbo microservice sample application
based on Nacos.

Preparations
Before using Spring Boot to develop a Dubbo microservice application, complete the following tasks:

Enterprise Distributed Application Service (EDAS) Application Development

21

i.

ii.

●

●

Download Maven and set environment variables.

Download the latest version of Nacos Server.

To start Nacos Server, follow these steps.

Decompress the downloaded Nacos Server package.
Go to the nacos/bin directory and start Nacos Server.

For Linux/UNIX/Mac: Run the sh startup.sh -m standalone command.
For Windows: Double-click the startup.cmd file to run it.

Sample project

You can follow the steps described in this topic to build the project. Alternatively, you can directly
download the sample project used in this topic, or use Git to clone the project by running this
command: git clone https://github.com/aliyun/alibabacloud-microservice-demo.git.

This project contains many sample projects. The sample project used in this topic can be found in
alibabacloud-microservice-demo/microservice-doc-demo/dubbo-samples-spring-boot.

Create a service provider

Create a Maven project named spring-boot-dubbo-provider.

Add required dependencies to the pom.xml file.

The following uses Spring Boot 2.0.6.RELEASE as an example.

<dependencyManagement>
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-dependencies</artifactId>
<version>2.0.6.RELEASE</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>

Enterprise Distributed Application Service (EDAS) Application Development

22

Develop a Dubbo service provider.

All services in Dubbo are provided as interfaces.

In src/main/java, create a package named com.alibaba.edas.boot.

In com.alibaba.edas.boot, create an interface named IHelloService that contains a
SayHello method.

Create a class named IHelloServiceImpl in com.alibaba.edas.boot to implement
the interface.

Note: In Dubbo, the service annotation is
com.alibaba.dubbo.config.annotation.Service.

Configure the Dubbo service.

In src/main/resources, create a file named application.properties or

<artifactId>spring-boot-actuator</artifactId>
</dependency>
<dependency>
<groupId>org.apache.dubbo</groupId>
<artifactId>dubbo-spring-boot-starter</artifactId>
<version>2.7.3</version>
</dependency>
<dependency>
<groupId>com.alibaba.nacos</groupId>
<artifactId>nacos-client</artifactId>
<version>1.1.1</version>
</dependency>
</dependencies>

package com.alibaba.edas.boot;
public interface IHelloService {
String sayHello(String str);
}

package com.alibaba.edas.boot;
import com.alibaba.dubbo.config.annotation.Service;
@Service
public class IHelloServiceImpl implements IHelloService {
public String sayHello(String name) {
return "Hello, " + name + " (from Dubbo with Spring Boot)";
}
}

Enterprise Distributed Application Service (EDAS) Application Development

23

i.

ii.

application.yaml and open it.

In application.properties or application.yaml, add the following configuration
items.

Note:

You must specify values for the preceding three configuration items because they
have no defaults.

The value of dubbo.scan.basePackages is the name of the package with
code containing the annotations
com.alibaba.dubbo.config.annotation.Service and
com.alibaba.dubbo.config.annotation.Reference. Separate multiple
packages with commas (,).
The prefix of the value of dubbo.registry.address must start with nacos://
. The IP address and port that follow refer to the address and port of
Nacos Server, respectively. The IP address in the code example is a local
address. If you deploy Nacos Server on another machine, change it to
the actual IP address.

Develop and start the Spring Boot handler class DubboProvider.

Log on to the Nacos console at http://127.0.0.1:8848. In the left-side navigation pane, click
Services to view the list of providers.

You can see com.alibaba.edas.boot.IHelloService in the list of service providers and you can

Base packages to scan Dubbo Components (e.g @Service , @Reference)
dubbo.scan.basePackages=com.alibaba.edas.boot
dubbo.application.name=dubbo-provider-demo
dubbo.registry.address=nacos://127.0.0.1:8848

 package com.alibaba.edas.boot;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class DubboProvider {

public static void main(String[] args) {
SpringApplication.run(DubboProvider.class, args);
}

}

Enterprise Distributed Application Service (EDAS) Application Development

24

query the group and provider IP address of the service.

Create a service consumer

Create a Maven project named spring-boot-dubbo-consumer.

Add required dependencies to the pom.xml file.

The following uses Spring Boot 2.0.6.RELEASE as an example.

If you want to use Spring Boot 1.x, select Spring Boot 1.5.x. The corresponding
com.alibaba.boot:dubbo-spring-boot-starter version is 0.1.0.

Note: Spring Boot 1.x will reach end-of-life in August 2019. We recommend that you use a
later version to develop applications.

 <dependencyManagement>
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-dependencies</artifactId>
<version>2.0.6.RELEASE</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>

<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-actuator</artifactId>
</dependency>
<dependency>
<groupId>org.apache.dubbo</groupId>
<artifactId>dubbo-spring-boot-starter</artifactId>
<version>2.7.3</version>
</dependency>
<dependency>
<groupId>com.alibaba.nacos</groupId>
<artifactId>nacos-client</artifactId>
<version>1.1.1</version>
</dependency>

</dependencies>

Enterprise Distributed Application Service (EDAS) Application Development

25

Develop a Dubbo consumer

In src/main/java, create a package named com.alibaba.edas.boot.

In com.alibaba.edas.boot, create an interface named IHelloService that contains a
SayHello method.

Develop a Dubbo service call.

For example, you need to call a remote Dubbo service once in Controller. The code is as
follows.

Note: The Reference annotation is com.alibaba.dubbo.config.annotation.Reference.

Add the following configuration items in the application.properties/application.yaml
configuration file:

Note:

package com.alibaba.edas.boot;

public interface IHelloService {
String sayHello(String str);
}

 package com.alibaba.edas.boot;

import com.alibaba.dubbo.config.annotation.Reference;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;

@RestController
public class DemoConsumerController {

@Reference
private IHelloService demoService;

@RequestMapping("/sayHello/{name}")
public String sayHello(@PathVariable String name) {
return demoService.sayHello(name);
}
}

dubbo.application.name=dubbo-consumer-demo
dubbo.registry.address=nacos://127.0.0.1:8848

Enterprise Distributed Application Service (EDAS) Application Development

26

-

-

The preceding two configuration items have no defaults and must be specified.
The prefix of the value of dubbo.registry.address must start with nacos://. The IP
address and port that follow refer to the address and port of Nacos Server,
respectively. The IP address in the code example is a local address. If you deploy
Nacos Server on another machine, change it to the actual IP address.

Develop and start the Spring Boot handler class DubboConsumer.

Log on to the Nacos console at http://127.0.0.1:8848. Then, in the left-side navigation pane,
choose Services. On the Services page that appears, select Callers to view the list of callers.

You can see com.alibaba.edas.boot.IHelloService in the list. Also, you can view the group
and caller IP address of the service.

Verify the result

Deploy the application to EDAS

You can directly deploy the application that uses local Nacos as the registry to EDAS without making
any changes. This registry will be automatically replaced with the registry in EDAS.

Based on your actual needs, you can choose the type of cluster to deploy the application to, which is
mainly ECS cluster or Container Service Kubernetes cluster, as well as the deployment method, which
can be in the console or with tools. For more information, see Application deployment overview.

If you use the console for deployment, complete the following steps in your local application before
deploying it:

Add the following packaging plug-in configuration items to the pom.xml file.

package com.alibaba.edas.boot;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
@SpringBootApplication
public class DubboConsumer {
public static void main(String[] args) {
SpringApplication.run(DubboConsumer.class, args);
}
}

`curl http://localhost:8080/sayHello/EDAS`

`Hello, EDAS (from Dubbo with Spring Boot)`

Enterprise Distributed Application Service (EDAS) Application Development

27

Provider

Consumer

Execute mvn clean package to package your local program into a JAR file.

More information

<build>
<plugins>
<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
<executions>
<execution>
<goals>
<goal>repackage</goal>
</goals>
<configuration>
<classifier>spring-boot</classifier>
<mainClass>com.alibaba.edas.boot.DubboProvider</mainClass>
</configuration>
</execution>
</executions>
</plugin>
</plugins>
</build>

<build>
<plugins>
<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
<executions>
<execution>
<goals>
<goal>repackage</goal>
</goals>
<configuration>
<classifier>spring-boot</classifier>
<mainClass>com.alibaba.edas.boot.DubboConsumer</mainClass>
</configuration>
</execution>
</executions>
</plugin>
</plugins>
</build>

Enterprise Distributed Application Service (EDAS) Application Development

28

In addition to Spring Boot, you can also develop Dubbo microservice applications by using
XML. For more information, see Host Dubbo applications in EDAS.

If you are using edas-dubbo-extension, see Host Dubbo applications in EDAS with EDAS-
Dubbo-extension. With edas-dubbo-extension, you are unable to use related capabilities
provided by EDAS, such as Dubbo service governance. Therefore, we recommend that you
migrate to Nacos instead.

Develop applications in HSF

HSF overview

High-speed Service Framework (HSF) is a distributed RPC service framework widely used within the
Alibaba Group.

HSF connects different business systems, decoupling the implementation of the systems from each
other.HSF unifies service publishing/call methods from the perspective of distributed applications,
helping you conveniently and quickly develop distributed applications. It provides public function
modules, which avoid complex technical details in distributed systems, such as remote
communication, serialization implementation, performance loss, and synchronous/asynchronous call
method implementation.

HSF architecture

As a client-side RPC framework, HSF itself has no server cluster. All HSF service calls are point-to-
point between the consumer and the provider.However, HSF must work with the following external
systems to implement the complete distributed service system.

Enterprise Distributed Application Service (EDAS) Application Development

29

Address registration center

HSF relies on the address registration center for service discovery. Without the address
registration center, HSF can only make simple point-to-point calls.The service provider
cannot advertise its service information to others. The service consumer may know which
services to call, but cannot obtain information about the instances providing these services.In
this case, the address registration center serves as a medium for the discovery of service
information.The role of address registration center is played by ConfigServer.

Persistent configuration center

The persistent configuration center is used to store various governance rules of HSF services.
At startup, the HSF client subscribes necessary service governance rules, such as routing
rules, grouping rules, and weight rules, from the persistent configuration center to intervene
in the address selection logic of the calling procedure based on the rules.The role of
persistence configuration center is played by Diamond.

Metadata storage center

Metadata refers to the list of methods, parameter structure, and other information related to
HSF services. Metadata does not affect the calling procedure of HSF. Therefore, the metadata
storage center is not required.However, to ensure convenient service maintenance, at startup
the HSF client submits the metadata to the metadata storage center for further
maintenance.The role of metadata storage center is played by Redis.

Functions

As a distributed RPC framework, HSF supports multiple service calling methods:

Synchronous calls

By default, the HSF client consumes services by synchronous calls, and the client’s codes
must synchronously wait for the returned results of calls.

Asynchronous calls

For the client that calls HSF services, it is not always necessary to synchronously wait for the
returned results of calls.For such services, HSF supports asynchronous calls, releasing clients
from being congested synchronously in HSF calling operations.There are two kinds of
asynchronous HSF calls:

*Future call: The client obtains the returned results of calls by
HSFResponseFuture.getResponse(int timeout) when needed.

Enterprise Distributed Application Service (EDAS) Application Development

30

● Callback call: The callback call utilizes the callback mechanism provided by HSF.
When specified HSF services are consumed and the results are returned, the HSF
framework calls the HSFResponseCallback API used by the consumer to obtain the
call results. The client obtains the results by using the callback notification.

Generic calls

For a typical HSF call, the HSF client has to perform a programming call with the API of the
second party library of the service to obtain the returned results.In contrast, generic call
means to initiate HSF call and obtain returned results, independent of the second party
library of the service.For some platform-based products, generic calls can effectively reduce
their dependence on second party libraries and support lightweight system running.

HTTP calls

HSF can advertise service information over HTTP, so that non-Java clients can call HSF
services over HTTP.

Trace Filter extension

HSF, designed with a built-in call filter, can actively find and integrate the user’s call filter
extension point into HSF trace, enhancing the convenience of HSF request extension.

Application development methods

Under HSF, you can use Ali-Tomcat and Pandora Boot to develop applications.

Ali-Tomcat: Relying on Ali-Tomcat and Pandora, this method provides complete HSF
functions, including service registration and discovery, implicit parameter passing,
asynchronous call, generic call, trace Filter extension, rate limiting and degradation, and
distributed tracing.In this method, applications must be deployed with WAR packages.

Pandora Boot: Relying on Pandora, this method provides complete HSF functions, including
service registration and discovery, implicit parameter passing, asynchronous call, generic call,
trace Filter extension, rate limiting and degradation, and distributed tracing.Applications can
be packaged and deployed as JAR packages that run independently.

Configure the lightweight configuration

Enterprise Distributed Application Service (EDAS) Application Development

31

-

-

-

-

-

-

center

The lightweight configuration center allows developers to discover, register, and query services
during development, debugging, and testing.This module does not belong to the official
environment of EDAS. You must download the installation package and complete installation before
using it.

Within a company, you generally only need to install the lightweight configuration center on one ECS
instance and bind specific hosts on other development computers.The following specifies the steps
for installation and use.

1. Download the lightweight configuration center

Check that the environment requirements are met.

Check that the environment variable JAVA_HOME points to JDK 1.6 or later.

Check that port 8080 and port 9600 are unused.

Because port 8080 and port 9600 are used for starting the EDAS configuration
center, we recommend that you use a dedicated ECS instance (for example, a test
ECS instance) to start the EDAS configuration center.If the whole test is conducted
on the same ECS instance, change the port of the Web project to another unused
port.

Download the EDAS configuration center installation package and decompress it.

If required, you can download a previous version:

January 2018 version
August 2017 version
July 2017 version
March 2017 version
December 2016 version

2. Start the lightweight configuration center

Go to the decompressed edas-config-center directory to start the configuration center.

Windows operating system: Double-click startup.bat.

Enterprise Distributed Application Service (EDAS) Application Development

32

-

-

-

UNIX operating system: Run the sh startup.sh command in the current directory.
3. Configure hosts

To use the lightweight configuration center on development ECS instances, point the jmenv.tbsite.net
domain on the local DNS (hosts file) to the IP address of the ECS instance that starts the EDAS
configuration center.

The path of the hosts file is as follows:

Windows operating system: C:\Windows\System32\drivers\etc\hosts

UNIX operating system: /etc/hosts

Example

If you start the EDAS configuration center on the ECS instance whose IP address is 192.168.1.100, add
the following line to the hosts files on all development ECS instances:

192.168.1.100 jmenv.tbsite.net

Result verification

After binding a host to the lightweight configuration center, open the browser, enter
jmenv.tbsite.net:8080 in the address bar, and press Enter.

Then, the homepage of the lightweight configuration center is displayed.

If the homepage is displayed normally, you have configured the lightweight configuration
center successfully.
If the homepage is not displayed, troubleshoot the problem by going backwards step by
step.

If you encounter a problem when configuring the lightweight configuration center, see Lightweight
configuration center problems for troubleshooting.

Ali-Tomcat Developer Guide

Enterprise Distributed Application Service (EDAS) Application Development

33

Ali-Tomcat overview

Ali-Tomcat is a container that EDAS relies on to run services. It integrates service publishing,
subscription, service call tracing, and other core functions.You can deploy applications in this
container in both development and runtime environments.

Pandora is a lightweight isolation container, namely taobao-hsf.sar.This container is used to isolate
dependencies between applications and middleware products and between middleware
products.EDAS Pandora integrates plugins that implement service discovery, configuration pushing,
service call tracing, and other middleware products.By using these plugins, you can monitor, process,
trace, analyze, maintain, and manage EDAS applications.

If you have not used HSF, do not use Ali-Tomcat to develop EDAS applications.

Note: On EDAS, Ali-Tomcat is only available for web applications in WAR format.

Prepare development tools

Install Ali-Tomcat and Pandora

Ali-Tomcat and Pandora are containers that EDAS relies on to run services. They integrate service
publishing, subscription, service call tracing, and other core functions. Applications must be published
on such containers in both development and runtime environments.

Note: Use JDK 1.7 or later.

Download Ali-Tomcat and decompress the downloaded archive to the appropriate directory
(for example, d:\work\tomcat).

Download Pandora Container and decompress the downloaded archive to the Deploy
directory where Ali-Tomcat is saved (which is d:\work\tomcat\deploy\ in this example).

View the Pandora Container directory structure.

In Linux systems, run the tree -L 2 deploy/ command in the relevant path to view
the directory structure.

Enterprise Distributed Application Service (EDAS) Application Development

34

In a Windows system, directly navigate to the appropriate path to view the
directory structure.

If you encounter a problem when installing or using Ali-Tomcat or Pandora, see Ali-Tomcat or
Pandora to troubleshoot and resolve the problem.

Configure the development environment

To develop an application locally, use either Eclipse or IntelliJ IDEA.This topic describes how to
configure Eclipse and IntelliJ IDEA development environments.

Configure the Eclipse environment

To configure Eclipse, you must download the Tomcat4E plug-in and save it to the directory where
Pandora Container is stored, which was created when you installed Ali-Tomcat. After configuring
Eclipse, you can directly publish and debug local code in this environment.The operations are as
follows:

Download the Tomcat4E plug-in and decompress it to a local directory (such as
d:\work\tomcat4e).

d:\work\tomcat > tree -L 2 deploy/
deploy/
└── taobao-hsf.sar
├── META-INF
├── lib
├── log.properties
├── plugins
├── sharedlib
└── version.properties

Enterprise Distributed Application Service (EDAS) Application Development

35

The package contains the following items:

Open Eclipse and choose Help > Install New Software from the menu bar.

In the Install dialog box, click Add to the right of the “Work with” area. In the Add
Repository dialog box that appears, click Local.In the dialog box that appears, select the
directory where the decompressed Tomcat4E plug-in resides (d:\work\tomcat4e\ in this
example) and click OK.

Return to the Install dialog box, and click Select All and then Next.

Follow the prompts on the interface to perform the subsequent steps.After installing the
Tomcat4E plug-in, you must restart Eclipse to make the plug-in take effect.

Restart Eclipse.

After the restart, choose Run As > Run Configurations from the Eclipse menu.

Select AliTomcat Webapp in the left-side navigation pane, and click the New launch
configuration icon at the top.

On the page that appears, click the AliTomcat tab. Then, in the taobao-hsf.sar Location
area, click Browse and select the local path for Pandora, such as
d:\work\tomcat\deploy\taobao-hsf.sar.

Click Apply or Run to complete the configuration.

Next time, you can start this project directly, without the need to configure it again.

View the output information concerning project operation. If the following Pandora

Enterprise Distributed Application Service (EDAS) Application Development

36

Container information is displayed, you have configured the Eclipse development
environment successfully.

Configure the IntelliJ IDEA environment

Note: At present, the IntelliJ IDEA commercial edition, but not the community edition, is
supported.For this reason, ensure that the IntelliJ IDEA commercial edition is installed locally.

Run IntelliJ IDEA.

In the menu bar, choose Run > Edit Configuration.

On the Run/Debug Configuration page, choose Defaults > Tomcat Server > Local in the
left-side navigation pane.

Configure AliTomcat.

On the right of the page, click the Server tab. In the Application Server area, click
Configure.

On the Application Server page, click + in the upper-right corner. In the Tomcat
Server dialog box, set Tomcat Home and Tomcat base directory, then click OK.

Set Tomcat Home to the local directory where Ali-Tomcat was decompressed.
Then, Tomcat base directory is automatically set to the same path.

Enterprise Distributed Application Service (EDAS) Application Development

37

-

-

-

From the drop-down list in the Application Server area, select the configured Ali-Tomcat
instance.

In the VM Options area, set the JVM startup parameter to the Pandora path, such as -
Dpandora.location=d:\work\tomcat\deploy\taobao-hsf.sar.

Note: Replace d:\work\tomcat\deploy\taobao-hsf.sar with the actual local path where
Pandora was installed.

Click Apply or OK to complete the configuration.

Develop applications with EDAS SDK

Quick start

This topic describes how to use EDAS SDK to quickly develop applications in HSF.

Download demo projects

Code described in this topic can be obtained from the official demo.

Download Demo projects.

Decompress the downloaded package and locate the carshop folder, where you can see the
following Maven project subfolders: itemcenter-api, itemcenter, and detail.

itemcenter-api: provides the API definition.
itemcenter: specifies the service provider application.
detail: specifies the service consumer application.

Note: Use JDK 1.7 or later.

Define service APIs

HSF services are implemented based on APIs. After an API is defined, the provider can implement a
specific service over this API. The consumer also subscribes to the service over this API.

In the itemcenter-api project in demo, the service API

Enterprise Distributed Application Service (EDAS) Application Development

38

com.alibaba.edas.carshop.itemcenter.ItemService is defined and has the following content:

The service API provides two methods: getItemById and getItemByName.

Develop provider services

The provider implements service APIs to provide specific services.Because the Spring framework is
used for development, you also need to configure service attributes in the .xml file.

Note: The itemcenter folder in the demo project contains the sample code of a provider service.

Implement a service API

Implement a service API by referring to the example in the ItemServiceImpl.java file:

Configure service attributes

The preceding example implements the service API com.alibaba.edas.carshop.itemcenter.ItemService
and returns an Item object to both methods.After developing code, configure general items and add
Maven dependencies in the web.xml file. Then, use the <hsf /> tag in the Spring configuration file to
register and publish the service.This procedure is as follows:

Add the following Maven dependency to the pom.xml file:

public interface ItemService {
public Item getItemById(long id);
public Item getItemByName(String name);
}

package com.alibaba.edas.carshop.itemcenter;
public class ItemServiceImpl implements ItemService {

@Override
public Item getItemById(long id) {
Item car = new Item();
car.setItemId(1l);
car.setItemName("Mercedes Benz");
return car;
}
@Override
public Item getItemByName(String name) {
Item car = new Item();
car.setItemId(1l);
car.setItemName("Mercedes Benz");
return car;
}
}

Enterprise Distributed Application Service (EDAS) Application Development

39

Add the HSF-specific Spring configuration items to the hsf-provider-beans.xml file.

The preceding example uses basic configuration items for demonstration purposes. To add

<dependencies>
<! -- Add Servlet dependency -->
<dependency>
<groupId>javax.servlet</groupId>
<artifactId>servlet-api</artifactId>
<version>2.5</version>
<scope>provided</scope>
</dependency>
<! -- Add Spring dependency -->
<dependency>
<groupId>com.alibaba.edas.carshop</groupId>
<artifactId>itemcenter-api</artifactId>
<version>1.0.0-SNAPSHOT</version>
</dependency>
<! -- Add service API dependency -->
<dependency>
<groupId>org.springframework</groupId>
<artifactId>spring-web</artifactId>
<version>2.5.6 (or later)</version>
</dependency>
<! -- Add edas-sdk dependency -->
<dependency>
<groupId>com.alibaba.edas</groupId>
<artifactId>edas-sdk</artifactId>
<version>1.5.0</version>
</dependency>
</dependencies>

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:hsf="http://www.taobao.com/hsf"
xmlns="http://www.springframework.org/schema/beans"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.taobao.com/hsf
http://www.taobao.com/hsf/hsf.xsd" default-autowire="byName">
<! -- Define the implementation of the service -->
<bean id="itemService" class="com.alibaba.edas.carshop.itemcenter.ItemServiceImpl" />
<! -- Use the hsf:provider tag to provide a service provider. -->
<hsf:provider id="itemServiceProvider"
<! -- Use the interface attribute to indicate that the service is an implementation of the class. -->
interface="com.alibaba.edas.carshop.itemcenter.ItemService"
<! -- Spring object implemented by the service -->
ref="itemService"
<! -- Version of the published service, which is user-defined and is 1.0.0 by default. -->
version="1.0.0"
</hsf:provider>
</beans>

Enterprise Distributed Application Service (EDAS) Application Development

40

other configuration items, refer to the following list of provider service attributes.

List of provider service attributes

Example of configuration of provider service attributes

Attribute Description

interface
This string-format attribute is required and
indicates the service API provided for external
applications.

version
This string-format attribute is optional and
indicates the version of the service, which is
1.0.0 by default.

clientTimeout

This attribute applies to all methods in the
API. However, if the client sets a timeout
period for a method using the
MethodSpecials attribute, the timeout period
configured on the client prevails over that
defined for the method.Other methods are
not affected by this attribute and still use the
timeout period configured on the server.

serializeType
This attribute is optional and indicates the
serialization type. Its value is in string format
and can be hessian (default) or java.

corePoolSize
This attribute is used to repurpose part of the
public thread pool as the core thread pool
dedicated to this service.

maxPoolSize
This attribute is used to repurpose part of the
public thread pool as the maximum thread
pool dedicated to this service.

enableTXC This attribute enables distributed transaction
GTS.

ref
This ref-format attribute is required and
indicates the ID of the Spring bean to be
published as an HSF service.

methodSpecials

This attribute is optional and used to
configure a timeout period (in ms) for each
method. With this attribute, different timeout
periods can be applied to different methods
in an API.This timeout attribute takes
precedence over clientTimeout but defers to
MethodSpecials on the client.

<bean id="impl" class="com.taobao.edas.service.impl.SimpleServiceImpl" />
<hsf:provider id="simpleService" interface="com.taobao.edas.service.SimpleService"
ref="impl" version="1.0.1" clientTimeout="3000" enableTXC="true"
serializeType="hessian">

Enterprise Distributed Application Service (EDAS) Application Development

41

1.

2.

Develop consumer services

Service subscription for consumers is coded in two steps:

Define a bean using the <hsf:consumer/> tag in the Spring configuration file;
Retrieve the bean from the Spring context to locate the service.

Note: The detail folder in the demo project provides the sample code of a consumer service.

Configure service attributes

Similar to that for providers, service attribute configuration for consumers consists of the Maven
dependency configuration and Spring configuration.

Add the Maven dependency to the pom.xml file.

The Maven dependency configuration of a consumer is the same as that of a provider. For
more information, see Configure service attributes in “Develop provider services.”

Add the HSF-specific Spring configuration items to the hsf-consumer-beans.xml.

Add the consumer definition to the Spring configuration file. The HSF framework subscribes
to services in the service center according to the configuration file.

<hsf:methodSpecials>
<hsf:methodSpecial name="sum" timeout="2000" />
</hsf:methodSpecials>
</hsf:provider>

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:hsf="http://www.taobao.com/hsf"
xmlns="http://www.springframework.org/schema/beans"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.taobao.com/hsf
http://www.taobao.com/hsf/hsf.xsd" default-autowire="byName">
<! -- Example of service consumption-->
<hsf:consumer
<! -- Indicates the Bean ID for retrieving the consumer object by code injection -->
id="item"
<! -- Indicates the service name that corresponds to the service name of the service provider. HSF
queries and subscribes to services according to the combined criteria of interface and version. -->
interface="com.alibaba.edas.carshop.itemcenter.ItemService"
<! -- Indicates the version that corresponds to the version of the service provider. HSF queries and
subscribes to services according to the combined criteria of interface and version. -->
version="1.0.0"
</hsf:consumer>
</beans>

Enterprise Distributed Application Service (EDAS) Application Development

42

Configure service calls

You can configure a service call by referring to the example in the StartListener.java file:

The preceding example uses basic configuration items for demonstration purposes. To add other
configuration items, refer to the following list of service attributes.

List of consumer service attributes

public class StartListener implements ServletContextListener{

@Override
public void contextInitialized(ServletContextEvent sce) {
ApplicationContext ctx = WebApplicationContextUtils.getWebApplicationContext(sce.getServletContext());
// Retrieve the subscribed services according to the bean ID "item" in Spring configurations.
final ItemService itemService = (ItemService) ctx.getBean("item");

// Call the getItemById method of ItemService.
System.out.println(itemService.getItemById(1111));
// Call the getItemByName method of ItemService.
System.out.println(itemService.getItemByName("myname is le"));

}
}

Attribute Description

interface This string-format attribute is required and
indicates the API of the service to be called.

version
This string-format attribute is optional and
indicates the version of the service to be
called, which is 1.0.0 by default.

methodSpecials

This attribute is optional and used to
configure a timeout period (in ms) for each
method.With this attribute, you can apply
different timeout periods to different
methods in an API. This timeout attribute
takes precedence over the timeout setting of
the provider.

target

This attribute is primarily used in unit testing
and development environments to manually
specify the address of the service provider.To
specify the address of the provider based on
the target service address information pushed
from the configuration center, you can specify
-Dhsf.run.mode=0 on the consumer.

connectionNum

This attribute is optional and set to 1 by
default. It indicates the maximum number of
connections to the server.To improve TPS, set
this attribute to a larger value to minimize the
delay of transferring small amounts of data.

Enterprise Distributed Application Service (EDAS) Application Development

43

Configuration example of consumer service attributes

Publish services

After coding, API development, and service configuration, you can directly run the service using Ali-
Tomcat in Eclipse or IntelliJ IDEA (for more information, see Configure the Eclipse development
environment and Configure the IDEA development environment in Prepare development tools.

The following table lists additional JVM startup parameters that you can configure in the
development environment to change HSF behaviors:

clientTimeout

This attribute indicates the same timeout
period (in ms) set for all methods in an API by
the consumer.Timeout settings are sorted in
descending order of priority as follows:
consumer MethodSpecials, consumer API
level, provider MethodSpecials, and provider
API level.

asyncallMethods

This list-format attribute is optional and
indicates that the asynchronously called
method name list and asynchronous calls are
required for calling the service.This attribute is
an empty set by default, which indicates that
all methods are called synchronously.

maxWaitTimeForCsAddress

This attribute indicates the time during which
the thread is blocked to wait for address push
when a service is subscribed. Otherwise, the
address may not be found due to empty
address when the service is called.If the
address is not pushed before the blocking
time expires, the thread no longer waits and
continues initializing subsequent content.
Note: This parameter is only used to call a
service during application initialization.As this
parameter extends the startup time, we
recommend that you do not use this
parameter when no other services need to be
called.

<hsf:consumer id="service" interface="com.taobao.edas.service.SimpleService"
version="1.1.0" clientTimeout="3000"
target="10.1.6.57:12200?_TIMEOUT=1000" maxWaitTimeForCsAddress="5000">
<hsf:methodSpecials>
<hsf:methodSpecial name="sum" timeout="2000" ></hsf:methodSpecial>
</hsf:methodSpecials>
</hsf:consumer>

Attribute Description

-Dhsf.server.port Indicates the port bound to the HSF startup
service, which is port 12200 by default.

Enterprise Distributed Application Service (EDAS) Application Development

44

Query HSF services in the development environment

During development and debugging, if your service is registered and discovered in the lightweight
configuration center, you can query the services provided or called by an application in the EDAS
console.

The following assumes that you start the EDAS configuration center on an ECS instance whose IP
address is 192.168.1.100.

Go to http://192.168.1.100:8080/.

In the left-side navigation pane, click Service List. On the page that is displayed, enter the
service name, service group name, or IP address to search for the service, and view the
service provider and caller.

Note: After the configuration center is started, the address of the first NIC is the service
discovery address by default. If the ECS instance of the developer has multiple INCs, set the
SERVER_IP variable in the startup script to explicitly bind an address.

Common query cases

Provider list page

Enter the IP address in the search condition box and click Search to query the services
provided by the instance with the entered IP address.

Enter the service name or service group in the search condition box and click Search to query
which IP addresses provide the service.

-Dhsf.serializer Indicates the serialization type of HSF, which
is hessian by default.

-Dhsf.server.max.poolsize
Indicates the maximum size of the thread
pool of the HSF provider, which is 600 by
default.

-Dhsf.server.min.poolsize Indicates the minimum size of the thread pool
of the HSF provider.The default value is 50.

-DHSF_SERVER_PUB_HOST Indicates the exposed IP address, which uses
the value of -Dhsf.server.ip if not configured.

-DHSF_SERVER_PUB_PORT

Indicates the exposed port that must be
monitored locally and authorized for access. It
uses the value of -Dhsf.server.port by default
or port 12200 if -Dhsf.server.port is not
configured.

Enterprise Distributed Application Service (EDAS) Application Development

45

Caller list page

Enter the IP address in the search condition box and click Search to query the services called
by the instance with the entered IP address.

Enter the service name or service group in the search condition box and click Search to query
what IP addresses call the service.

Develop advanced features

After following the steps outlined in Quick start, you have developed the basic features of an HSF
application. The following section describes how to develop the advanced features of an HSF
application based on these basic features.

Download Demos.

Implicit parameter passing (currently, only string-based parameter
passing is supported)

Implicit parameter passing is generally used to replace API-based passing for passing simple KV data
and it is similar to cookie.

Pass a single parameter

Service consumer:

RpcContext.getContext().setAttachment("key", "args test");

Service provider:

String keyVal=RpcContext.getContext().getAttachment("key");

Pass multiple parameters

Service consumer:

Map<String,String> map=new HashMap<String,String>();
map.put("param1", "param1 test");
map.put("param2", "param2 test");
map.put("param3", "param3 test");
map.put("param4", "param4 test");
map.put("param5", "param5 test");
RpcContext rpcContext = RpcContext.getContext();
rpcContext.setAttachments(map);

Enterprise Distributed Application Service (EDAS) Application Development

46

Service provider:

Note: Implicit parameter passing is only valid for a single call. When the consumer call
returns the result, the information in RpcContext is cleared automatically.

Asynchronous calls

Asynchronous calls can be made using either the callback or the future method.

Callback method

If the callback method is configured for the consumer, you must configure a listener that
implements the HSFResponseCallback API.After the result is returned, HSF calls the method
in HSFResponseCallback.

Note: The listener of the HSFResponseCallback API must not be an internal class. Otherwise,
the Pandora classloader returns an error during loading.

XML configuration:

The AsynABTestCallbackHandler class implements the HSFResponseCallback API.The
DemoApi API has the ayncTest method.

Sample code

Map<String,String> map=rpcContext.getAttachments();
Set<String> set=map.keySet();
for (String key : set) {
System.out.println("map value:"+map.get(key));
}

<hsf:consumer id="demoApi" interface="com.alibaba.demo.api.DemoApi"
version="1.1.2" >
<hsf:asyncallMethods>
<hsf:method name="ayncTest" type="callback"
listener="com.alibaba.ifree.hsf.consumer.AsynABTestCallbackHandler" />
</hsf:asyncallMethods>
</hsf:consumer>

public void onAppResponse(Object appResponse) {
//Retrieve the value after the asynchronous call.
String msg = (String)appResponse;
System.out.println("msg:"+msg);
}

Enterprise Distributed Application Service (EDAS) Application Development

47

●

●

Note:

Method names are used to identify methods. Therefore, overloaded methods are
not differentiated.Methods sharing the same name are set using the same call
method.
HSF calls cannot be initiated in a call.Otherwise, the I/O thread is suspended and
cannot be recovered.

Future method

If the future method is configured for the consumer, after you make a call, the returned
result is retrieved through public static Object getResponse(long timeout) in
HSFResponseFuture.

XML configuration:

The sample code is as follows:

Asynchronous processing of a single call:

Concurrent processing of multiple calls:

To process multiple tasks concurrently, retrieve and store the future object and then
reuse it after the call.

Concurrent call within a method:

<hsf:consumer id="demoApi" interface="com.alibaba.demo.api.DemoApi" version="1.1.2" >
<hsf:asyncallMethods>
<hsf:method name="ayncTest" type="future" />
</hsf:asyncallMethods>
</hsf:consumer>

//Initiate a call.
demoApi.ayncTest();
// Process the service.
...
//Directly obtain the message. (If the result is not required, you can skip this step.)
String msg=(String) HSFResponseFuture.getResponse(3000);

//Define a set.
List<HSFFuture> futures = new ArrayList<HSFFuture>();

//Initiate a call.
demoApi.ayncTest();

Enterprise Distributed Application Service (EDAS) Application Development

48

-

Generic calls

Generic calls can combine APIs, methods, and parameters for remote procedure calls (RPCs) without
relying on any service APIs.

Step 1: Add the generic attribute to the consumer’s XML configuration.

Note: “generic” indicates generic parameters, “true” indicates that generic parameters are
supported, and “false” (default) indicates that generic parameters are not supported.

DemoApi API method:

Step 2: Obtain demoApi to enforce conversion to a generic service.

Import the generic service API

import com.alibaba.dubbo.rpc.service.GenericService

Retrieve generic objects

XML loading method

//Retrieve the future object.
HSFFuture future=HSFResponseFuture.getFuture();
futures.add(future);
//Continue calling other services (asynchronous calling is used).
HSFFuture future=HSFResponseFuture.getFuture();
futures.add(future);

// Process the service.
...

//Retrieve and process the data.
for (HSFFuture hsfFuture : futures) {
String msg=(String) hsfFuture.getResponse(3000);
//Process corresponding data.
...
}

<hsf:consumer id="demoApi" interface="com.alibaba.demo.api.DemoApi" generic="true"/>

public String dealMsg(String msg);
public GenericTestDO dealGenericTestDO(GenericTestDO testDO);

//In a Web project, you can force service conversion after injection using a Spring bean. This

Enterprise Distributed Application Service (EDAS) Application Development

49

Code subscription method

Step 3: Implement generic APIs.

Description of API parameters:

methodName: indicates the name of the method to be called.

parameterTypes: indicates the type of the parameters of the method to be called.

args: indicates the parameter value to be passed.

Step 4: Initiate generic calls.

String-type parameters

Object parameters, which must be the same on the provider and consumer

example is a unit test and therefore must load the configuration file.
ClassPathXmlApplicationContext consumerContext = new
ClassPathXmlApplicationContext("hsf-generic-consumer-beans.xml");
//The forced conversion API is GenericService.
GenericService svc = (GenericService) consumerContext.getBean("demoApi");

HSFApiConsumerBean consumerBean = new HSFApiConsumerBean();
consumerBean.setInterfaceName("com.alibaba.demo.api.DemoApi");
consumerBean.setGeneric("true"); // Set generic to true.
consumerBean.setVersion("1.0.0");
consumerBean.init();
// The forced conversion API is GenericService.
GenericService svc = (GenericService) consumerBean.getObject();

Object $invoke(String methodName, String[] parameterTypes, Object[] args) throws GenericException;

svc.$invoke("dealMsg", new String[] { "java.lang.String" }, new Object[] { "hello" })

// Construct the entity object GenericTestDO, which has the ID and name attributes.
GenericTestDO genericTestDO = new GenericTestDO();
genericTestDO.setId(1980l);
genericTestDO.setName("genericTestDO-tst");
// Use PojoUtils to generate the POJO description of the second party library.
Object comp = PojoUtils.generalize(genericTestDO);
// Call the service in generic mode.

Enterprise Distributed Application Service (EDAS) Application Development

50

1.

2.

3.

Trace Filter extension

Download Demos.

Basic APIs

Implementation procedure

Implement ServerFilter to enable interception on the provider.
Implement ClientFilter to enable interception on the consumer.
Use the standard META-INF/services/com.taobao.hsf.invocation.filter.RPCFilter file to
register Filter.

Implementation example

svc.$invoke("dealGenericTestDO",new String[] { "com.alibaba.demo.generic.domain.GenericTestDO" },
new Object[] { comp });

public interface ServerFilter extends RPCFilter {
}

public interface ClientFilter extends RPCFilter {
}

public interface RPCFilter {

ListenableFuture<RPCResult> invoke(InvocationHandler invocationHandler, Invocation invocation) throws
Throwable;

void onResponse(Invocation invocation, RPCResult rpcResult);

}

 import com.taobao.hsf.invocation.Invocation;
import com.taobao.hsf.invocation.InvocationHandler;
import com.taobao.hsf.invocation.RPCResult;
import com.taobao.hsf.invocation.filter.ServerFilter;
import com.taobao.hsf.util.PojoUtils;
import com.taobao.hsf.util.concurrent.ListenableFuture;

public class HSFServerFilter implements ServerFilter {
public ListenableFuture<RPCResult> invoke(InvocationHandler invocationHandler, Invocation invocation) throws
Throwable {
//process args
String[] sigs = invocation.getMethodArgSigs();
Object [] args = invocation.getMethodArgs();

System.out.println("#### intercept request");

Enterprise Distributed Application Service (EDAS) Application Development

51

Configure META-INF/services/com.taobao.hsf.invocation.filter.RPCFilter

Running effect

intercept response

Optional Filter

In some scenarios, if you have customized the Filter but want to apply it only to certain services, use
an optional Filter.To do this, annotate Filter with @Optional, as shown below:

for(String sig : sigs) {
System.out.print(sig);
System.out.print(";");
}
System.out.println();

for(Object arg : args) {
System.out.println(PojoUtils.generalize(arg));
System.out.print(";");
}
System.out.println();

return invocationHandler.invoke(invocation);
}

public void onResponse(Invocation invocation, RPCResult rpcResult) {
System.out.println("#### intercept response");
Object resp = rpcResult.getHsfResponse().getAppResponse();
System.out.println(PojoUtils.generalize(resp));
}

}

com.alibaba.edas.carshop.itemcenter.filter.HSFServerFilter

intercept request
long
1111

{itemId=1, itemName=Mercedes Benz, class=com.alibaba.edas.carshop.itemcenter.Item}

```
@Optional
@Name("HSFOptionalServerFilter")
public class HSFOptionalServerFilter implements ServerFilter {
public ListenableFuture<RPCResult> invoke(InvocationHandler invocationHandler,

Enterprise Distributed Application Service  (EDAS) Application Development

52



When a specific service needs to use this Filter, simply advertise the service on the configured bean,
as shown below:
 

In the preceding configuration, all the ServerFilters without the @Optional modifier, including
HSFOptionalServerFilter and NoFilter, are used. The name of HSFOptionalServerFilter comes from the
@Name modifier configured in the corresponding Filter.
 

 
Perform the unit test
 
There are two unit test methods in the test environment.
 
Method 1: Publish and subscribe to services using the LightApi code
 
Method 2: Publish and subscribe to services using XML configuration
 
For demos, click Demo download.
  
Method 1: Publish and subscribe to services using the LightApi
code
 

 
Add LightApi dependency to Maven.

Invocation invocation) throws Throwable {
System.out.println("#### HSFOptionalServerFilter intercept request");
return invocationHandler.invoke(invocation);
}

public void onResponse(Invocation invocation, RPCResult rpcResult) {
System.out.println("#### HSFOptionalServerFilter intercept response");
}
}
```

 <bean class="com.taobao.hsf.app.spring.util.HSFSpringProviderBean">
<property name="serviceInterface" value="com.alibaba.middleware.hsf.guide.api.service.OrderService" />
<property name="version" value="1.0.0" />
<property name="group" value="HSF" />
<property name="includeFilters">
<list>
<value>HSFOptionalServerFilter</value>
<value>NoFilter</value>
</list>
</property>
<property name="target" ref="orderService" />
</bean>

If the Filter with this name cannot be found, the system displays a prompt, but you still can start or run this Filter.

Enterprise Distributed Application Service (EDAS) Application Development

53

Note: Please use 1.0.5 or later version of LightApi, or hsf: can not load class
{com.taobao.hsf.address.AddressService} after all phase error may appear.

Create ServiceFactory.

The Pandora address must be set, and the parameter indicates the directory where the SAR
package is located.If the SAR package address is
/Users/Jason/Work/AliSoft/PandoraSar/DevSar/taobao-hsf.sar the parameter is as follows:

Use codes to publish and subscribe to the service.

Method 2: Publish and subscribe to services using XML
configuration

Complete the XML configuration of HSF.

 <dependency>
<groupId>com.alibaba.hsf</groupId>
<artifactId>LightApi</artifactId>
<version>1.0.0</version>
</dependency>

private static final ServiceFactory factory =
ServiceFactory.getInstanceWithPath("/Users/Jason/Work/AliSoft/PandoraSar/DevSar");

 // Publish the service (you can skip this step if the publisher already exists.)
factory.provider("helloProvider")// This parameter is an identifier. After initialization, you can call
provider("helloProvider") to retrieve the corresponding service.
.service("com.alibaba.edas.unit.service.UnitTestService")// Fully-Qualified Class Name (FQCN) of the API
.version("1.0.0")// Version
.impl(new UnitTestServiceImpl())// Corresponding service implementation
.publish();// Publish the service by calling at least service() and version().

// Consume the service.
factory.consumer("helloConsumer")// This parameter is an identifier. After initialization, you can call
consumer("helloConsumer") to retrieve the corresponding service.
.service("com.alibaba.edas.unit.service.UnitTestService")// FQCN of the API
.version("1.0.0")// Version
.subscribe();
factory.consumer("helloConsumer").sync();// Synchronously wait for address push for up to 6 seconds.
UnitTestService log4jService = (UnitTestService) factory.consumer("helloConsumer").subscribe();//
Retrieve the corresponding service using the ID. The subscribe() method returns the corresponding API.
// Call the service method.
System.out.println("bean -> msg rec success:-"+log4jService.print());

Enterprise Distributed Application Service (EDAS) Application Development

54

Load the configuration file using code.

Pandora Boot Developer Guide

Pandora Boot overview

Derived from Pandora, Pandora Boot is more lightweight.

Pandora Boot can directly start a Pandora environment in IDE based on Pandora and FatJar,
greatly improving the development and debugging efficiency.

Pandora Boot deeply integrates Spring Boot AutoConfigure to provide you with the
convenience of the Spring Boot framework.

Spring Boot users who need to use HSF and users who already use Pandora Boot can use Pandora
Boot to develop EDAS applications.

Preparation

To use Pandora Boot for application development, you must configure the following development
environment:

//Load the service provider using XML.
new ClassPathXmlApplicationContext("hsf-provider-beans.xml");
//Load the service consumer using XML.
ClassPathXmlApplicationContext consumerContext=new ClassPathXmlApplicationContext("hsf-
consumer-beans.xml");
//Retrieve the bean.
UnitTestXMLConsumer unitTestXMLConsumer=(UnitTestXMLConsumer)
consumerContext.getBean("unitTestConsumer");
//Call the service.
unitTestXMLConsumer.testUnitProvider();

Enterprise Distributed Application Service (EDAS) Application Development

55

Configure the EDAS private server address in Maven: Currently, third-party Spring Cloud
packages for Aliware are only available on EDAS private servers. Therefore, you must add a
private server address into the Maven configuration file.

Configure the lightweight configuration center: You need to enable the lightweight
configuration center for local development and commissioning.The lightweight
configuration center provides a lightweight version with EDAS service discovery and
configuration management features.

Configure the EDAS private server address in Maven

Note: Maven 3.x or later is required. Add the EDAS private server address in the Maven configuration
file settings.xml.

Add EDAS private server settings

Add the following settings in the Maven configuration file settings.xml, whose path is generally
~/.m2/settings.xml:

<profiles>
<profile>
<id>nexus</id>
<repositories>
<repository>
<id>central</id>
<url>http://repo1.maven.org/maven2</url>
<releases>
<enabled>true</enabled>
</releases>
<snapshots>
<enabled>true</enabled>
</snapshots>
</repository>
</repositories>
<pluginRepositories>
<pluginRepository>
<id>central</id>
<url>http://repo1.maven.org/maven2</url>
<releases>
<enabled>true</enabled>
</releases>
<snapshots>
<enabled>true</enabled>
</snapshots>
</pluginRepository>
</pluginRepositories>
</profile>
<profile>
<id>edas.oss.repo</id>

Enterprise Distributed Application Service (EDAS) Application Development

56

1.

2.

3.

Download the setting.xml sample file.

Check whether the settings have been successfully added

Run the mvn help:effective-settings command on the CLI.

If no error is returned, the setting.xml file is correctly formatted.
If edas.oss.repo is included in profiles, the private server settings have been added to
profiles.
If edas.oss.repo is included in activeProfiles, the edas.oss.repo private server has been
activated.

Note: If no error is returned when you run the Maven packaging command on the CLI, but IDE still
cannot download the dependency, close IDE and start it again or search for a solution in the
documentation for configuring Maven in IDE.

<repositories>
<repository>
<id>edas-oss-central</id>
<name>taobao mirror central</name>
<url>http://edas-public.oss-cn-hangzhou.aliyuncs.com/repository</url>
<snapshots>
<enabled>true</enabled>
</snapshots>
<releases>
<enabled>true</enabled>
</releases>
</repository>
</repositories>
<pluginRepositories>
<pluginRepository>
<id>edas-oss-plugin-central</id>
<url>http://edas-public.oss-cn-hangzhou.aliyuncs.com/repository</url>
<snapshots>
<enabled>true</enabled>
</snapshots>
<releases>
<enabled>true</enabled>
</releases>
</pluginRepository>
</pluginRepositories>
</profile>
</profiles>

<activeProfiles>
<activeProfile>nexus</activeProfile>
<activeProfile>edas.oss.repo</activeProfile>
</activeProfiles>

Enterprise Distributed Application Service (EDAS) Application Development

57

Develop applications

Service registration and discovery

The following describes how to use Pandora Boot to develop applications and implement service
registration and discovery.

Download the demo source code sc-hsf-provider and sc-hsf-consumer.

Create a service provider

Create a Maven project named sc-hsf-provider.

Introduce the necessary dependencies to the pom.xml file:

 <parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>1.5.8.RELEASE</version>
<relativePath/>
</parent>

<dependencies>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-hsf</artifactId>
<version>1.3</version>
</dependency>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-pandora</artifactId>
<version>1.3</version>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
</dependencies>

<dependencyManagement>
<dependencies>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-dependencies</artifactId>
<version>Dalston.SR4</version>
<type>pom</type>

Enterprise Distributed Application Service (EDAS) Application Development

58

Although the HSF service framework is independent of the web environment, web-related
features are required when EDAS is used to manage the lifecycle of applications. Therefore,
you must add a dependency for spring-boot-starter-web.

If you do not want to configure the parent of the project as spring-boot-starter-parent, you
can add dependencyManagement and set scope=import as follows to manage dependency
versions.

Define a service API, and create an API class of com.aliware.edas.EchoService.

The HSF service framework enables service communication based on APIs. When an API is
defined, producers use this API to implement and release specific services, and consumers
also use this API to subscribe to and consume services.

The API com.aliware.edas.EchoService provides an echo method, which also means that the
service com.aliware.edas.EchoService provides an echo method.

Add the implementation class EchoServiceImpl of the service provider, and publish the
service using annotations.

<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>

 <dependencyManagement>
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-dependencies</artifactId>
<version>1.5.8.RELEASE</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>

 public interface EchoService {
String echo(String string);
}

 @HSFProvider(serviceInterface = EchoService.class, serviceVersion = "1.0.0")
public class EchoServiceImpl implements EchoService {
@Override
public String echo(String string) {
return string;
}

Enterprise Distributed Application Service (EDAS) Application Development

59

In addition to the API name serviceInterface, HSF also requires the serviceVersion (service
version) to uniquely identify a service. In this case, the serviceVersion attribute in the
HSFProvider annotation is set to “1.0.0”.Then, the service to be published can be
identified by the serviceInterface com.aliware.edas.EchoService and serviceVersion 1.0.0
combination.

The configuration in the HSFProvider annotation has the highest priority. If it is not
configured in the HSFProvider annotation, the global configuration of these properties is
checked in the file resources/application.properties when the service is published.If neither
is configured, the default values in the HSFProvider annotation are used.

Configure the application name and the listener port number in the application.properties
file in resources.

Best practices: We recommend that you configure both the service version and service
timeout in the application.properties file.

Add main function entrance for starting the service.

Create a service consumer

In this example, we create a service consumer that calls the service provider using the API provided
by HSFProvider.

}

 spring.application.name=hsf-provider
server.port=18081

spring.hsf.version=1.0.0
spring.hsf.timeout=3000

 @SpringBootApplication
public class HSFProviderApplication {

public static void main(String[] args) {
// Start Pandora Boot to load the Pandora container
PandoraBootstrap.run(args);
SpringApplication.run(ServerApplication.class, args);
// This indicates that the service has been started, and a thread waiting time is set.This prevents the
container from exiting due to users who exit after running the service code.
PandoraBootstrap.markStartupAndWait();
}
}

Enterprise Distributed Application Service (EDAS) Application Development

60

Create a Maven project named sc-hsf-consumer.

Introduce the necessary dependencies to the pom.xml file:

The Maven dependencies for HSFConsumer and HSFProvider are exactly the same.

Copy the service API (including the package name) com.aliware.edas.EchoService published
by the service provider to a local machine.

Use an annotation, to inject the service consumer instance into the Context of Spring.

 <parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>1.5.8.RELEASE</version>
<relativePath/>
</parent>

<dependencies>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-hsf</artifactId>
<version>1.3</version>
</dependency>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-pandora</artifactId>
<version>1.3</version>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
</dependencies>

<dependencyManagement>
<dependencies>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-dependencies</artifactId>
<version>Dalston.SR4</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>

 public interface EchoService {
String echo(String string);
}

Enterprise Distributed Application Service (EDAS) Application Development

61

Best practices: Configure @HSFConsumer once in the Config class, and inject and use it in
multiple places through @Autowired.Usually, an HSF consumer is used in multiple places,
but you do not have to mark each place where it is used with @HSFConsumer.You can write
a unified Config class and inject it directly wherever it is needed by using @Autowired.

To facilitate the test, an HTTP API of /hsf-echo/* is exposed through the SimpleController.
Calls to the HSF service provider are internally implemented in the API /hsf-echo/*.

Configure the application name and the listener port in the application.properties file in
resources.

Best practices: We recommend that you configure both the service version and service
timeout in the application.properties file.

Add main function entrance for starting the service.

 @Configuration
public class HsfConfig {

@HSFConsumer(clientTimeout = 3000, serviceVersion = "1.0.0")
private EchoService echoService;
}

 @RestController
public class SimpleController {
@Autowired
private EchoService echoService;

@RequestMapping(value = "/hsf-echo/{str}", method = RequestMethod.GET)
public String echo(@PathVariable String str) {
return echoService.echo(str);
}
}

 spring.application.name=hsf-consumer
server.port=18082

spring.hsf.version=1.0.0
spring.hsf.timeout=1000

 @SpringBootApplication
public class HSFConsumerApplication {

public static void main(String[] args) {
PandoraBootstrap.run(args);
SpringApplication.run(HSFConsumerApplication.class, args);

Enterprise Distributed Application Service (EDAS) Application Development

62

Local development and debugging

Start the lightweight configuration center

The lightweight configuration center, which includes a lightweight version of the EDAS service
registration and discovery server, must be started for local development and debugging. For more
information, see the lightweight configuration center.

Start the application

The application can be locally started in two ways.

Start in IDE

Configure the startup parameter -Djmenv.tbsite.net={$IP} in VM options, and start the
application directly by using the main method.Here, {$IP} indicates the address of the
computer on which the lightweight configuration center is started.For example, if the center
is started on the current computer, $IP is 127.0.0.1.

Rather than configuring JVM parameters, you can also directly modify the hosts file to bind
jmenv.tbsite.net to the IP address of the instance on which the lightweight configuration
center is started.For more information, see the lightweight configuration center.

Start with FatJar

Add the FatJar packaging plugin.

To package the pandora-boot project into FatJar with Maven, add the following
plugin in the pom.xml file.

To prevent conflicts with other packaging plugins, do not add any other FatJar
plugins to the build plugin.

PandoraBootstrap.markStartupAndWait();
}
}

<build>
<plugin>
<groupId>com.taobao.pandora</groupId>
<artifactId>pandora-boot-maven-plugin</artifactId>
<version>2.1.9.1</version>
<executions>
<execution>
<phase>package</phase>

Enterprise Distributed Application Service (EDAS) Application Development

63

After adding the plugins, run the Maven command mvn clean package in the home
directory of the project to create a package. The created FatJar file is in the target
directory.

Run the Java command to start the application.

Note: The path specified by -Dpandora.location must be a full path followed by sc-
hsf-provider-0.0.1-SNAPSHOT.jar.

Demonstration

Enable the service and check whether it can be called.

Asynchronous calls

HSF enables two types of asynchronous calling, Future and Callback.

To demonstrate asynchronous calls, we have published a new service:
com.aliware.edas.async.AsyncEchoService.

<goals>
<goal>repackage</goal>
</goals>
</execution>
</executions>
</plugin>
</build>

java -Djmenv.tbsite.net=127.0.0.1 -
Dpandora.location=/Users/{$username}/.m2/repository/com/taobao/pandora/taobao-
hsf.sar/dev-SNAPSHOT/taobao-hsf.sar-dev-SNAPSHOT.jar -jar sc-hsf-provider-0.0.1-
SNAPSHOT.jar

Enterprise Distributed Application Service (EDAS) Application Development

64

The service provider implements AsyncEchoService and uses annotations to publish it.

Likewise, the subsequent configuration steps and application startup processes are the
same.

Note: The logic of asynchronous calls is modified on the consumer rather than the server.

Future

To enable Future-type asynchronous calls for the consumer end, use annotations to inject
instances of the service consumer into Context of Spring, and configure the method name
of asynchronous calls in futureMethods properties of @HSFConsumer annotations.

This Future method of com.aliware.edas.async.AsyncEchoService is marked as Future-type
asynchronous calls.

After the method is marked as Future-type asynchronous calls, the actual return value of
the method during synchronous execution is null, and the call result must be obtained
through HSFResponseFuture.

TestAsyncController is used for demonstration. The sample code is as follows:

 public interface AsyncEchoService {
String future(String string);
String callback(String string);
}

 @HSFProvider(serviceInterface = AsyncEchoService.class, serviceVersion = "1.0.0")
public class AsyncEchoServiceImpl implements AsyncEchoService {
@Override
public String future(String string) {
return string;
}

@Override
public String callback(String string) {
return string;
}
}

 @Configuration
public class HsfConfig {
@HSFConsumer(serviceVersion = "1.0.0", futureMethods = "future")
private AsyncEchoService asyncEchoService;
}

Enterprise Distributed Application Service (EDAS) Application Development

65

Call /hsf-future/123; the str1 value is null, and str2 value is 123, which is the actual return
value.

If a series of operation return values are needed for service processing, refer to the
following call method.

 @RestController
public class TestAsyncController {

@Autowired
private AsyncEchoService asyncEchoService;

@RequestMapping(value = "/hsf-future/{str}", method = RequestMethod.GET)
public String testFuture(@PathVariable String str) {

String str1 = asyncEchoService.future(str);
String str2;
try {
HSFFuture hsfFuture = HSFResponseFuture.getFuture();
str2 = (String) hsfFuture.getResponse(3000);
} catch (Throwable t) {
t.printStackTrace();
str2 = "future-exception";
}
return str1 + " " + str2;
}
}

 @RequestMapping(value = "/hsf-future-list/{str}", method = RequestMethod.GET)
public String testFutureList(@PathVariable String str) {
try {

int num = Integer.parseInt(str);
List<String> params = new ArrayList<String>();

Enterprise Distributed Application Service (EDAS) Application Development

66

Callback

To enable Callback-type asynchronous calls for the consumer end, create a class to
implement the HSFResponseCallback API and use @Async annotations for configuration.

for (int i = 1; i <= num; i++) {
params.add(i + "");
}

List<HSFFuture> hsfFutures = new ArrayList<HSFFuture>();
for (String param : params) {
asyncEchoService.future(param);
hsfFutures.add(HSFResponseFuture.getFuture());
}

ArrayList<String> results = new ArrayList<String>();
for (HSFFuture hsfFuture : hsfFutures) {
results.add((String) hsfFuture.getResponse(3000));
}

return Arrays.toString(results.toArray());

} catch (Throwable t) {
return "exception";
}
}

 @AsyncOn(interfaceName = AsyncEchoService.class,methodName = "callback")
public class AsyncEchoResponseListener implements HSFResponseCallback{
@Override
public void onAppException(Throwable t) {
t.printStackTrace();
}

@Override
public void onAppResponse(Object appResponse) {
System.out.println(appResponse);

Enterprise Distributed Application Service (EDAS) Application Development

67

AsyncEchoResponseListener implements the HSFResponseCallback API, and sets the
interfaceName to AsyncEchoService.class and the methodName to callback in the @Async
annotation.

The Callback method of com.aliware.edas.async.AsyncEchoService is marked as Callback-
type asynchronous calls.

Similarly, TestAsyncController is used for demonstration. The sample code is as follows:

After the feature is called, the following result is returned:

After the consumer end configures the callback method to Callback-type asynchronous
calling, the synchronous return value is actually null.

After the result is returned, HSF calls the method in AsyncEchoResponseListener, and the
actual return value of calling can be obtained using the onAppResponse method.

Use CallbackInvocationContext to transmit the contextual information of the calling to

}

@Override
public void onHSFException(HSFException hsfEx) {
hsfEx.printStackTrace();
}
}

 @RequestMapping(value = "/hsf-callback/{str}", method = RequestMethod.GET)
public String testCallback(@PathVariable String str) {

String timestamp = System.currentTimeMillis() + "";
String str1 = asyncEchoService.callback(str);
return str1 + " " + timestamp;
}

Enterprise Distributed Application Service (EDAS) Application Development

68

Callback.

The sample code for calling is as follows:

The sample code of AsyncEchoResponseListener is as follows:

The output on the console is 1513068791916 123, which means that the onAppResponse
method of AsyncEchoResponseListener has used the CallbackInvocationContext to receive
the timestamp transferred before the call.

Perform the unit test

The implementation of spring-cloud-starter-hsf depends on Pandora Boot, and unit testing of
Pandora Boot is enabled through PandoraBootRunner and seamlessly integrated with
SpringJUnit4ClassRunner.

The procedure of unit testing in service providers is demonstrated as follows for your reference.

Add dependency for spring-boot-starter-test in Maven.

 CallbackInvocationContext.setContext(timestamp);
String str1 = asyncEchoService.callback(str);
CallbackInvocationContext.setContext(null);

 @Override
public void onAppResponse(Object appResponse) {
Object timestamp = CallbackInvocationContext.getContext();
System.out.println(timestamp + " " +appResponse);
}

 <dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
</dependency>

Enterprise Distributed Application Service (EDAS) Application Development

69

Develop the test code.

Develop RESTful applications (not
recommended)

Implement service discovery

This section describes how to enable the service discovery function of EDAS for your RESTful
applications.

 @RunWith(PandoraBootRunner.class)
@DelegateTo(SpringJUnit4ClassRunner.class)
// Add the test class. In this case, both the startup class of Spring Boot and this test class are required.
@SpringBootTest(classes = {HSFProviderApplication.class, EchoServiceTest.class })
@Component
public class EchoServiceTest {

/**
* If you are using @HSFConsumer, you must add this class to the @SpringBootTest classes and use it to
inject objects to prevent abnormal class conversion during generalization.
*/
@HSFConsumer(generic = true)
EchoService echoService;

//Common calls
@Test
public void testInvoke() {
TestCase.assertEquals("hello world", echoService.echo("hello world"));
}
//Generic calls
@Test
public void testGenericInvoke() {
GenericService service = (GenericService) echoService;
Object result = service.$invoke("echo", new String[] {"java.lang.String"}, new Object[] {"hello world"});
TestCase.assertEquals("hello world", result);
}
//Return the value Mock
@Test
public void testMock() {
EchoService mock = Mockito.mock(EchoService.class, AdditionalAnswers.delegatesTo(echoService));
Mockito.when(mock.echo("")).thenReturn("beta");
TestCase.assertEquals("beta", mock.echo(""));
}
}

Enterprise Distributed Application Service (EDAS) Application Development

70

Download the Demo source code sc-vip-server and sc-vip-client.

Create a service provider

The service provider in this example provides a simple echo service and registers itself with the
service discovery center.

Create a Spring Cloud project named sc-vip-server.

Introduce necessary dependencies in pom.xml:

If you do not want to configure the parent of the project as spring-boot-starter-parent, you
can add dependencyManagement and set scope=import as follows to manage
dependencies.

 <parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>1.5.8.RELEASE</version>
<relativePath/>
</parent>

<dependencies>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-vipclient</artifactId>
<version>1.3</version>
</dependency>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-pandora</artifactId>
<version>1.3</version>
</dependency>
</dependencies>

<dependencyManagement>
<dependencies>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-dependencies</artifactId>
<version>Dalston.SR4</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>

 <dependencyManagement>
<dependencies>
<dependency>

Enterprise Distributed Application Service (EDAS) Application Development

71

Add the code of the service provider, in which the annotation of @EnableDiscoveryClient
indicates that the service registration and discovery features must be enabled for the
service.

Create an EchoController to provide simple echo service.

Configure the service name and the listener port number in the application.properties file in
resources.

Create a service consumer

A service consumer is created in this example. The service consumer calls the service provider
through RestTemplate, AsyncRestTemplate, and FeignClient.

<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-dependencies</artifactId>
<version>1.5.8.RELEASE</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>

 @SpringBootApplication
@EnableDiscoveryClient
public class ServerApplication {

public static void main(String[] args) {
PandoraBootstrap.run(args);
SpringApplication.run(ServerApplication.class, args);
PandoraBootstrap.markStartupAndWait();
}
}

 @RestController
public class EchoController {
@RequestMapping(value = "/echo/{string}", method = RequestMethod.GET)
public String echo(@PathVariable String string) {
return string;
}
}

 spring.application.name=service-provider
server.port=18081

Enterprise Distributed Application Service (EDAS) Application Development

72

-

Create a Spring Cloud project named sc-vip-client.

Introduce necessary dependencies in pom.xml:

To demonstrate the use of FeignClient, an additional dependency of spring-cloud-starter-
feign is added to the pom.xml file compared to that of the service provider.

Different from the server, the clients support other functions in addition to service enabling
and registration. In addition to service enabling and registration, two more configurations
must be added to use the three clients of RestTemplate, AsyncRestTemplate, and
FeignClient:

Add the annotation of @LoadBalanced to combine RestTemplate,
AsyncRestTemplate, and service discovery.

 <parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>1.5.8.RELEASE</version>
<relativePath/>
</parent>

<dependencies>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-vipclient</artifactId>
<version>1.3</version>
</dependency>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-pandora</artifactId>
<version>1.3</version>
</dependency>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-feign</artifactId>
</dependency>
</dependencies>

<dependencyManagement>
<dependencies>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-dependencies</artifactId>
<version>Dalston.SR4</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>

Enterprise Distributed Application Service (EDAS) Application Development

73

Activate FeignClients by using the annotation of @EnableFeignClients.

Complete the configuration of FeignClient of EchoService before using it. Configure the
service name and the HTTP request corresponding to the method. The service name is
service-provider configured in the sc-vip-server project. The code is as follows:

Create a Controller for call test.

/echo-rest/ verifies the call of the service provider through RestTemplate.

/echo-async-rest/ verifies the call of the service provider through AsyncRestTemplate.

/echo-feign/ verifies the call of the service provider through FeignClient.

@SpringBootApplication
@EnableDiscoveryClient
@EnableFeignClients
public class ConsumerApplication {

@LoadBalanced
@Bean
public RestTemplate restTemplate() {
return new RestTemplate();
}

@LoadBalanced
@Bean
public AsyncRestTemplate asyncRestTemplate(){
return new AsyncRestTemplate();
}

public static void main(String[] args) {
PandoraBootstrap.run(args);
SpringApplication.run(ConsumerApplication.class, args);
PandoraBootstrap.markStartupAndWait();
}

}

 @FeignClient(name = "service-provider")
public interface EchoService {
@RequestMapping(value = "/echo/{str}", method = RequestMethod.GET)
String echo(@PathVariable("str") String str);
}

 @RestController
public class Controller {

@Autowired

Enterprise Distributed Application Service (EDAS) Application Development

74

Configure the application name and the listener port number.

Test the RESTful services

Start the Lightweight Configuration Center

The Lightweight Configuration Center must be started for local development and commissioning,
which includes a lightweight version of the server of EDAS service registration and discovery. See
Lightweight Configuration Center for details.

Start the services

The services can be locally started in two ways.

Start in IDE

To start the service in IDE, configure the startup parameter -Dvipserver.server.port=8080 in
VM options and start the service directly using the main method.

If your Lightweight Configuration Center and the service are deployed on different
computers, hosts binding is required. See Lightweight Configuration Center for details.

private RestTemplate restTemplate;
@Autowired
private AsyncRestTemplate asyncRestTemplate;
@Autowired
private EchoService echoService;

@RequestMapping(value = "/echo-rest/{str}", method = RequestMethod.GET)
public String rest(@PathVariable String str) {
return restTemplate.getForObject("http://service-provider/echo/" + str, String.class);
}
@RequestMapping(value = "/echo-async-rest/{str}", method = RequestMethod.GET)
public String asyncRest(@PathVariable String str) throws Exception{
ListenableFuture<ResponseEntity<String>> future = asyncRestTemplate.
getForEntity("http://service-provider/echo/"+str, String.class);
return future.get().getBody();
}
@RequestMapping(value = "/echo-feign/{str}", method = RequestMethod.GET)
public String feign(@PathVariable String str) {
return echoService.echo(str);
}

}

 spring.application.name=service-consumer
server.port=18082

Enterprise Distributed Application Service (EDAS) Application Development

75

Start by using FatJar

Add FatJar packaging plugins.

To package pandora-boot project into FatJar by using Maven, the following plugins
should be added in pom.xml.To avoid conflicts with other packaging plugins, do
not add other FatJar plugins in build plugin.

After adding the plugins, run the maven command mvn clean package under the
home directory of the project to create a package. The created FatJar file is located
under the target directory.

Start the service using Java command.

NOTE: The path specified by -Dpandora.location must be a full path placed before
sc-vip-server-0.0.1-SNAPSHOT.jar.

Demonstration

Start the service and call the service provider through the clients. Each call is successful.

<build>
<plugin>
<groupId>com.taobao.pandora</groupId>
<artifactId>pandora-boot-maven-plugin</artifactId>
<version>2.1.9.1</version>
<executions>
<execution>
<phase>package</phase>
<goals>
<goal>repackage</goal>
</goals>
</execution>
</executions>
</plugin>
</build>

java -Dvipserver.server.port=8080 -
Dpandora.location=/Users/{$username}/.m2/repository/com/taobao/pandora/taobao-
hsf.sar/dev-SNAPSHOT/taobao-hsf.sar-dev-SNAPSHOT.jar -jar sc-vip-server-0.0.1-
SNAPSHOT.jar

Enterprise Distributed Application Service (EDAS) Application Development

76

FAQ

Failed to enable service discovery for AsyncRestTemplate.

AsyncRestTemplate is not enabled with service discovery until recently and versions after
Dalston are required. See the pull request for details.

FatJar packaging plugin conflict

To avoid conflicts with other packaging plugins, do not add other FatJar plugins in build
plugin.

Can taobao-hsf.sar be included during packaging?

Yes, but this is not recommended.

Modify the pandora-boot-maven-plugin plugin and set excludeSar as false to automatically
include taobao-hsf.sar during packaging.

In this way, the package can be started without a configured Pandora address.

 <plugin>
<groupId>com.taobao.pandora</groupId>
<artifactId>pandora-boot-maven-plugin</artifactId>
<version>2.1.9.1</version>
<configuration>
<excludeSar>false</excludeSar>
</configuration>
<executions>
<execution>
<phase>package</phase>
<goals>
<goal>repackage</goal>
</goals>
</execution>
</executions>
</plugin>

 java -jar -Dvipserver.server.port=8080 sc-vip-server-0.0.1-SNAPSHOT.jar

Enterprise Distributed Application Service (EDAS) Application Development

77

Restore the configuration to excluding the SAR package before deploying an application in
EDAS.

Implement distributed tracing

To reduce development cost and increase development efficiency, EDAS provides EagleEye, a
component for service call tracing.Once EagleEye tracking is configured in the code, you can directly
use the tracing function of EDAS without considering other processes including log collection,
analysis, or storage.

This document introduces how to enable the distributed tracing function for your services.

Download the Demo source code service1 and service2.

How to use EagleEye

Configure the EDAS private server address in Maven

Currently, packages of Pandora Boot Starter are only published on the private servers of EDAS. You
need to add the private server address in the Maven configuration file. See Configure the EDAS
private server address in Maven in Prepare development tools for details.

NOTE: Maven 3.x or later is required. Add the EDAS private server address in the Maven configuration
file settings.xml. Click to download the sample file.

Modify the code

You can connect Spring Cloud to EDAS EagleEye according to the following three steps.

Add the following public configurations to pom.xml.

Add two lines in the main function. The original content of the main function is as follows:

 <dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-eagleeye</artifactId>
<version>1.3</version>
</dependency>

<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-pandora</artifactId>
<version>1.3</version>
</dependency>

Enterprise Distributed Application Service (EDAS) Application Development

78

The modified content of the main function is as follows:

Add FatJar packaging plugins.

To package the pandora-boot project into FatJar by using Maven, you need to add the
following plugins in pom.xml.

To avoid conflicts with other packaging plugins, do not add other FatJar plugins in build
plugin.

After completing the preceding steps, you can directly use the distributed tracing function of EDAS
without setting up any collection or analysis system.

Distributed tracing example

Source code

To demonstrate how to use the distributed tracing function, two code demos service1 and service2
are used in this example.

 public static void main(String[] args) {
SpringApplication.run(ServerApplication.class, args);
}

 public static void main(String[] args) {
PandoraBootstrap.run(args);
SpringApplication.run(ServerApplication.class, args);
PandoraBootstrap.markStartupAndWait();
}

 <build>
<plugins>
<plugin>
<groupId>com.taobao.pandora</groupId>
<artifactId>pandora-boot-maven-plugin</artifactId>
<version>2.1.9.1</version>
<executions>
<execution>
<phase>package</phase>
<goals>
<goal>repackage</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>

Enterprise Distributed Application Service (EDAS) Application Development

79

service1 provides the entrances for three demonstrating scenes.

/rest/ok for normal calls

/rest/delay for calls with large delay

Enterprise Distributed Application Service (EDAS) Application Development

80

/rest/error for calls with exceptions or errors

Enterprise Distributed Application Service (EDAS) Application Development

81

Deploy the services

The collection and analysis functions of EagleEye are both set up in EDAS. To demonstrate the trace
view function, we must deploy the two applications service1 and service2 in EDAS.

When creating an application, choose the latest version of the container.

Add FatJar packaging plugins, and run the mvn clean package command under the
directory of the project to create a FatJar package.

Deploy applications on EDAS by uploading the FatJar services in the target directory
without configuration.

To view the trace information after the deployment, calling methods corresponding to the entrances
of three demonstrating scenes of service1 are required.

You can run the curl http://{$ip:$port}/rest/ok command.Or you can use tools such as postman, or
directly call the methods in browsers.

To observe the response, it is recommended that you call the methods in script mode for multiple
times.

Enterprise Distributed Application Service (EDAS) Application Development

82

View the call trace

Log on to the EDAS console and enter the deployed services.

In the left-side navigation pane on the application details page, choose Application
Monitoring > Service Monitoring.

On the service monitoring page, click RPC Service Provided, and then View Trace.

Demonstration of other clients

At the same time, the automatic tracking of EagleEye for RestTemplate, AsyncRestTemplate, and
FeignClient is demonstrated separately in the three URIs /echo-rest/str, /echo-async-rest/str, and
/ech-feign/str of service1.

FAQ

Tracking support

Now, EagleEye of EDAS supports the automatic tracking for requests called by RestTemplate,
AsyncRestTemplate, and FeignClient. We will provide the automatic tracking for more components in
the future.

AsyncRestTemplate

As AsyncRestTemplate requires to perform the modification of tracking support during class
instantiation, injection of object eagleEyeAsyncRestTemplate, which supports service discovery by
default, is required to enable tracing.

FatJar packaging plugin

To package the pandora-boot project into FatJar by using Maven, you need to add the pandora-
boot-maven-plugin in pom.xml.To avoid conflicts with other packaging plugins, do not add other
FatJar plugins in build plugin.

More information

See Enable the EDAS distributed tracing function for Spring Cloud for more information about the
distributed tracing function and EagleEye.

@Autowired
private AsyncRestTemplate eagleEyeAsyncRestTemplate;

Enterprise Distributed Application Service (EDAS) Application Development

83

Migrate Dubbo to HSF (not recommended)

Dubbo is an open source RPC framework, while HSF is another RPC framework supported by
EDAS.Before the implementation of Dubbo for EDAS, this document provided a solution to convert
Dubbo to HSF, enabling rate limiting and degradation, distributed tracing, service analysis, and other
functions.Now, EDAS supports Dubbo and offers service governance, distributed tracing, and more
functions. For more information, see Quick start.For this reason, we recommend that new users do
not use this method.

This topic describes how to convert Dubbo for the Spring Boot programming model to HSF by
modifying the code.The process of application development is not described in detail here.

Download the Demos for converting Dubbo to HSF.

Add a Maven dependency

Add spring-cloud-starter-pandora dependencies in the project file pom.xml.

Add or modify the packaging plug-in for Maven

Add or modify the Maven packaging plugin in the project file pom.xml.To prevent conflicts with other
packaging plugins, do not add any other FatJar plugins to the build plugin.

<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-pandora</artifactId>
<version>1.3</version>
</dependency>

<build>
<plugins>
<plugin>
<groupId>com.taobao.pandora</groupId>
<artifactId>pandora-boot-maven-plugin</artifactId>
<version>2.1.9.1</version>
<executions>
<execution>
<phase>package</phase>
<goals>
<goal>repackage</goal>
</goals>
</execution>

Enterprise Distributed Application Service (EDAS) Application Development

84

Modify the code

In the Spring Boot startup class, add these two lines for loading Pandora:

Container versions

</executions>
</plugin>
</plugins>
</build>

import com.taobao.pandora.boot.PandoraBootstrap;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class ServerApplication {

public static void main(String[] args) {
PandoraBootstrap.run(args);
SpringApplication.run(ServerApplication.class, args);
PandoraBootstrap.markStartupAndWait();
}
}

Version Release date Basic edition Change

3.5.0 2018-9-10 3.4.7

Upgraded

eagleeye-

core to

V1.7.4.8.

Fixed the

problem of

returning

garbled

Chinese

parameter

values for

an URL

request of

the Web

1.

Enterprise Distributed Application Service (EDAS) Application Development

85

application

.

Upgraded

HSF to

V2.2.6.7-

edas. Fixed

the

problem of

failing to

obtain an

HSF

service list

by running

the

Pandora

QoS

command.

2.

Removed

the ons-

client

plugin

because of

the

possible

conflict

between

the JAR

Package

for the

ons-client

plugin and

that for

the

application

.

3.

3.4.7 2018-8-1 3.4.6

Upgraded ONS to
V1.7.8-EagleEye.
Eliminated the class
conflicts resulted
from the MQ Trace
function.

3.4.6 2018-7-5 3.4.5

Upgraded-

Enterprise Distributed Application Service (EDAS) Application Development

86

HSF to

V2.2.6.1.

-

Support for

the CSB

function.

-

Fixed

serialization

errors in

some

scenarios.

-

Fixed the

problem of

strong VIP

dependenc

y.

-

Support for

health

check on

Dubbo in

the Spring

Boot

runtime

environmen

t.

-

Upgraded

config-

client to

V1.9.6.

Support for

dynamic

adjustment

of the

maximum

number of

registration

s.

-

Upgraded

Sentinel to

V2.12.12-

edas.

Support for

-

Enterprise Distributed Application Service (EDAS) Application Development

87

Spring Boot

2.

-

3.4.5 2018-6-14 3.4.4

Upgraded ACM to
V3.8.10. Fixed the
problem of
ineffective multi-
tenant monitoring
over a native
interface.

3.4.4 2018-5-18 3.4.3

The time-

out value

is 0 during

asynchron

ous

processing

on HSF

provider or

a local call,

resulting in

a time-out

error.

1.

Some peer

IP

attributes

are

missing in

RpcContex

t for using

Dubbo on

EDAS.

2.

Support

for use of

the service

tags on

Dubbo in

the AOP

scenario.

3.

Unsupport

ed if the

Bool value

is included

in Map

4.

Enterprise Distributed Application Service (EDAS) Application Development

88

during a

generalize

d call of

HSF.

3.4.3 2018-4-24 3.4.1

Upgraded

the

Diamond

to V3.8.8.

1.

Fixed the

problem of

failing to

locate the

print

certificate

and

improved

the

security

level.

2.

Upgraded

EDAS-

Assist to

V2.0.

3.

Optimized

the port

availability

detection

logic and

upgraded

fastjson to

V1.2.48.

4.

3.4.1 2018-3-15 3.4.0

Upgraded

hsf-plugin.

Support

for

dubboX.

1.

Upgraded

diamond-

client and

configcent

2.

Enterprise Distributed Application Service (EDAS) Application Development

89

er-client.

Upgraded

edas-assit

and

canceled

the port

check after

the

specified

port value

is

displayed.

3.

3.4.0 2018-3-7 3.3.9

Upgraded

edas-assist

and

improved

the speed

to check

the

available

ports.

Support

for

dynamic

setting of

a CSP

interface.

1.

Provided

the

ConfigCen

ter version

for

tenants.

2.

Upgraded

configclien

t to ensure

unified

internal

and

external

consumers

3.

Enterprise Distributed Application Service (EDAS) Application Development

90

. Support

for CS2.0

and CS3.0

providers.

3.3.9 2018-1-17 3.3.8

Upgraded

HSF and

solved the

problem of

ZooKeeper

blocking.

1.

Upgraded

Sentinel to

provide

additional

system

protection

(effective

only after

you

introduce

the

console

push

rules).

2.

Modified

the links of

default

errors for

internation

alization.

3.

3.3.8 2018-1-3 3.3.6

Upgraded

Sentinel to

provide an

interface

that

dynamicall

y

generates

metadata.

1.

Upgraded2.

Enterprise Distributed Application Service (EDAS) Application Development

91

HSF to

provide

the tid

transmissi

on feature.

Upgraded

ons and

fixed the

problem of

ineffective

link

tracing.

3.

3.3.6 2017-12-20 3.3.4

When the

same

exception

is thrown

repeatedly,

the header

informatio

n increases

constantly,

resulting in

a ultra-

long

prompt

message.

1.

EagleEye

parses an

exception

into

UNKnown,

affecting

call trace

parsing

and

topologica

l display of

an

application

.

2.

Enterprise Distributed Application Service (EDAS) Application Development

92

3.3.4 2017-11-30 3.3.3

Upgraded

Diamond

to the

latest

version to

be

compatible

with ACM.

1.

Fixed a

series of

problems,

including

HSF

generalizat

ion, Unit

dependenc

y,

resolution

exception

of multiple

ZK

addresses,

and

InetAddres

s

serializatio

n. Support

for setting

whitelist

rules.

2.

Fixed the

problem

that the

settings on

the custom

throttling

and

downgrad

e page

have to

wait for

about 30

seconds to

3.

Enterprise Distributed Application Service (EDAS) Application Development

93

take effect.

EagleEye

supports

health

check, with

alimetric

and

tomcat

monitor

features.

4.

Upgraded

ons-client

to

configure

message

cache size

in MQ on

the

consumer.

5.

3.3.3 2017-10-18 3.3.2

Support

for

automatic

registratio

n of

application

s (disabled

by

default).

1.

Fixed the

problem of

HSF file

handle

occupation

.

2.

Sentinel

supports

HSF2.2,4.

Enhanced

the

Pandora

QoS

3.

Enterprise Distributed Application Service (EDAS) Application Development

94

Microservice Management

Overview

Data-driven operations is an important set of functions within EDAS. The most important data-driven

command.

3.3.2 2017-10-18 3.3.1

Fixed the

problem of

hsf.lock

handle

occupation

on HSF.

1.

Added

Redis

tracing.

2.

Upgraded

tddl-driver

for online

comprehe

nsive

stress

testing.

3.

Enhanced

the

Pandora

QoS

command.

4.

3.3.1 2017-07-13 3.3.0

Upgraded tddl-
driver separately for
online
comprehensive
stress testing.

Enterprise Distributed Application Service (EDAS) Application Development

95

operations function is distributed link analysis.

Distributed link analysis analyzes every service distributed system call, all sent and received
troubleshooting messages of interest, and all database access to help you precisely identify system
bottlenecks and risks.

Data-driven operations provide these functions:

Trace query

By setting query conditions, you can accurately find businesses with poor performance or
exceptions.

Trace details

Based on the trace query results, you can view detailed information for slow or erroneous
businesses and reorganize their dependencies. This information allows you to identify
frequent failures, performance bottlenecks, strong dependencies, and other problems. You
can also evaluate business capacities based on link call ratios and peak QPS.

Service topology

The topology intuitively presents the calling between services and relevant performance
data.

Service query

You can view the HSF, Spring Cloud and Service Mesh services in the specific region and
namespace.

Service statistics

Service statistics shows the Total Calls in the Last 24 Hours, Average RT(ms) in the Last 24
Hours and Total Errors in the Last 24 Hours of current services in the specific region.

Trace query

By using the trace query function, you can view the status of the invocation trace in the system,
especially for tasks that are slow or have encountered an error.

Enterprise Distributed Application Service (EDAS) Application Development

96

Log on to the EDAS console and Select Microservice Management > Trace Query in the left-
side navigation pane.

Click Show Advanced Options in the upper-right corner of the Trace Query page to display
more query conditions.

Specify the query conditions and click Query.

The descriptions for the parameters of the invocation traces (advanced query conditions)
are as follows:

Time range: Click the time selector, set the query start time, and then select the
end time. The options for the end time are “This Second”, “To 1 Minutes
Later”, and “To 10 Minutes Later”. Therefore, the latest time periods are: last
second, last one minute, and last ten minutes.

Application name: Select an application from the drop-down list. You can also
enter a keyword to search for an application. Manual input of an application name
is not supported.

Call type: Select the call type to query from the drop-down list. Options are HTTP,
HSF provider, HSF consumer, MySQL, Redis cache, message sending, and message
receiving.

Set the threshold values for time elapsed, request, or response for querying slow
tasks in the system.

Select the Error check box in the upper-right corner to query the error cases only.

Specify other parameters as needed.

In the query result, click on a slow or erroneous task to view trace details.

For the procedure to view the trace details, see Call trace details.

Enterprise Distributed Application Service (EDAS) Application Development

97

Trace details

The trace details function enables you to query by TraceId the details of a specific service invocation
trace in a selected region.

The trace details page displays the trace of the RPC service calls, not including local method calls.

The trace details function is used mainly for tracking the consumed time and occurred exceptions at
each point of the distributed service calls. Local methods are not the core content of the calls, so it is
recommended that you use logs to track the consumed time and occurred exceptions for local
methods. For example, the trace details page will not display the local trace of methodA() calling
localMethodB() and localMethodC(). Therefore, it could happen that the elapsed time on a parent
node is longer than the total elapsed time on all subnodes.

You can log on to the EDAS console and Select Microservice Management > Trace Details in the left-
side navigation pane to view the details of a service invocation trace. However, a more typical
scenario is to view the trace details of the slow or erroneous services. The following example
demontrates how to view the trace details entering from Trace Query on the left-side menu bar.

In the trace query result, find the HSF method, DB request, or other RPC service call that
consumes the longest time.

For DB, Redis, MQ, or other simple calls, find out the reason why accesses to these
nodes are slow and check whether they are caused by slow SQL or network
congestion.

For HSF methods, further analyze the reason why the method consumes so much
time.

Confirm the time consumed by a local method.

Hover the cursor over the time bar on the method row, and in the displayed page, view the
elapsed time for the client to send the request, the elapsed time for the server to process
the request, and elapsed time for the client to receive the response.

If it takes a long time for the server to process the request, analyze the tasks. Otherwise,
conduct the analysis using the method that is used for analyzing call timeout.

Check whether the total time consumed on subnodes is close to that consumed on the
method.

Enterprise Distributed Application Service (EDAS) Application Development

98

If the time difference is small, it indicates that most of the time is consumed on
network calls. In this case, reduce network calls as many as possible to shorten the
time consumed on each method.

The preceding figure shows that the same method is cyclically called. Instead, it
could be just called once in batch.

If the time difference is large, for example, the time consumed on the parent node
is 607 ms while the total time consumed on the subnodes does not reach 100 ms.
Then it indicates most of the time is consumed on the task logic of the server itself,
rather than the RPC service call.

Locate the time-consuming call.

By looking at the time bars to first locate the call before which much time is consumed. The
time is purely consumed by the local logic, for which further troubleshooting is required.

After locating the time-consuming logic, review the codes or add logs to the codes
to locate the errors.

If it is found that the codes do not consume so much time, perform the following
step.

Check whether GC occurred at that time. Therefore, the gc.log file is important.

Locate the timeout error.

An timeout error occurs. Perform the following steps to evaluate the time.

The time is divided into three parts:

Client sends request (0 ms): indicates the time duration from the client sends the
request to the server recieves it. This process includes serialization, network
transmission, and deserialization. If this process takes a long time, consider if a
consumer GC should be triggered. It will take a long time if the object for
serialization or deserialization is large, the network is under great transmission
pressure, or the provider GC occurs.

Requests processed on server (10,077 ms): indicates the time duration from the
server recieves the request to the server returns the response to the client. The
time is taken only by the server to process the request, not including other
operations.

Enterprise Distributed Application Service (EDAS) Application Development

99

Client receives response (3,002 ms): indicates the time duration from the server
sends the reponse to the client receives it. As the timeout time of 3s is set, the
server directly returns timeout after 3s, but the server is still processing the request.
If this process consumes much time, perform troubleshooting using the same
method that is used for the client.

Service topology

The service topology function is used to view the real-time (last second) call topology between
applications in the system.

Log on to the EDAS console, and Select Microservice Management > Service Topology in
the left-side navigation pane.

View the service topology.

The Service topology shows the real-time (last second) call topology between all
applications under the current account.

Hover your cursor over an application to view the call topology for this application.

Click on an application to view its call topology and traffic data.

Traffic data refers to the current application’s QPS, including:

Source traffic: The QPS for calls from other applications to this
application.

Call traffic: The QPS for calls from this application to other applications.

Redis tracing

Function overview

Enterprise Distributed Application Service (EDAS) Application Development

100

After Redis tracing support is added, whenever applications access and perform operations on Redis,
the process is recorded in EagleEye trace logs and EDAS collects, analyzes the statistics of the logs.
Then information about Redis calls is displayed on the tracing and call analysis page of the EDAS
platform.

Supported scope

Due to the wide range of Redis database variants and the usability of Spring Data, Redis trace
support is only available for Spring Data Redis of 1.7.4.RELEASE. If you use any other database (for
example, Jedis) than Spring Data Redis, you cannot view relevant information on the EagleEye trace
interface (which is accessible from Digital Operations > Trace Details on the left-side menu bar of the
EDAS console).

Note: If you use Spring Data Redis later than 1.7.4.RELEASE and the version does not support the
provided functions, open a ticket to consult with us.

Usage instructions

For applications on the EDAS platform, Redis trace support replaces Spring Data Redis and is used in
the same way as Spring Data Redis. For usage instructions on Spring Data Redis, see the user guide.
At the code level, EDAS is compatible with Spring Data Redis 1.7.4-RELEASE. To enable Redis tracing
support, follow these steps:

Open the {user.home}/.m2/settings.xml file to configure the local Maven repository.

 <profile>
<id>edas.oss.repo</id>
<repositories>
<repository>
<id>edas-oss-central</id>
<name>taobao mirror central</name>
<url>http://edas-public.oss-cn-hangzhou.aliyuncs.com/repository</url>
<snapshots>
<enabled>true</enabled>
</snapshots>
<releases>
<enabled>true</enabled>
</releases>
</repository>
</repositories>
<pluginRepositories>
<pluginRepository>
<id>edas-oss-plugin-central</id>
<url>http://edas-public.oss-cn-hangzhou.aliyuncs.com/repository</url>
<snapshots>
<enabled>true</enabled>
</snapshots>

Enterprise Distributed Application Service (EDAS) Application Development

101

Activate the corresponding profile:

Add dependency to the pom.xml file in the Maven project.

Redis command support

The following tables list the Redis commands supported by Spring Data Redis and the support for
EagleEye trace logs.

Key-type operations

<releases>
<enabled>true</enabled>
</releases>
</pluginRepository>
</pluginRepositories>
</profile>
</profiles>

 <activeProfiles>
<activeProfile>edas.oss.repo</activeProfile>
</activeProfiles>

<dependency>
<groupId>com.alibaba.middleware</groupId>
<artifactId>spring-data-redis</artifactId>
<version>1.7.4.RELEASE</version>
</dependency>

Data
structure/Objec
t

Operation Spring Data
Redis method

EDAS support
for EagleEye
tracing (Y/N)

Remarks

Key DEL RedisOperation
s.delete Y

DUMP RedisOperation
s.dump Y

EXISTS RedisOperation
s.hasKey Y

EXPIRE RedisOperation
s.expire Y

EXPIREAT RedisOperation
s.expireAt Y

KEYS RedisOperation
s.keys Y

Enterprise Distributed Application Service (EDAS) Application Development

102

String-type operations

MIGRATE N

MOVE RedisOperation
s.move Y

OBJECT N

PERSIST RedisOperation
s.persist Y

PEXPIRE RedisOperation
s.expire Y

PEXPIREAT RedisOperation
s.expireAt Y

PTTL RedisOperation
s.getExpire Y

RANDOMKEY RedisOperation
s.randomKey Y

RENAME RedisOperation
s.rename Y

key:
oldKey：${oldK
ey};newKey:${n
ewKey}

RENAMENX
RedisOperation
s.renameIfAbse
nt

Y

RESTORE RedisOperation
s.restore Y

SORT RedisKeyComm
ands.sort Y

key:
query:${SortQu
ery}

TTL RedisOperation
s.getExpire Y

TYPE RedisOperation
s.type Y

SCAN RedisKeyComm
ands.scan N

Data
structure/Objec
t

Operation Spring Data
Redis method

EDAS support
for EagleEye
tracing (Y/N)

Remarks

String APPEND ValueOperation
s.append Y

BITCOUNT N

BITOP N

Enterprise Distributed Application Service (EDAS) Application Development

103

BITFIELD N

DECR ValueOperation
s.increment Y

DECRBY ValueOperation
s.increment Y

GET ValueOperation
s.get Y

GETBIT ValueOperation
s.getBit Y

GETRANGE ValueOperation
s.get Y

GETSET ValueOperation
s.getAndSet Y

INCR ValueOperation
s.increment Y

INCRBY ValueOperation
s.increment Y

INCRBYFLOAT ValueOperation
s.increment Y

MGET ValueOperation
s.multiGet Y

MSET ValueOperation
s.multiSet Y

MSETNX
ValueOperation
s.multiSetIfAbs
ent

Y

PSETEX ValueOperation
s.set Y

SET ValueOperation
s.set Y

SETBIT ValueOperation
s.setBit Y

SETEX ValueOperation
s.set Y

SETNX ValueOperation
s.setIfAbsent Y

SETRANGE ValueOperation
s.set Y

STRLEN ValueOperation
s.size Y

Enterprise Distributed Application Service (EDAS) Application Development

104

Hash-type operations

List-type operations

Data
structure/Objec
t

Operation Spring Data
Redis method

EDAS support
for EagleEye
tracing (Y/N)

Remarks

Hash HDEL HashOperation
s.delete Y

HEXISTS HashOperation
s.hasKey Y

HGET HashOperation
s.get Y

HGETALL HashOperation
s.entries Y

HINCRBY HashOperation
s.increment Y

HINCRBYFLOAT HashOperation
s.increment Y

HKEYS HashOperation
s.keys Y

HLEN HashOperation
s.size Y

HMGET HashOperation
s.multiGet Y

HMSET HashOperation
s.putAll Y

HSET HashOperation
s.put Y

HSETNX HashOperation
s.putIfAbsent Y

HVALS HashOperation
s.values Y

HSCAN HashOperation
s.san Y

HSTRLEN N

Data
structure/Objec
t

Operation Spring Data
Redis method

EDAS support
for EagleEye
tracing (Y/N)

Remarks

List BLPOP ListOperations.l
eftPop Y

Enterprise Distributed Application Service (EDAS) Application Development

105

Set-type operations

BRPOP ListOperations.r
ightPop Y

BRPOPLPUSH
ListOperations.r
ightPopAndLeft
Push

Y

key:
sourceKey:${so
urceKey};destK
ey:${destKey}

LINDEX ListOperations.i
ndex Y

LINSERT ListOperations.l
eftPush Y

LLEN ListOperations.
size Y

LPOP ListOperations.l
eftPop Y

LPUSH ListOperations.l
eftPush Y

LPUSHX
ListOperations.l
eftPushIfPresen
t

Y

LRANGE ListOperations.r
ange Y

LREM ListOperations.r
emove Y

LSET ListOperations.
set Y

LTRIM ListOperations.t
rim Y

RPOP ListOperations.r
ightPop Y

RPOPLPUSH
ListOperations.r
ightPopAndLeft
Push

Y

key:
sourceKey:${so
urceKey};destK
ey:${destKey}

RPUSH ListOperations.r
ightPush Y

RPUSHX
ListOperations.r
ightPushIfPrese
nt

Y

Data
structure/Objec
t

Operation Spring Data
Redis method

EDAS support
for EagleEye
tracing (Y/N)

Remarks

Enterprise Distributed Application Service (EDAS) Application Development

106

SortedSet-type operations

Set SADD SetOpertions.a
dd Y

SCARD SetOpertions.si
ze Y

SDIFF SetOpertions.di
fference Y

SDIFFSTORE
SetOpertions.di
fferenceAndSto
re

Y

SINTER SetOpertions.in
tersect Y

SINTERSTORE
SetOpertions.in
tersectAndStor
e

Y

SISMEMBER SetOpertions.is
Member Y

SMEMBERS SetOpertions.m
embers Y

SMOVE SetOpertions.m
ove Y

SPOP SetOpertions.p
op Y

SRANDMEMBE
R

SetOpertions.ra
ndomMember
randomMembe
rs
distinctRandom
Members

Y

SREM SetOpertions.re
move Y

SUNION SetOpertions.u
nion Y

SUNIONSTORE SetOpertions.u
nionAndStore Y

SSCAN SetOpertions.sc
an Y

Data
structure/Objec
t

Operation Spring Data
Redis method

EDAS support
for EagleEye
tracing (Y/N)

Remarks

SortedSet ZADD ZSetOperations
.add Y

Enterprise Distributed Application Service (EDAS) Application Development

107

ZCARD ZSetOperations
.size/zCard Y

ZCOUNT ZSetOperations
.count Y

ZINCRBY
ZSetOperations
.incrementScor
e

Y

ZRANGE

ZSetOperYation
s.range
rangeWithScor
es

Y

ZRANGEBYSCO
RE

ZSetOperations
.rangeByScore
rangeByScoreW
ithScores

Y

ZRANK ZSetOperations
.rank Y

ZREM ZSetOperations
.remove Y

ZREMRANGEBY
RANK

ZSetOperations
.removeRange Y

ZREMRANGEBY
SCORE

ZSetOperations
.removeRangeB
yScore

Y

ZREVRANGE

ZSetOperations
.reverseRange
reverseRangeW
ithScores

Y

ZREVRANGEBY
SCORE

ZSetOperations
.reverseRangeB
yScore
reverseRangeB
yScoreWithScor
es

Y

ZREVRANK ZSetOperations
.reverseRank Y

ZSCORE ZSetOperations
.score Y

ZUNIONSTORE ZSetOperations
.unionAndStore Y

ZINTERSTORE
ZSetOperations
.intersectAndSt
ore

Y

ZSCAN ZSetOperations
.scan Y

ZRANGEBYLEX ZSetOperations Y

Enterprise Distributed Application Service (EDAS) Application Development

108

HyperLogLog operations

Pub/Sub (publish/subscribe) operations

Transaction operations

.rangeByLex

ZLEXCOUNT N

ZREMRANGEBY
LEX N

Data
structure/Objec
t

Operation Spring Data
Redis method

EDAS support
for EagleEye
tracing (Y/N)

Remarks

HyperLogLog PFADD HyperLogLogO
perations.add Y

PFCOUNT HyperLogLogO
perations.size Y

PFMERGE HyperLogLogO
perations.union Y

key:
dest:${destinati
on}

Data
structure/Objec
t

Operation Spring Data
Redis method

EDAS support
for EagleEye
tracing (Y/N)

Remarks

Pub/Sub PSUBSCRIBE N

PUBLISH
RedisOperation
s.convertAndSe
nd

Y key:
msg:${msg}

PUBSUB

RedisMessageL
istenerContaine
r
.setMessageList
eners
.addMessageLis
tener

N

PUNSUBSCRIBE N

UNSUBSCRIBE N

Data
structure/Objec
t

Operation Spring Data
Redis method

EDAS support
for EagleEye
tracing (Y/N)

Remarks

Transaction DISCARD RedisOperation
s.discard Y

Enterprise Distributed Application Service (EDAS) Application Development

109

Script operations

EXEC RedisOperation
s.exec Y key: execRaw

MULTI RedisOperation
s.multi Y

UNWATCH RedisOperation
s.unwatch Y

WATCH RedisOperation
s.watch Y

Data
structure/Objec
t

Operation Spring Data
Redis method

EDAS support
for EagleEye
tracing (Y/N)

Remarks

Script EVAL ScriptExecutor.
execute Y key: Null

EVALSHA ScriptExecutor.
execute Y key: Null

SCRIPT EXISTS
RedisScriptingC
ommands.scrip
tExists

N

SCRIPT FLUSH
RedisScriptingC
ommands.scrip
tFlush

N

SCRIPT KILL
RedisScriptingC
ommands.scrip
tKill

N

SCRIPT LOAD
RedisScriptingC
ommands.scrip
tLoad

N

Enterprise Distributed Application Service (EDAS) Application Development

110

	Application Development
	Develop applications in Spring Cloud
	Spring Cloud overview
	Compatibility
	Version mapping notes
	Documentation

	Quick start
	Implement load balancing
	RestTemplate
	Feign

	Implement configuration management
	Why is ACM used?
	Local development
	Preparation
	Use ACM for configuration management
	Result verification

	Deploy applications to EDAS
	Reference configuration items
	FAQ

	Deploy service gateways
	Why do service gateways use ANS as the registry?
	Preparation
	Deploy service gateways based on Spring Cloud Gateway
	Create a service gateway
	Create a service provider
	Result verification

	Use Spring Boot 2.x to deploy service gateways based on Zuul
	Create a service gateway
	Create a service provider
	Result verification

	Use Spring Boot 1.x to deploy service gateways based on Netflix Zuul
	Result verification

	Develop applications in Dubbo
	Dubbo overview
	Dubbo architecture

	Use Spring Boot to develop Dubbo applications
	Preparations
	Sample project
	Create a service provider
	Create a service consumer
	Verify the result

	Deploy the application to EDAS
	More information

	Develop applications in HSF
	HSF overview
	HSF architecture
	Functions
	Application development methods

	Configure the lightweight configuration center
	1. Download the lightweight configuration center
	2. Start the lightweight configuration center
	3. Configure hosts
	Example

	Result verification

	Ali-Tomcat Developer Guide
	Ali-Tomcat overview
	Prepare development tools
	Install Ali-Tomcat and Pandora
	Configure the development environment
	Configure the Eclipse environment
	Configure the IntelliJ IDEA environment

	Develop applications with EDAS SDK
	Quick start
	Download demo projects
	Define service APIs
	Develop provider services
	Implement a service API
	Configure service attributes
	List of provider service attributes
	Example of configuration of provider service attributes

	Develop consumer services
	Configure service attributes
	Configure service calls
	List of consumer service attributes
	Configuration example of consumer service attributes

	Publish services
	Query HSF services in the development environment
	Common query cases

	Develop advanced features
	Implicit parameter passing (currently, only string-based parameter passing is supported)
	Asynchronous calls
	Generic calls
	Step 1: Add the generic attribute to the consumer’s XML configuration.
	Step 2: Obtain demoApi to enforce conversion to a generic service.
	Step 3: Implement generic APIs.
	Step 4: Initiate generic calls.

	Trace Filter extension
	Basic APIs
	Implementation procedure
	Implementation example
	Configure META-INF/services/com.taobao.hsf.invocation.filter.RPCFilter
	intercept response
	Optional Filter

	Perform the unit test
	Method 1: Publish and subscribe to services using the LightApi code
	Method 2: Publish and subscribe to services using XML configuration

	Pandora Boot Developer Guide
	Pandora Boot overview
	Preparation
	Configure the EDAS private server address in Maven
	Add EDAS private server settings
	Check whether the settings have been successfully added

	Develop applications
	Service registration and discovery
	Create a service provider
	Create a service consumer
	Local development and debugging
	Start the lightweight configuration center
	Start the application
	Demonstration

	Asynchronous calls
	Future
	Callback

	Perform the unit test

	Develop RESTful applications (not recommended)
	Implement service discovery
	Create a service provider
	Create a service consumer
	Test the RESTful services
	Start the Lightweight Configuration Center
	Start the services
	Demonstration

	FAQ

	Implement distributed tracing
	How to use EagleEye
	Configure the EDAS private server address in Maven
	Modify the code

	Distributed tracing example
	Source code
	Deploy the services
	View the call trace
	Demonstration of other clients

	FAQ
	Tracking support
	AsyncRestTemplate
	FatJar packaging plugin

	More information

	Migrate Dubbo to HSF (not recommended)
	Add a Maven dependency
	Add or modify the packaging plug-in for Maven
	Modify the code

	Container versions
	Microservice Management
	Overview
	Trace query
	Trace details
	Service topology
	Redis tracing
	Function overview
	Supported scope
	Usage instructions
	Redis command support
	Key-type operations
	String-type operations
	Hash-type operations
	List-type operations
	Set-type operations
	SortedSet-type operations
	HyperLogLog operations
	Pub/Sub (publish/subscribe) operations
	Transaction operations
	Script operations

