
Distributed Relational
Database Service

Best Practice

Best Practice

Choose the DRDS and RDS instance
specifications

Distributed Relational Database Service (DRDS) and ApsaraDB for RDS divide instance specifications
based on factors such as CPU processing capacity, memory size, and disk space, and provide
instances of different specifications. Higher specifications mean higher processing capacities.

DRDS instance series

DRDS provides dedicated instances each with at least two DRDS server nodes to ensure high
availability and stability. You can find a comparison of different instance series as follows:

Starter Edition: Each DRDS server node has 4 cores and 16 GB memory. This edition is
applicable to initial business development and test scenarios. It does not support complex
query acceleration.

Standard Edition: Each DRDS server node has 8 cores and 32 GB memory. This edition
provides a wide range of specifications and features high cost-effectiveness. This edition is
applicable to online business scenarios highlighting ultra-high concurrency, complex queries,
and lightweight analysis. Parallel query is supported by default to improve the efficiency of
executing complex queries such as multi-table join, aggregation, and sorting for online
businesses.

Enterprise Edition: Each DRDS server node has 16 cores and 64 GB memory. This edition
features high-specification resources and is applicable to enterprise-level business scenarios
highlighting ultra-high concurrency, complex queries for massive data, and analysis
acceleration. Parallel query is supported by default to greatly improve the efficiency of
executing complex queries and report analysis for large amounts of data.

Select DRDS instance type and specification

Distributed Relational Database Service Best Practice

1

-

-

-

-

-

-

DRDS is a computing-intensive service. Its processing capability depends on the CPU performance
and is measured by QPS. We recommend that you select instances based on the maximum QPS value
supported by each specification and the estimated maximum QPS value required for your business.
For example, if you estimate that the maximum QPS of your business application to a DRDS instance
is 50,000, you can select the Standard Edition instance with 16 cores and 96 GB memory.

Select RDS instance specification

Estimate the data increment in the next one to two years to determine the maximum disk
space required.
Estimate the maximum IOPS required by an ApsaraDB RDS for MySQL instance.

We recommend that you purchase multiple ApsaraDB RDS for MySQL instances of low or medium
specifications, so that you can rapidly upgrade ApsaraDB RDS for MySQL instance specifications in
the event of storage bottlenecks. For more information about ApsaraDB RDS for MySQL instance
specifications, see Create an ApsaraDB RDS for MySQL instance.

Choose a shard key

A shard key is a field for database sharding and table sharding, which is used to create sharding rules
during horizontal partitioning. Distributed Relational Database Service (DRDS) calculates the shard
key value by using a sharding function to get a result, and then shards the data to ApsaraDB RDS for
MySQL instances based on this result.

The primary principle for table sharding is to try to find the business logic entity to which the data
belongs, and ensure that most or core SQL operations or the SQL operations of a certain concurrency
level are performed for this entity. Then the field corresponding to this entity can be used as the
shard key.

Business logic entities are typically related to application scenarios. The following typical application
scenarios all have specific business logic entities, and the identifier fields of these entities can be used
as shard keys:

Operations for user-oriented Internet applications focus on users. Therefore, the business
logic entities are users, and user ID can be used as the shard key for associated tables.
Operations for seller-oriented e-commerce applications focus on sellers. Therefore, the
business logic entities are sellers, and seller ID can be used as the shard key.
Operations for online gaming applications focus on players. Therefore, the business logic
entities are players, and player ID can be used as the shard key.
Operations for online Internet-of-Vehicle (IoV) applications focus on vehicles. Therefore, the

Distributed Relational Database Service Best Practice

2

-

business logic entities are vehicles, and vehicle ID can be used as the shard key.
Online tax affair-related applications offer frontend services for taxpayers. Therefore, the
business logic entities are taxpayers, and taxpayer ID can be used as the shard key.

You can identify the business logic entities for other scenarios in the same way.

For example, in a seller-oriented e-commerce application, the following single table needs to be
horizontally partitioned:

Sellers are the business logic entities. Then, you can use the sellerId field as the shard key. The
distributed data definition language (DDL) statement for table creation is as follows:

If you fail to identify any appropriate business logic entity as the shard key, which case is often true in
traditional enterprise-level applications, use the following methods to identify an appropriate shard
key:

Identify a shard key based on the balance of data distribution and access so that data in
table can be evenly distributed to different table shards. DRDS will soon provide the global
secondary index for ensuring strong consistency, which can be used with parallel query to
improve the SQL query concurrency and reduce the response time in this scenario.

Determine the shard key by combining the fields of the numeric (string) type and the time
type. This method is applicable to log retrieval.

For example, a log system records all user operations and needs to horizontally partition the
following single log table:

CREATE TABLE sample_order (
id INT(11) NOT NULL,
sellerId INT(11) NOT NULL,
trade_id INT(11) NOT NULL,
buyer_id INT(11) NOT NULL,
buyer_nick VARCHAR(64) DEFAULT NULL,
PRIMARY KEY (id)
)

CREATE TABLE sample_order (
id INT(11) NOT NULL,
sellerId INT(11) NOT NULL,
trade_id INT(11) NOT NULL,
buyer_id INT(11) NOT NULL,
buyer_nick VARCHAR(64) DEFAULT NULL,
PRIMARY KEY (id)
) DBPARTITION BY HASH(sellerId)

CREATE TABLE user_log (

Distributed Relational Database Service Best Practice

3

You can combine the user identifier and the time field as the shard key for table sharding by days of a
week. The distributed DDL statement for table creation is as follows:

Choose the number of shards

Distributed Relational Database Service (DRDS) supports the horizontal partitioning of databases and
tables. By default, eight physical database shards are created on an ApsaraDB RDS for MySQL
instance, and one or more physical table shards can be created on each physical database shard. The
number of table shards is also called the number of shards.

Generally, we recommend that each physical table shard contain no more than 5 million rows of data.
Generally, you can estimate the data increment in the next one to two years. Then you can divide the
estimated total data size by the total number of physical database shards, and divide the result by the
recommended maximum data size of 5 million rows, to figure out the number of physical table
shards to be created on each physical database shard:

Therefore, when the calculated number of physical table shards is equal to 1, only database sharding
needs to be performed, that is, a physical table shard is created in each physical database shard. If the
calculation result is greater than 1, we recommend that you perform both database sharding and
table sharding, that is, there are multiple physical table shards in each physical database shard.

For example, if you estimate that a table may contain about 100 million rows of data two years later
and have purchased four ApsaraDB RDS for MySQL instances, the number of physical table shards in
each physical database shard is calculated as follows:

userId INT(11) NOT NULL,
name VARCHAR(64) NOT NULL,
operation VARCHAR(128) DEFAULT NULL,
actionDate DATE DEFAULT NULL
)

CREATE TABLE user_log (
userId INT(11) NOT NULL,
name VARCHAR(64) NOT NULL,
operation VARCHAR(128) DEFAULT NULL,
actionDate DATE DEFAULT NULL
) DBPARTITION BY HASH(userId) TBPARTITION BY WEEK(actionDate) TBPARTITIONS 7

Number of physical table shards in each physical database shard = CEILING(Estimated total data size/(Number of
ApsaraDB RDS for MySQL instances x 8)/5,000,000)

Number of physical table shards in each physical database shard = CEILING(100,000,000/(4 x 8)/5,000,000) =

Distributed Relational Database Service Best Practice

4

If the result is 1, only database sharding is needed, that is, one physical table shard is created in each
physical database shard.

If only one ApsaraDB RDS for MySQL instance is used in this example, the calculation result is:

The result is 3, therefore we recommend that you create three physical table shards in each physical
database shard.

Determine the time for configuration
upgrade

Database performance can be measured by the response time (RT) and queries per second (QPS). RT
reflects the performance of a single SQL statement, which can be improved through SQL optimization
and other methods. Distributed Relational Database Service (DRDS) upgrade expands the capacity to
improve performance, and is suitable for database access with low latency and high QPS.

The performance of a DRDS instance depends on the performance of DRDS and ApsaraDB RDS for
MySQL. Insufficient performance of any DRDS or ApsaraDB for RDS node can result in a bottleneck in
the overall performance. This topic describes how to check the performance metrics of a DRDS
instance and upgrade the DRDS instance to address performance bottlenecks.

Determine the performance bottleneck of a DRDS instance

The QPS and CPU utilization of a DRDS instance are positively correlated. When the DRDS instance
has performance bottlenecks, the CPU utilization of the DRDS instance remains high.

View the CPU utilization

In the DRDS console, click Instances in the left-side navigation pane.

Click the name of the target instance to go to the Basic Information page of the instance.

In the left-side navigation pane, choose Monitoring and Alerts > Instance Monitoring.

CEILING(0.625) = 1

Number of physical table shards in each physical database shard = CEILING(100,000,000/(1 x 8)/5,000,000) =
CEILING(2.5) = 3

Distributed Relational Database Service Best Practice

5

If the CPU utilization exceeds 90% or remains above 80%, the DRDS instance has a performance
bottleneck. If the ApsaraDB RDS for MySQL instance has no performance bottleneck, the current
DRDS instance specifications cannot meet the QPS performance requirements of the business. In this
case, upgrade the DRDS instance.

For more performance-related service monitoring scenarios and methods for configuring the DRDS
CPU utilization alert, see DRDS instance monitoring.

Upgrade DRDS instances

QPS is an important metric for determining whether the DRDS instance specifications can meet the
business requirements. A reference QPS value is available for each DRDS instance specification.

Note: Some special SQL statements require more computing (such as temporary table sorting and
aggregate computing) on DRDS instances. In this case, the QPS supported by each DRDS instance is
lower than the standard value in the specification.

You can upgrade the DRDS instance by adding DRDS server nodes for sharing the QPS load to
improve the processing performance of the instance. DRDS server nodes are stateless. Therefore, this
upgrade method increases the instance performance linearly.

For example, service A requires about 15,000 QPS. The current DRDS instance has 4 cores and 4 GB
memory, with only two DRDS server nodes. The instance supports only 10,000 QPS. You can find that
the CPU utilization of the DRDS instance is always high. After you upgrade the DRDS instance to the
specification of 8 cores and 8 GB memory, each DRDS server node can handle about 4,000 QPS. Then,
the performance meets the needs of the user, and the CPU utilization also drops to a reasonable
level, as shown in the following figure:

For more information about how to upgrade a DRDS instance, see Change configurations.

Choose a database connection pool for an
application

You can use a database connection pool to manage database connections in a centralized manner, so
as to improve application performance and reduce database loads.

Reuse resources: Connections can be reused to avoid the high performance overheads
caused by frequent connection creations and releases. Resource reuse can also improve
system stability.

Improve the system response efficiency: After the connection initialization is completed, all

Distributed Relational Database Service Best Practice

6

requests can directly use the existing connections, which avoids the overheads of connection
initialization and release and improves the system response efficiency.

Prevent connection leakage: The connection pool forcibly revokes connections based on the
preset revocation policy to prevent connection resource leakage.

Recommended connection pool

We recommend that you use a connection pool to connect applications and databases for service
operations. For Java programs, we recommend that you use Druid connection pool. The Druid
connection pool version is required to be 1.1.11 or later.

Standard Spring configuration for a Druid connection pool

<bean id="dataSource" class="com.alibaba.druid.pool.DruidDataSource" init-method="init" destroy-
method="close">
<property name="driverClassName" value="com.mysql.jdbc.Driver" />
<! -- Basic properties URL, user, and password -->
<property name="url"
value="jdbc:mysql://ip:port/db?autoReconnect=true&rewriteBatchedStatements=true&socketTimeout=30000&con
nectTimeout=3000" />
<property name="username" value="root" />
<property name="password" value="123456" />
<! -- Configure the initial size, minimum value, and maximum value -->
<property name="maxActive" value="20" />
<property name="initialSize" value="3" />
<property name="minIdle" value="3" />
<! -- maxWait indicates the time-out period for getting the connection -->
<property name="maxWait" value="60000" />

<! -- timeBetweenEvictionRunsMillis indicates the interval for detecting idle connections to be closed, in
milliseconds -->
<property name="timeBetweenEvictionRunsMillis" value="60000" />
<! -- minEvictableIdleTimeMillis indicates the minimum idle time of a connection in the connection pool, in
milliseconds-->
<property name="minEvictableIdleTimeMillis" value="300000" />
<! -- SQL statement used to check whether a connection is available -->
<property name="validationQuery" value="select 'z' from dual" />
<! -- Whether to enable idle connection detection -->
<property name="testWhileIdle" value="true" />
<! -- Whether to check the connection status before getting a connection -->
<property name="testOnBorrow" value="false" />
<! -- Whether to check the connection status before releasing a connection -->
<property name="testOnReturn" value="false" />
<! -- Whether to close the connection at a specified time. This parameter is not required by default. However, you
can add this parameter to balance the number of connections on each DRDS server node. -->
<property name="phyTimeoutMillis" value="1800000" />
<! -- Whether to close the connection after a specified number of SQL executions. This parameter is not required by
default. However, you can add this parameter to balance the number of connections on each DRDS server node. --
>

Distributed Relational Database Service Best Practice

7

Connections in a DRDS instance

When an application connects to a Distributed Relational Database Service (DRDS) instance for
operation, there are two types of connections from the perspective of the DRDS instance:

Frontend connection: a connection established by an application to the logical database on
the DRDS instance.

Backend connection: a connection established by a DRDS server node in a DRDS instance to
a physical database in a backend ApsaraDB RDS for MySQL instance.

Frontend connections

Theoretically, the number of frontend connections is limited by the available memory size and the
number of network connections to the server nodes of a DRDS instance. However, when an
application connects to a DRDS instance, the DRDS instance usually manages a limited number of
connections to perform requested operations, and does not maintain a large number (tens of
thousands, for example) of concurrent persistent connections. Therefore, the number of frontend
connections allowed by a DRDS instance can be considered as unlimited.

The number of frontend connections is unlimited and a large number of idle connections are allowed.
Therefore, this connection type is applicable to the scenarios where a large number of servers are
deployed and their simultaneous connections to the DRDS instance are required.

Note: Operation requests obtained from frontend connections are processed by internal threads of
the DRDS instance through backend connections, and the numbers of internal threads and backend
connections are limited. Therefore, though the number of frontend connections is considered as
unlimited, the overall concurrency of requests supported by a DRDS instance is limited.

Backend connections

Each server node of a DRDS instance creates a backend connection pool to automatically manage
and maintain the backend connections to the physical databases in the ApsaraDB RDS for MySQL
instance. Therefore, the maximum number of connections in each backend connection pool of a
DRDS instance depends on the maximum number of connections supported by an ApsaraDB RDS for
MySQL instance. The maximum number of connections in a backend connection pool of a DRDS

<property name="phyMaxUseCount" value="10000" />
</bean>

Distributed Relational Database Service Best Practice

8

-

-

instance can be calculated using the following formula:

For example, you have purchased an ApsaraDB RDS for MySQL instance and a DRDS instance of the
following specifications:

The ApsaraDB RDS for MySQL instance has 4 cores and 16 GB memory. It has eight physical
database shards and supports a maximum of 4,000 connections.
The DRDS dedicated instance has 32 cores and 32 GB memory, with each DRDS server node
having two cores and 2 GB memory. That is, the instance has 16 DRDS server nodes.

With the preceding formula, the maximum number of connections in each backend connection pool
of the DRDS instance is:

Note:

The result of the preceding formula is the maximum number of connections in the backend
connection pool of the DRDS instance. In practice, the maximum number of connections in
each backend connection pool of a DRDS instance is controlled below the upper limit to
alleviate pressure on ApsaraDB RDS for MySQL instances.

We recommend that you create databases of a DRDS instance on dedicated ApsaraDB RDS
for MySQL instances. Do not create databases for other applications or DRDS instances on
the dedicated ApsaraDB RDS for MySQL instances.

Troubleshoot DDL exceptions

About DDL

When you execute a DDL command of Distributed Relational Database Service (DRDS), DRDS
performs the corresponding DDL operation on all table shards. Failures of such operations can be
divided into two types:

Maximum number of connections in a backend connection pool of a DRDS instance = FLOOR(Maximum number of
connections in an ApsaraDB RDS for MySQL instance/Number of physical database shards in the ApsaraDB RDS for
MySQL instance/Number of server nodes in the DRDS instance)

Maximum number of connections in the backend connection pool of the DRDS instance = FLOOR (4000/8/16) =
FLOOR (31.25) = 31

Distributed Relational Database Service Best Practice

9

-

-

1.

2.

The DDL operation execution fails in a database shard. DDL execution failure in any database
shard may result in inconsistent table shard structures.
The system does not respond for a long time after the DDL statement is executed. When you
perform a DDL operation on a large table, the system may make no response for a long time
due to the long execution of a DDL statement in a database shard.

Execution failures in database shards may occur for various reasons. For example, the table you want
to create already exists, the column you want to add already exists, or the disk space is insufficient.

In general, no response for a long time is caused by the long execution of a DDL statement in a
database shard. Taking ApsaraDB RDS for MySQL as an example, the DDL execution time depends
mostly on whether the operation is an In-Place (directly modifying the source table) or Copy Table
(copying data in the table) operation. An In-Place operation only modifies metadata in a table,
whereas a Copy Table operation reconstructs data in the entire table and also involves log and buffer
operations.

For more information on the relations between DDL operations and the two types of failures, see
Summary of Online Status for DDL Operations.

To determine whether a DDL operation is an In-Place or Copy Table operation, you can view the
return value of “rows affected” after the operation is completed.

Examples

Modify the default value of a column. This operation is very fast and does not affect the
table data at all:

Query OK, 0 rows affected (0.07 sec)

Add an index. This operation takes some time, but “0 rows affected” indicates that the
table data is not copied:

Query OK, 0 rows affected (21.42 sec)

Modify the data type of a column. This operation takes a long time and reconstructs all data
rows in the table:

Query OK, 1671168 rows affected (1 min 35.54 sec)

Therefore, before you executing a DDL operation on a large table, perform the following steps to
determine whether the operation is a fast or a slow one:

Copy the table structure to generate a cloned table.
Insert some data.

Distributed Relational Database Service Best Practice

10

3.

4.

1.

2.

3.

4.

5.

Perform the DDL operation on the cloned table.
Check whether the value of rows affected is 0 after the operation is completed. A non-zero
value means that this operation reconstructs the entire table. In this case, you need to
perform this operation in off-peak hours.

Handle failures

DRDS DDL operations distribute all SQL statements to all database shards for parallel execution.
Execution failure on any database shard does not affect the execution on other database shards. In
addition, DRDS provides the CHECK TABLE command to check the structure consistency of the table
shards. Therefore, failed DDL operations can be performed again, and errors reported on database
shards on which the operations have been successfully executed do not affect the execution on other
database shards. Make sure that all table shards ultimately have the same structure.

Procedure for handling DDL failures

Run the CHECK TABLE command to check the table structure. If the returned result contains
only one row and the status is normal, the table statuses are consistent. In this case, go to
step 2. Otherwise, go to step 3.
Run the SHOW CREATE TABLE command to check the table structure. If the displayed table
structure is the same as the expected structure after the DDL statement is executed, the
DDL statement is executed successfully. Otherwise, go to step 3.
Run the SHOW PROCESSLIST command to check the statuses of all SQL statements being
executed. If any ongoing DDL operations are detected, wait until these operations are
completed, and then perform steps 1 and 2 to check the table structure. Otherwise, go to
step 4.
Perform the DDL operation again on DRDS. If the Lock conflict error is reported, go to step
5. Otherwise, go to step 3.
Run the RELEASE DBLOCK command to release the DDL operation lock, and then go to step
4.

The procedure is as follows:

Check the table structure consistency
Run the CHECK TABLE command to check the table structure. When the returned result
contains only one row and the displayed status is OK, **the table structures are consistent.

mysql> check table `xxxx`;
+----------------------------+-------+----------+----------+
| TABLE | OP | MSG_TYPE | MSG_TEXT |
+----------------------------+-------+----------+----------+
| TDDL5_APP.xxxx | check | status | OK |
+----------------------------+-------+----------+----------+
1 row in set (0.05 sec)

Distributed Relational Database Service Best Practice

11

If no result is returned after you run CHECK TABLE on Data Management Service
(DMS), try again by using the CLI.

Check the table structure
Run the SHOW CREATE TABLE command to check the table structure. If table structures are
consistent and correct, the DDL statement has been executed successfully.

Check the SQL statements being executed
If some DDL executions are slow and no response is received for a long time, you can run
the SHOW PROCESSLIST command to check the statuses of all SQL statements being
executed.

mysql> show create table `xxxx`;
+---------+--
--------+
| Table | Create Table |
+---------+--
--------+
| xxxx | CREATE TABLE `xxxx` (
`id` int(11) NOT NULL DEFAULT '0',
`NAME` varchar(1024) NOT NULL DEFAULT '',
PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 dbpartition by hash(`id`) tbpartition by hash(`id`) tbpartitions 3
|
+---------+--
--------+
1 row in set (0.05 sec)

mysql> SHOW PROCESSLIST WHERE COMMAND != 'Sleep';
+---------------+-----------+--------------------+-------------+---------+-------------------------------------
----------------------------------+--
----------------------+-----------+---------------+-----------+
| ID | USER | DB | COMMAND | TIME | STATE | INFO | ROWS_SENT | ROWS_EXAMINED | ROWS_READ |
+---------------+-----------+--------------------+-------------+---------+-------------------------------------
----------------------------------+--
----------------------+-----------+---------------+-----------+
| 0-0-352724126 | ifisibhk0 | test_123_wvvp_0000 | Query | 15 | Sending data | /*DRDS
/42.120.74.88/ac47e5a72801000/ */select `t_item`.`detail_url`,SUM(`t_item`.`price`) from `t_i | NULL | NULL
| NULL |
| 0-0-352864311 | cowxhthg0 | NULL | Binlog Dump | 13 | Master has sent all binlog to slave; waiting for
binlog to be updated | NULL | NULL | NULL | NULL |
| 0-0-402714566 | ifisibhk0 | test_123_wvvp_0005 | Query | 14 | Sending data | /*DRDS
/42.120.74.88/ac47e5a72801000/ */select `t_item`.`detail_url`,`t_item`.`price` from `t_i | NULL | NULL |
NULL |
| 0-0-402714795 | ifisibhk0 | test_123_wvvp_0005 | Alter | 114 | Sending data | /*DRDS
/42.120.74.88/ac47e5a72801000/ */ALTER TABLE `Persons` ADD `Birthday` date | NULL | NULL | NULL |
......
+---------------+-----------+--------------------+-------------+---------+-------------------------------------
----------------------------------+--

Distributed Relational Database Service Best Practice

12

The value in the TIME column indicates the number of seconds that the command has been
run for. If a command execution is too slow, as shown in the figure, you can run the KILL
‘0-0-402714795’ command to cancel the slow command.

In DRDS, one logical SQL statement corresponds to multiple statements on database
shards. Therefore, you may need to kill multiple commands to stop a logical DDL
statement. You can determine the logical SQL statement to which the command
belongs based on the INFO column in the SHOW PROCESSLIST result set.

Handle lock conflict errors
DRDS adds a database lock before performing a DDL operation and releases the lock after
the operation. The KILL DDL operation may cause a failure to release the lock. If you
perform the DDL operation again, the following error message is returned:

Then, run RELEASE DBLOCK to release the lock. After the command is canceled and the lock
is released, execute the DDL statement again during off-peak hours or when the service is
stopped.

Other problems

DMS or other clients cannot display the modified table structure.
To enable some clients to obtain table structures from system tables (such as COLUMNS or TABLES),
DRDS creates a shadow database in database shard 0 on your ApsaraDB RDS for MySQL instance. The
shadow database name must be the same as the name of your DRDS logical database. It stores the
table structures and other information of all the user databases.
DMS obtains DRDS table structures from the system table in the shadow database. When you are
troubleshooting DDL exceptions, the table structure may be modified in the user database but not in
the shadow database due to some reasons. In this case, you need to connect to the shadow database
and perform the DDL operation on the table again in the database.

CHECK TABLE does not check whether the table structure in the shadow database is consistent
with that in the user database.

----------------------+-----------+---------------+-----------+
12 rows in set (0.03 sec)

Lock conflict , maybe last DDL is still running

Distributed Relational Database Service Best Practice

13

1.

1.

Scan DRDS data efficiently

Distributed Relational Database Service (DRDS) supports efficient data scanning and uses aggregate
functions for statistical summary during full table scans.

Common scanning scenarios include the following:

Scan of table without database or table shards: DRDS transmits the original SQL statement
to the backend ApsaraDB RDS for MySQL database for execution. In this case, DRDS
supports any aggregate functions.

Non-full table scan: DRDS transmits the original SQL statement to each single ApsaraDB RDS
for MySQL database for execution. For example, when the shard key in a WHERE clause
indicates “equal to”, a non-full table scan is performed. In this case, DRDS also supports all
aggregate functions.

Full table scan: Currently, supported aggregate functions are COUNT, MAX, MIN, and SUM.
In addition, LIKE, ORDER BY, LIMIT, and GROUP BY are also supported during full table scan.

Parallel scan of all table shards: If you need to export data from all databases, you can run
the SHOW command to view the table topology and scan all table shards in parallel. For
more information, see the following.

Traverse tables by using a hint

Run SHOW TOPOLOGY FROM TABLE_NAME to obtain the table topology.

By default, the non-sharding tables are stored in database shard 0.

Traverse each table based on the topology.

Execute the current SQL statement on database shard 0.

mysql:> SHOW TOPOLOGY FROM DRDS_USERS;
+------+-------------------+--------------+
| ID | GROUP_NAME | TABLE_NAME |
+------+-------------------+--------------+
| 0 | DRDS_00_RDS | drds_users |
| 1 | DRDS_01_RDS | drds_users |
+------+-------------------+--------------+
2 rows in set (0.06 sec)

Distributed Relational Database Service Best Practice

14

/! TDDL:node='DRDS_00_RDS'*/ SELECT * FROM DRDS_USERS;

Execute the current SQL statement on database shard 1.

/! TDDL:node='DRDS_01_RDS'*/ SELECT * FROM DRDS_USERS;

Note: We recommend that you execute SHOW TOPOLOGY FROM TABLE_NAME to obtain the latest
table topology before each scanning operation.

Parallel scans

DRDS allows you to run mysqldump to export data. However, if you want to scan data faster, you can
enable multiple sessions for each table shard to scan tables in parallel.

As shown above, the table has four database shards, and each database shard has three table shards.
Execute the following SQL statement on the table shards of the TDDL5_00_GROUP database.

Note: TDDL5_00_GROUP in HINT corresponds to the GROUP_NAME column in the output of the
SHOW TOPOLOGY command. In addition, the table name in the SQL statement is the table shard
name.

At this time, you can enable up to 12 sessions (corresponding to 12 table shards respectively) to
process data in parallel.

mysql> SHOW TOPOLOGY FROM LJLTEST;
+------+----------------+------------+
| ID | GROUP_NAME | TABLE_NAME |
+------+----------------+------------+
0	TDDL5_00_GROUP	ljltest_00
1	TDDL5_00_GROUP	ljltest_01
2	TDDL5_00_GROUP	ljltest_02
3	TDDL5_01_GROUP	ljltest_03
4	TDDL5_01_GROUP	ljltest_04
5	TDDL5_01_GROUP	ljltest_05
6	TDDL5_02_GROUP	ljltest_06
7	TDDL5_02_GROUP	ljltest_07
8	TDDL5_02_GROUP	ljltest_08
9	TDDL5_03_GROUP	ljltest_09
10	TDDL5_03_GROUP	ljltest_10
11	TDDL5_03_GROUP	ljltest_11
+------+----------------+------------+
12 rows in set (0.06 sec)

/!TDDL:node='TDDL5_00_GROUP'*/ select * from ljltest_00;

Distributed Relational Database Service Best Practice

15

	Best Practice
	Choose the DRDS and RDS instance specifications
	DRDS instance series
	Select DRDS instance type and specification
	Select RDS instance specification

	Choose a shard key
	Choose the number of shards
	Determine the time for configuration upgrade
	Determine the performance bottleneck of a DRDS instance
	Upgrade DRDS instances

	Choose a database connection pool for an application
	Recommended connection pool
	Standard Spring configuration for a Druid connection pool

	Connections in a DRDS instance
	Frontend connections
	Backend connections

	Troubleshoot DDL exceptions
	About DDL
	Examples
	Handle failures
	Procedure for handling DDL failures

	Other problems

	Scan DRDS data efficiently
	Traverse tables by using a hint
	Parallel scans

