
Distributed Relational
Database Service

Best Practice

Best Practice

Data Splitting Strategy

Sharding dimension is the most important factor to decide the distributed data. For this reason, it
shall be selected with caution. In general, you can consider it based on these five dimensions: data
balance, transaction boundary factor, common query efficiency, heterogeneous index, and simple
strategy. The business type may be different for each application, and may fail to match the optimal
strategy of all factors. Specifically, a business type shall be subject to comprehensive consideration.
All factors are not allowed in extreme conditions to avoid a sharp increase of costs arising from
development, operation and maintenance.

Capacity and access balance

Generally, the data capacity and access balance needs to be first considered. Unbalanced data
distribution and access may fail to fulfill the data splitting capacity, worsening the access experience
and increasing the cost. This equals the effect of 1+1<2. Therefore, data distribution and access is
more balanced upon great discrimination of the split field. However, the hot issue shall also be
considered for a split value.

According to the preceding principle, can data be split by the primary key (subject to the greatest
discrimination)? We do not forbid splitting data by the primary key, but do not recommend doing so.
Each sql needs to contain the primary key field to keep the best performance if you split data by the
primary key (Certainly, your sql can fail to contain data fragments, only deteriorating the
performance).

Transaction boundary

The bigger a transaction boundary (or the number of data fragments executed by single sql) is, the
higher the probability of lock conflict of a system is. Consequently, the system is more difficult to
expand, deteriorating its performance. To achieve a highly-expandable system, you need to make
best efforts to narrow the transaction boundary and limit it to a single computer if possible. Three
methods are available to narrow the transaction boundary, and they are described as follows:

Method 1: Ensure that the transaction boundary is small by nature.

For example, if the data are distributed evenly as per a splitting condition, and if the transaction
boundary lies only on a machine and does not involve multi-machine transactions, the sharding

Distributed Relational Database Service Best Practice

1

condition is an applicable sharding dimension.

Method 2: Use an eventually message-based consistent model to change a strongly consistent
transaction into an eventually consistent transaction.

Splitting a transaction involves a complicated concept, and it will be addressed separately. A brief
description is presented here only for the model of splitting a most commonly and eventually
consistent transaction. For instance, when transferring data between two databases through a
distributed transaction, we will find that some operations have to be transmitted over the Internet. As
a result, a transaction is greatly delayed, dramatically deteriorating the performance.

Method 3: Exercise caution when using distributed transactions.

An eventually consistent transaction generally fulfills 90% business scenarios. Other scenarios may
still be fulfilled in compliance with distributed transactions. However, distributed transactions will
cause many performance issues. For this reason, it is recommended to use distributed transactions
when required.

Common query

The core idea for optimizing common query is to directly and physically send a front-end request to a
storage machine rather than send it to multiple storage machines for query if possible.

When being sent to multiple machines for query, a request will be physically sent to a large number
of storage machines although the query is not delayed at each time. This occupies additional
resources on lower-layer data nodes. Therefore, this circumstance shall be avoided if possible.

Heterogeneous index

The preceding example shows the method for querying data only based on one dimension. How can
we query data if several key dimensions are available for query in the system?

The first method

The first method is ful table scan, increasing the duty of reading more data. However, we can expand
the read capacity infinitely by horizontally adding a standby database. Therefore, full table scan is a
feasible scheme at a slightly high cost.

The second method

The second method is to use the heterogeneous index table if we want to further decrease the cost.
The essence is to use an asynchronous trigger and write each update of the original table into a new
table in compliance with another dimension. When being familiar with a database, you map the
database. The heterogeneous index table basically functions as an index in the traditional database,
excepting that the index creation process is changed from synchronization to asynchronization, and
about 100ms delay may exist between the index table and the main table.

Distributed Relational Database Service Best Practice

2

Keep it simple

Various conflicts need to be addressed. In practice, the shard key is generally selected based on
different attractions. Scheme A will bring some advantages, whereas scheme B will bring other
advantages.

If query optimization conflicts with balanced read-write access, take priority to select the balanced
read-write access. Query-related issues are easy to solve regardless of full table scan or replication of
heterogeneous index with an additional machine. However, if the write operation or the stand-alone
capacity is not balanced, the conflict will be more difficult to solve.

The complicated sharding rule or opportunistic program code can bring short-term favorable
performance or cost of the system. However, the resultant complexity for operation and maintenance
will offset most advantages obtained in the system. Therefore, a simple and direct method based on
the 82 Rule is often the most efficient method according to the system architecture.

Selection of application connection pool

It is highly recommended that you connect a task with a connection pool. In the Java environment,
DRUID serves as an application connection pool (https://github.com/alibaba/druid/), and is the most
recommended connection pool. The components in the DRUID connection pool are well-tested and
stable standard components released by Alibaba Corporation. They also implement monitoring and
other functions.

Spring standard configuration of DRUID

<bean id="dataSource" class="com.alibaba.druid.pool.DruidDataSource" init-method="init" destroy-
method="close">
 <property name="driverClassName" value="com.mysql.jdbc.Driver" />
 <!—essential attribute url, user, password -->
 <property name="url"
value="jdbc:mysql://ip:port/db?autoReconnect=true&rewriteBatchedStatements=true&socketTimeout=3
0000&connectTimeout=3000" />
 <property name="username" value="root" />
 <property name="password" value="123456" />
 <!—configuration initialization size, minimum and maximum -->
 <property name="maxActive" value="20" />
 <property name="initialSize" value="3" />
 <property name="minIdle" value="3" />
 <!—maxWait timeout for waiting for obtaining of connection -->
 <property name="maxWait" value="60000" />

 <!—timeBetweenEvictionRunsMillis detection interval, idle connection to be closed for detection, with
millisecond as unit -->
 <property name="timeBetweenEvictionRunsMillis" value="60000" />
 <!—minEvictableIdleTimeMillis minimum idle time of a connection in pool, with millisecond as unit-->

Distributed Relational Database Service Best Practice

3

Data import and export

Import of small data

If any small data (at the ten-million level) do not need to be incrementally imported or need to be
one-off imported for compatibility test, it is recommended to directly use the Mysql source or
Navicat for single-thread transfer, or write data into DRDS by hand coding of multi-thread batch.

Single-thread data are imported slowly. This fails to take the advantages of the parallel system with
highly-distributed databases, However, such data can be easily imported in practice. For example, you
can use the mysql source command to import the data from http://www.blogjava.net/hh-
lux/archive/2007/05/05/115419.html, or use the navicat command to import the data from xxx.sql or
xxx.csv.

Import of big data

As DRDS can give play to the 100% read-write capacity of the underlying storage, so you do not have
to worry about it. If you want to write performance authentication with your own data, we
recommend you to write in batches (multi-thread reading at the same time has a better effect). If you
use java, you can submit the interface of sql by using the batch in jdbc api. If you want your code to
implement a high efficiency, you must add the parameter rewriteBatchedStatements=true (druid data
source https://github.com/alibaba/druid is used as the code snippet)) into jdbc url. Mysql connector
is allowed to merge multiple insert sentences into an insert sentence in multi values format, and send
it to mysql server for execution. Furthermore, PrepareStatement is required to execute sql.

To analyze the specific principle, refer to the code example in
http://www.cnblogs.com/xhan/p/3958521.html:

 <property name="minEvictableIdleTimeMillis" value="300000" />
 <property name="validationQuery" value="SELECT 'z'" />
 <property name="testWhileIdle" value="true" />
 <property name="testOnBorrow" value="false" />
 <property name="testOnReturn" value="false" />
 </bean>

//Connection setting and creation
ds = new DruidDataSource();
ds.setUrl("jdbc:mysql://" + c.getHost() + ":" + c.getPort() + "/" + c.getSchema());
ds.setConnectionProperties("autoReconnect=true;socketTimeout=600000;rewriteBatchedStatements=true");
ds.setDriverClassName("com.mysql.jdbc.Driver");
ds.setUsername(c.getUser());
ds.setPassword(c.getPassword());
ds.setMaxActive(16);
ds.setMaxWait(5000);

Distributed Relational Database Service Best Practice

4

Support of DRDS for data import

For formal on-line operation of application, we have a special tool for data migration. In this case,
one or more migration machines shall be prepared. The following two methods are available for
deploying these machines, depending on the network situation of the user’s database.

1） if user’s database can be directly accessed from the inside cloud, the ECS is recommended as
the mitigation machine. As data are transmitted from the ECS to the DRDS over an intranet with high
bandwidth, and the bandwidth of the public network of the ECS can be elastically upgraded, data
mitigation efficiency can implement the best. In order to reduce cloud loading cost, we have
arranged some ECS dedicated to ECS, and additional preparation is not required in general.

ds.init();

//Data import code
import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.SQLException;
public class BatchedInsertDemo {
public static void doBatchedInsert(Connection conn, int batchSize, int insertCount) throws SQLException {
 PreparedStatement ps = conn.prepareStatement("insert into Test (name,gmt_created,gmt_modified) values
(?,now(),now())");
 for (int i = 0; i < insertCount; i++) {
 ps.setString(1, i+" ");
 ps.addBatch();
 if((i+1) % batchSize == 0) {
 ps.executeBatch();
 }
 }
 ps.executeBatch();
 ps.close();
 }
}

Distributed Relational Database Service Best Practice

5

2） In some cases, for safety or other aspects, a user can access Aliyun over its network, but the
machine in Aliyun environment cannot access the user’s network. In this case, the mitigation
procedure shall be arranged on the user's machine for data mitigation.

Data export

The DRDS supports data exported (mysqldump command). It can also skip to the console of the data
node RDS from the DRDS console for database backup and backup file downloading. See
http://help.aliyun.com/view/13440586.html for specific steps

Globally unique ID

The globally unique ID of DRDS ensures that the unique filed data is exclusively defined rather than
being strictly increased. Therefore, operations such as sequencing cannot be performed according to
the sequence.

Automatic filling of the primary key

The current DREDS is capable of supporting automatic filling of the primary key. This means that
DRDS will automatically fill the primary key only if you do not specify the primary key in the insert
statement. An example is shown as follows:

You can also use the standard jdbc interface to obtain LastInsertId, which is consistent with the
ordinary MySQL

Manual creation and obtaining

You can create a sequence through the specified SQL of DRDS, with the syntax being as follows:

mysql> insert into users (name,address,gmt_create,gmt_modified,intro) values ('sun','hz',now(),now(),'aa');
Query OK, 1 row affected (0.02 sec)

mysql> select last_insert_id();
+------------------+
| LAST_INSERT_ID() |
+------------------+
| 5018 |
+------------------+
1 row in set (0.00 sec)

mysql> create sequence sample_seq start with 100000;
Query OK, 1 row affected (0.01 sec)

Distributed Relational Database Service Best Practice

6

You can view the currently existing sequence through the specified SQL of DRDS, with the syntax
being as follows:

You can obtain the latest ID through the specified SQL of DRDS, with the syntax being as follows:

SQL optimization

The DRDS is an efficient and stable distributed relation database system. However, as distributed
relation query is processed by DRDS, its query optimization for SQL is different with that of the
traditional single database (e.g. mysql, oracle). When in query optimization, the traditional single
database mainly considers the expense of disk IO, but DRDS, during optimization, will also consider
another more important IO expense, i.e. network. For optimizing SQL execution of DRDS, the core
optimization idea is to reduce network IO. For this purpose, the DRDS will possibly distribute the
work originally belonging to DRDS to each sub-database (e.g. RDS) at the bottommost layer, which
can transfer IO expense originally needing network into stand-alone disk IO expense, thus increasing
the execution efficiency of query. Therefore, if we encounter slow SQL when using DRDS, we shall
properly rewrite SQL as per the characteristics of DRDS.

mysql> show sequences;
+------+-------------------------------+--------+---------------------+
| ID | NAME | VALUE | GMT_MODIFIED |
+------+-------------------------------+--------+---------------------+
1	AUTO_SEQ_USERS	5000	2014-08-09 18:20:28
2	AUTO_SEQ_ITEMS	5000	2014-06-18 16:08:06
3	AUTO_SEQ_ORDERS	6000	2014-06-18 16:08:06
4	demo_seq	12000	2014-08-09 18:21:28
5	AUTO_SEQ_DEF	2000	2014-07-04 17:55:36
6	WEBO_COMMENTS	0	2014-07-13 19:38:55
7	AUTO_SEQ_ABC	66000	2014-07-16 15:10:43
8	AUTO_SEQ_CATEGORY	2000	2014-07-17 15:53:27
9	AUTO_SEQ_USER	2000	2014-07-25 16:54:29
10	AUTO_SEQ_CLUSTER	2000	2014-07-27 15:58:34
11	AUTO_SEQ_SPE_CLUSTER	2000	2014-07-28 16:21:30
12	AUTO_SEQ_A	2000	2014-07-28 16:22:08
+------+-------------------------------+--------+---------------------+
17 rows in set (0.04 sec)

select sample_seq.nextVal from dual;
+--------------------+
| SAMPLE_SEQ.NEXTVAL |
+--------------------+
| 101001 |
+--------------------+
1 row in set (0.04 sec)

Distributed Relational Database Service Best Practice

7

Condition optimization of SQL

As data of DRDS are horizontally sharded as per the split key, use of split key in query will be very
meaningful to reduce execution time of SQL in DRDS. The query condition shall be possibly provided
with a sub-database key, which can enable DRDS to directly route query to a specific sub-database
according to the value of the sub-database key, which is useful to avoid whole database scan by
DRDS. The higher the selectivity of the condition including the shard key is (or the higher the
discrimination is), the easier it will be to increase DRDS’s query speed. For example, equality query
will be executed more quickly than range query.

JOIN optimization of SQL

In SQL, Join operation will often be the most time-consuming. Join algorithm used by DRDS in most
cases is Nested Loop and its derived algorithm (if Join has a sequencing request, Sort Merge
algorithm is used). DRDS’s Join process based on Nested Loop algorithm is as follows: for left and
right tables of Join, DRDS will fetch data from the left table (also called as driving table) of Join, and
then put the value in the Column Join in data fetched into the right table for IN query so as to finish
Join process. Thus, the less the data quantity of Join's left table is, the less the times of IN query made
by DRDS for the right table is. The less the data volume of right table is or index is created, the
quicker Join will be. Therefore, in DRDS, selection of Join’s driving table is very important for
optimization of Join.

Short table as driving table of Join

The so-called short table does not say that the table is the record number of the table in database,
but the number of records returned after the table is subject to condition filtering in query. Thus, the
most simple method for determining the actual data volume of a table is to attach where conditions
and join on conditions related to the table, and put them in DRDS for a count (*) query independently
to view data volume. For example, assuming that there is SQL shown as follows:

Its query speed is very slow, shown as follows:

select t.title, t.price
from t_order o,
 (select * from t_item i where i.id=242002396687) t
where t.source_id=o.source_item_id and o.sellerId<1733635660;

Distributed Relational Database Service Best Practice

8

About 24 seconds are required. Seeing the SQL, it is an inner JOIN. We do not know the actual data
volume of table o and table t in JOIN process, but we can conduct count () query on the table o and
table t respectively to obtain the group of data. For table o, we observe that o.sellerId<173363560 in
where conditions is only related to table o, we will extract it out, and attach into the count () query of
table o, thus obtaining the following query results;

And then we may know that table o has 50W records. Similarly, for table t, as this is a sub-query,
table t is extracted directly for count (*) query, then:

We can know the data volume of table t is only one. Therefore, we can determine that table o is a
long table and table t is a short table. Based on the principle of possibly using short table as Join
driving table, we will adjust SQL into:

select t.title, t.price
from
(select * from t_item i where i.id=242002396687) t,
 t_order o
where t.source_id=o.source_item_id and o.sellerId<1733635660

Distributed Relational Database Service Best Practice

9

The query results are as follows:

The query time is reduced to 0.15 seconds from 24 seconds, with large increase. A broadcast table is
used as the driving table of Join

broadcast table as driving table of Join

As the broadcast table of DRDS will be stored in every sub-database, the broadcast table, when being
used as the driving table of Join, will be converted into stand-alone Join together with Join of other
tables, thus increasing query performance. For example, assuming that there are SQL (where table
t_area is broadcast table) shown as follows:

The three tables are used as JOIN, with query results as follows:

The execution time is fairly long, about 15 seconds. Now, we will adjust the sequence of join, and put

select t_area.name
from t_item i join t_buyer b on i.sellerId=b.sellerId join t_area a on b.province=a.id
where a.id < 110107
limit 0, 10

Distributed Relational Database Service Best Practice

10

the broadcast table at the leftmost side as the driving table of join, that is:

Then, the whole join will be pushed down to be stand-alone join in DRDS. We will observe the
execution results SQL adjusted again:

Limit optimization of SQL

When DRDS is executing limit offset, count sentence, it actually reads the previous records of offset in
order and discards them directly, which will result in very slow query when offset is very big, even
though count is very small. Taking SQL as an example:

Although SQL only fetches 2 records (i.e.10000 and 10001), but its execution time is about 12
seconds, which is because that the number of record actually read by DRDS is 10002, as shown in
figure below:

In light of the above conditions, the optimization direction of SQL is that: the ID set of SQL is checked
firstly, and then the real record contents are queried through in query, with SQL rewritten shown as

select t_area.name
 from t_area a join t_buyer b on b.province=a.id join t_item i on i.sellerId=b.sellerId
 where a.id < 110107
limit 0, 10

SELECT *
FROM t_order
ORDER BY t_order.id
LIMIT 10000,2

Distributed Relational Database Service Best Practice

11

follows:

The purpose of rewriting is to buffer ID (ID is not too much) with internal memory, so that disk IO will
be reduced. If the sub-database key of table t_order is id, DRDS can route the in query to different
sub-databases through rule calculation for query, which avoids whole database scan. We will observe
the query results of SQL rewritten again

The execution time is changed into 1.08 seconds from the original 12 seconds, thus reducing an
order of magnitude.

ORDER BY optimization of SQL

In DRDS, by default, ensure that column name behind Distinct, Group and Order By sentences are
identical, and the final SQL only returns a small number of data. This is because that we, in this case,
can minimize the network band width consumed in distributed query without fetching a large
number of data for sequencing in table, and enable system performance to implement the optimal
status.

For example, for SQL shown below:

During execution, DRDS shall sequence data by buyer_id for aggregation, and then sequence the
aggregation results by maxSize. Because of existence of two different sequencing requirements,
DRDS cannot finish the SQL at one time if middle results are not preserved with the temporary table,
thus during actual execution of the SQL, the following errors will be reported:

SELECT *
FROM t_order o
WHERE o.id IN (
 SELECT id
 FROM t_order
 ORDER BY id
LIMIT 10000,2)

select buyer_id,
 count(*) as maxSize
from t_trade
group by buyer_id
order by maxSize desc
limit 1

Distributed Relational Database Service Best Practice

12

Error reporting contents prompt that the temporary is not allowed to use. DRDS supports use of
temporary table, but does not recommend by default. As use of temporary table generally means
that the system has a performance bottleneck, avoid use of temporary table by making column
names of Distimct Group by and Order by identical possibly. If the SQL is executed successfully, DRDS
can be told, by adding HINT in SQL, that use of temporary table is allowed, with SQL modified as
follows (green part):

In this way, the DRDS can execute the SQL successfully. However, as the HINT may be ignored as a
note in some mysql clients, hint is generally added when SQL is sent to DRDS through the mysql
connector. Note: Confirm that the temporary table can be used only when there is a small number of
data in the temporary table. Otherwise, the system will have a serious performance problem ####.

/*+TDDL({'extra':{'ALLOW_TEMPORARY_TABLE':'TRUE'}})*/
select buyer_id,
 count(*) as maxSize
from t_trade
group by buyer_id
order by maxSize desc
limit 1

Distributed Relational Database Service Best Practice

13

	Best Practice
	Data Splitting Strategy
	Capacity and access balance
	Transaction boundary
	Common query
	Heterogeneous index
	Keep it simple

	Selection of application connection pool
	Spring standard configuration of DRUID

	Data import and export
	Import of small data
	Import of big data
	Support of DRDS for data import
	Data export

	Globally unique ID
	Automatic filling of the primary key
	Manual creation and obtaining

	SQL optimization
	Condition optimization of SQL
	JOIN optimization of SQL
	Short table as driving table of Join

	broadcast table as driving table of Join
	Limit optimization of SQL
	ORDER BY optimization of SQL

