
Container Service

User Guide

User Guide

Overview

Workflow

The following flowchart details how to use the Container Service:

Procedure

Step 1: Create a cluster, select the cluster network environment, and set the number of nodes and
configuration information of the cluster.

Step 2: Select an image or orchestration template (if your application is composed of services
supported by multiple images, you can select a single orchestration template).

Step 3: Create and deploy an application.

Step 4: View the status of the deployed application as well as the relevant service and container
information.

Basic concepts and terms

Cluster

A cluster describes a collection of cloud resources required to run containers. It can associates with

Container Service User Guide

1

server nodes, Server Load Balancer instances, VPCs, and other cloud resources.

Node

A node is a server (either a VM instance or a physical server) which is installed with a Docker Engine
and is used to deploy and manage clusters. The Agent program of the Container Service is installed in
a node and registered to a cluster. The quantity of nodes in a cluster is scalable.

Container

A container is an instance created using a Docker image. A single node can run multiple containers.

Image

A Docker image is a standard packaging format of a container application. You can specify an image
to deploy container applications. The image may be obtained from the Docker Hub, Alibaba Cloud
Container Hub, or your private Registry. An image ID is uniquely identified by the URI of the image
repository and the image tag name (the latest tag name is used by default).

Orchestration template

An orchestration template contains definitions of, and interconnection relationships between a group
of container services, and can be used to deploy and manage multiple container applications. The
Container Service is compatible with Docker Compose and is scalable.

Application

An application can be created from an image or an orchestration template. Each application can
contain one or more container services.

Service

A service is a group of containers running identical images with identical configurations. It is a
scalable microservice.

Associations

Container Service User Guide

2

Cluster management

Cluster introduction

A cluster refers to a combination of cloud resources that are necessary for the operation of a
container. It is associated with a number of ECS nodes, Server Load Balancer, and other cloud
resources.

Create a cluster

You can create a cluster using one of the following two methods:

Method 1: Create a cluster and, at the same time, create several ECS instances.

You can directly create a cluster with several new ECS instances through the Container Service. For
details, refer to Create a cluster.

The ECS instances created using this method are all Pay-As-You-Go instances. If you want to use
subscription ECS instances, you can buy them separately and then follow Method 2.

Method 2: Create a zero-node cluster and add an existing ECS instance.

Create a zero-node cluster.

Container Service User Guide

3

-

-

-

-

-

If you have purchased several ECS instances from the ECS service, you can create a zero-
node cluster in the Container Service. The operation is similar to Method 1, however, you
only need to select Do not add.

Add an existing ECS instance.

You can add an existing ECS instance to the Container service using one of the following
two methods:

Reset the image of the ECS instance and add it to the cluster automatically.

As this method will reset the image and system disk of the ECS instance, use it with
due care. However, the server added using this method is cleaner.

Execute scripts on the ECS instance and manually add it to the cluster.

This method is applicable to images that do not require a reset of the ECS instance.

For details, refer to Add an existing ECS instance.

Manage a cluster

You can search for, expand, connect to, clean up, or delete a cluster.

For more details, refer to:

Search for a cluster
Expand a cluster
Connect to a cluster
Clean up a cluster disk
Delete a cluster

Lifecycle of a cluster

A complete cluster lifecycle includes the following statuses.

Status Description

Inactive The cluster is waiting to add nodes .

Initial The cluster is applying for corresponding
cloud resources.

Running The cluster successfully applied for the cloud
resources.

Container Service User Guide

4

Cluster status flow

You can specify the configuration and the number of ECS instances when creating clusters. You can
also create a zero-node cluster, and then bind it with other ECS instances.

Note: If you create a zero-node cluster, the cluster will be in the “Inactive” status after it is
successfully created. The cluster will be activated (change to the “Running” status) after you
add ECS instances to it. For information about how to add ECS instances to the cluster, refer to
Add an existing ECS instance.

Constraints

Server Load Balancer instances created with container clusters are only available in Pay-As-You-Go
mode.

Updating The cluster is upgrading the Agent.

Scaling Change the number of nodes of the cluster.

Failed The cluster’s application for the cloud
resources failed.

Deleting The cluster is being deleted.

DeleteFailed Cluster deletion failed.

Deleted (invisible to users) The cluster is successfully deleted.

Container Service User Guide

5

-

-

-

Operating procedure

Log on to the Container Service console.

Click Clusters in the left navigation pane, and then click Create Cluster in the upper-right
corner.

Enter the basic information of the cluster.

Cluster Name: The name of the cluster to be created. It can be 1~64 characters
long and be composed of numbers, Chinese characters, English letters and
hyphens (-).

Note: The cluster name must be unique under the same user and the same
region.

Region: The region which the cluster will be deployed to.
Zone: The zone of the cluster.

Note: You can select the region and zone of the cluster according to the
distribution of your servers.

Set the network type of the cluster.

You can set the network types to Classic or VPC. Corresponding ECS instances and other
cloud resources are managed under the corresponding network environment.

If you select Classic, no additional configuration is required.

Classic network is a public basic network uniformly planned by Alibaba Cloud. The
network address and topology are assigned by Alibaba Cloud and can be used

Container Service User Guide

6

-

without special configurations.

If you select VPC, you need to configure relevant information.

VPC enables you to build an isolated network environment based on Alibaba
Cloud. You will have full control over your own virtual network, including a free IP
address range, network segment division, route table, gateway configuration, and
so on.

You need to specify a VPC, a VSwitchId and the starting network segment of a
container (subnet segment to which the Docker container belongs. For the
convenience of IP management, the container of each virtual machine belongs to a
different network segment, and container subnet segment should not conflict with
virtual machine segment).

It is recommended that you build an exclusive VPC/VSwitchId for the container
cluster to prevent network conflicts.

Add nodes.

You can create a cluster with nodes, or create a zero-node cluster and then add existing
nodes to the cluster. For information about how to add existing nodes to the cluster, refer
to Add an existing ECS instance.

Add

Set the operating system of the node.

Operating systems such as 64-bit Ubuntu 14.04 and 64-bit CentOS 7.0 are
supported.

Configure the ECS instance specifications.

Container Service User Guide

7

i.

ii.

You can specify different instance types and quantities, the capacity of data disk
(The ECS instance has a 20GB system disk by default), and logon password.

Note:

If you select a data disk, it will be attached to the /var/lib/docker
directory, and used for the storage of Docker images and containers.
In terms of performance and management, it is recommended that
you attach an independent data disk to the host and manage the
persistent data in the container by using Docker volumes.

Do not Add

You can click Add existing instance to add existing ECS instances to the cluster, or
you can click Create Cluster directly and add existing ECS instances to the cluster
after the cluster is created.

Configure EIP.

If you set the network type to VPC, by default, the Container Service configures an EIP for

Container Service User Guide

8

-

-

each ECS instance under the VPC. If this is not required, select Do not Configure Public EIP.
However, you will then need to configure the SNAT gateway.

Create a Server Load Balancer instance.

When a cluster is created, a public network Server Load Balancer instance is created by
default. You can access the container applications in the cluster through this Server Load
Balancer. This is a Pay-As-You-Go Server Load Balancer instance.

Install cloud monitoring plug-in on your ECS.

Installing a cloud monitoring plug-in on the node allows you to view the monitoring
information of the created ECS instance in the CloudMonitor console.

Add node IP addresses to RDS instance white lists.

You can add the IP addresses of the created ECS instances to RDS instances so that the ECS
instances can access the RDS instances.

Note:

You can only make this configuration when you select Add nodes.
The ECS instances must be in the same region as the RDS instances.

Click Create Cluster.

After the cluster is successfully created, you can configure the ECS or Server Load Balancer
instance on the corresponding console.

Subsequent operations

Container Service User Guide

9

-

-

●

●

You can locate the cluster created on the Cluster List page and click View Logs to view the creation
process log of the cluster.

You can create applications in the created cluster. For details, refer to Create an application.

You can add an ECS instance you bought to a specified cluster.

You can add an existing ECS instance in one of the following two ways:

Add ECS instances automatically: This method will reset the image and system disk of the
ECS instance. You can add one or more instances to the cluster at a time.
Manually add: Manually add the instance to the cluster by executing scripts on the ECS
instance. You can only select one ECS at a time.

Prerequisite

If you have not created a cluster before, you must first create cluster. For information about how to
create a cluster, refer to Create a cluster.

Considerations

The ECS instance to be added must be in the same region and use the same type of network
(classic or VPC) as the cluster.

When adding an existing ECS instance, make sure that your ECS instance has a public IP
(classic network) or EIP (VPC); otherwise, the ECS instance might not be added successfully.

The Container Service does not support adding ECS instances under a different account.

If you select Manually Add, note the following notices:

If you have already installed Docker on your ECS instance, manually adding the ECS
instance to a cluster might fail. It is recommended that you use the following
commands to uninstall Docker and remove the Docker folders before adding the
ECS instance to a cluster.

Ubuntu： apt-get remove -y docker-engine，rm -fr /etc/docker/
/var/lib/docker /etc/default/docker
CentOS：yum remove -y docker-engine，rm -fr /etc/docker

Container Service User Guide

10

/var/lib/docker

The Container Service has special requirement for the operating system of the ECS
instance. It is recommended that you use Ubuntu 14.04/16.04 or CentOS 7
operating system.

The Container Service requires that the kernel of the ECS instance should be Linux
3.18 or higher. When adding an ECS instance manually, if your kernel version is not
up to the requirement, the ECS instance cannot be added. In this case, you need to
upgrade your kernel.

Note: To avoid losing your data, you can create a snapshot before upgrading
your kernel. For information about how to create a snapshot, refer to Create a
snapshot.

Operating procedure

Log on to the Container Service console.

Click Clusters in the left navigation pane.

Locate the target cluster. Click More > Add Existing Instances.

Add ECS instances.

The instances displayed are screened from the ECS instance list and then synchronized
according to the region and network type defined by the cluster.

You can add ECS instances using one of the following two methods:

Add ECS instances automatically.

Container Service User Guide

11

Note: This method will reset the image and system disk of the ECS instance;
use it with due care. To avoid losing your data, create a snapshot before you
add the ECS instance. For information about how to create a snapshot, refer to
 Create a snapshot.

Select the instances to be added and click Next.
You can add one or multiple instances to the cluster at a time.

Set the instance information. Click Next and click Confirm in the pop-up
confirmation dialog box.

Click Finish. You can check the cluster status.

Manually add the instance to the cluster by executing scripts on the ECS instance.

Select Manually Add, select an ECS instance, and click Next.
You can only select one ECS at a time.

Confirm the instance information and click Next Step.

Click log on to the ECS instance xxxxxx.

In the pop-up dialog box, copy the VNC password (the password used to
connect to the ECS instance through a remote terminal) and click Close.

Container Service User Guide

12

In the pop-up dialog box, enter the VNC password and click OK.

Enter the logon account and password of the ECS instance, and press
Enter to log on to the ECS instance.

Click Input Commands, paste the above script into the pop-up dialog
box, click OK and press Enter.

Container Service User Guide

13

The system executes the script. Wait until the script is successfully executed. A
success prompt is displayed. Now, this ECS is successfully added.

Related operation

You can modify the VNC password in the remote terminal connection page. Click Modify
Management Terminal Password, enter the new password and click OK.

Container Service User Guide

14

-

-

Manage cross-zone nodes

To provide high availability of applications, you may select to distribute multiple nodes in different
zones when creating a cluster.

First, create a cluster with one node (or directly create a zero-node cluster). After the cluster is
created, add the nodes of different zones by expanding the cluster or adding existing ECS instances.

Note:

Nodes added through expanding are Pay-As-You-Go ECS instances.
Nodes added by adding existing ECS instances can be Pay-As-You-Go ECS instances or
monthly/yearly subscription ECS instances.

Add nodes of different zones through expanding

Operating procedure

Log on to the Container Service console.

Click Clusters in the left navigation pane.

Locate the cluster to be expanded, click More > Expand.

In the pop-up dialog box, configure the specifications of the new node.

You can create nodes of different zones by setting Zone.

Container Service User Guide

15

Click Expand. The new node is added to the cluster.

Repeat the steps above to create and add nodes of different zones to the cluster.

Add nodes of different zones through adding existing ECS
instances

Prerequisite

To add nodes by using this method, purchase ECS instances from the ECS purchase page first, and
select different zones for them during purchase.

Operating procedure

Log on to the Container Service console.

Click Clusters in the left navigation pane.

Locate the target cluster, click More > Add Existing Instance.

Select ECS instances of different zones and add them manually or automatically.

For the details, refer to Add an existing ECS instance.

Repeat the steps above to add ECS instances of different zones to the cluster.

Set the root domain name of a cluster

In Create a Nginx Web server from an image, when you set the web routing rules, you only need to

Container Service User Guide

16

enter the prefix nginx of the domain name. Then, you obtain the domain name
nginx.$cluster_id.$region_id.alicontainer.com. You can replace this domain name by setting a root
domain name (example.com is used in this example) of the cluster. When you redeploy the service
nginx, the domain name changes from nginx.c2818a77aac20428488694c0cd1600e6e.cn-
shenzhen.alicontainer.com to nginx.example.com, which makes it convenient for you to access the
cluster applications with your own root domain name.

The following example details the complete process.

Note: To guarantee the normal operation of the following example, upgrade the Agent to the
latest version first.

Operating procedure

Bind a Server Load Balancer instance.

Log on to the Container Service console.

Click Clusters in the left navigation pane.

Locate the cluster to be configured (routing-test-online is used in this example),
and click Manage.

Click Load Balancer Settings in the left navigation pane.
If no Server Load Balancer instance is bound, log on to the Server Load Balancer
console and create a Server Load Balancer instance; and then, return to this page
and bind it.

Note: Server Load Balancer instance bound with an intranet is supported.

Container Service User Guide

17

Set the domain name.

Click Set Domain Name and enter the root domain name you bought.
In this example, example.com is used.

Click Settings.

Resolve the domain name to the bound Server Load Balancer instance.

Click Server Load Balancer Settings and click Go to Server Load Balancer Console.

Find the VIP address of the bound Server Load Balancer instance.

Ask your DNS resolver service provider to resolve your domain (*.example.com in
this example) to the Server Load Balancer VIP address.

Redeploy the web service.

Redeploy your application. The web service access endpoint under the application
will change to $your_domain_prefix.example.com.

Container Service User Guide

18

i.

Access the latest access endpoint http://wordpress.example.com, you will see the
“Hello World” page of WordPress.

Download cluster certificate

With the downloaded certificate, you can connect to the endpoint exposed from the cluster through
Docker Swarm API or Docker Client.

Operating procedure

Obtain the access address.

Log on to the Container Service console.

Click Clusters in the left navigation pane.

Select a cluster in the cluster list and click Manage.

The cluster details page is displayed, showing the cluster connection information.

Download and save the certificate.

Configure a TLS certificate before you use the preceding service address to access the
Docker cluster.

Click Download Certificate in the cluster details page to download the certificate which is
contained in the certFile.zip file. In the following example, the downloaded certificate is
saved to the ~/.acs/certs/ClusterName/ directory. ClusterName indicates the name of your
cluster. You can save the certificate to a different directory, but the
~/.acs/certs/ClusterName/ directory is recommended for easy management.

mkdir ~/.acs/certs/ClusterName/ #Replace ClusterName with your cluster name
cd ~/.acs/certs/ClusterName/

Container Service User Guide

19

The certFile.zip file contains ca.pem, cert.pem, and key.pem files.

You can scale out your cluster according to your business needs.

Note: Instances added to the cluster are Pay-As-You-Go instances.

Limitation

A cluster can contain up to 20 nodes.

Operating procedure

Log on to the Container Service console.

Click Clusters in the left navigation pane.

Locate the cluster to be expanded. Click More > Expand.

In the pop-up dialog box, configure the specifications of the new node.

You can select the number of server nodes to be added and the corresponding
specifications.

Click Expand.

cp /path/to/certFile.zip .
unzip certFile.zip

Container Service User Guide

20

Search for a cluster

Operating procedure

Log on to the Container Service console.

Click Clusters in the left navigation pane.

Enter the cluster name or keywords of the cluster name in the search box. Clusters with the
keywords in their names are displayed.

Note: The search is case insensitive.

Delete a cluster

You can delete clusters from the Container Service. When you delete a cluster, the associated cloud
resources such as ECS instances and Server Load Balancer instances as well as all the applications and
services running on the instances will also be deleted. Use this operation with due care.

Operating procedure

Log on to the Container Service console.

Click Clusters in the left navigation pane.

Locate the cluster to be deleted and click Delete.

Container Service User Guide

21

-

-

In the pop-up dialog box, select whether to keep the Server Load Balancer instances and
click OK.

Clean up a cluster disk

Disk cleanup operation cleans up dirty data on each server in the cluster of users. Dirty data is limited
to:

Docker images downloaded to a local position but not used
Volume directory once attached to a container but not cleaned up after the destruction of
the container

Operating procedure

Log on to the Container Service console.

Click Clusters in the left navigation pane.

Locate the cluster to be cleaned up and click Manage.

Click Clear Disk.

Container Service User Guide

22

Upgrade Agent

The Agent of the Container Service is installed on each server in the cluster. It receives commands
issued by the Container Service control system.

New functions are regularly added to the Container Service. If you need the latest functions, update
the Agent of the cluster.

Operating procedure

Log on to the Container Service console.

Click Clusters in the left navigation pane.

Locate the cluster whose Agent is to be updated, click More > Upgrade Agent.

In the pop-up dialog box, click OK.

Upgrade Docker Daemon

Standard Docker Daemon is installed on each server in the cluster for container management.

Operating procedure

Log on to the Container Service console.

Container Service User Guide

23

Click Clusters in the left navigation pane.

Locate the cluster whose Docker Deamon you want to update, click Upgrade in the Docker
version column or click More > Upgrade Docker.

If your Agent version is too old, you need to first upgrade your Agent. Click Upgrade Agent
and follow the instructions.

If your Agent is the latest version, upgrade Docker directly.

You can upgrade Docker using one of the following methods:

Upgrade Directly

Click Upgrade Directly to enter the Docker Engine upgrading process.

Back up Snapshot before Upgrade

It is recommended that you back up the snapshot before upgrading Docker, so
that you can recover Docker if a fault occurs during the upgrade process.

Click Back up Snapshot before Upgrade, and then the system will call the ECS
OpenApI to take snapshots of the nodes in the cluster.

Taking snapshots may take some time. After all snapshots are taken, the system
enters the Docker Engine upgrading process automatically.

If the system fails to take the snapshot, the Continue and Quit buttons become
available. You can click Continue to enter the Docker Engine upgrading process, or
click Quit to give up the upgrade.

At this point, return to the Cluster list page and you can see that the cluster operated just now is in
the Docker-Engine is upgrading status. This may take a while as container data will be backed up
during the upgrade of the Docker Engine.

Container Service User Guide

24

Upgrade system services

The system services of a cluster are used to address general services necessary for applications. The
system services include log service acslogging, routing service acsrouting, monitor service
acsmonitoring and volume service acsvolumedriver.

Note: During the upgrade of the system services of a cluster, your application or service might
be temporarily inaccessible or abnormal. Be careful about the upgrade operation. It is
recommended that you upgrade the system services when the access traffic is low or at the
maintenance time.

Operating procedure

Log on to the Container Service console.

Click Clusters in the left navigation pane.

Locate the cluster whose system services you want to upgrade, click More > Upgrade
System Service.

In the pop-up dialog box, select the system service to be upgraded and click Upgrade.

For example, select Routing Service (corresponding to acsrouting; note that upgrade will
temporarily impact your access to applications), Volume Service (corresponding to
acsvolumedriver; note that upgrade will temporarily impact your associated application
functions).

Click Applications in the left navigation pane and select the target cluster.

Container Service User Guide

25

-

-

-

You will find that the system services are being upgraded.

Upon completion of the upgrade, the affected services resume normal functioning.

Node management

You can remove nodes from a cluster. The machine information of the removed node is no longer
displayed in the node list.

Operating procedure

Log on to the Container Service console.

Click Nodes in the left navigation bar.

Select the cluster of the node to be removed.

Locate the node you want to remove, click More > Remove.

In the pop-up confirmation dialog box, select Migrate Container based on your need and
click Confirm.

Container Migration

You can select Migrate Containers when you remove or reset a node.
If you select Migrate Containers, all containers on the node are migrated to other machines
in the cluster.
Container migration causes loss of the data in local volumes. Back up the data before
container migration. The node reset process stops if container migration fails. In this case,

Container Service User Guide

26

-

you must manually reset the node again. During the second reset, you can deselect Migrate
Containers to forcibly reset the node.
You can click Clusters > Manage > Events to view the container migration log.

You can reset a node in a cluster. The system disk of the corresponding machine (the reset node) is
replaced and the data stored in the system disk are lost. The reset machine is re-added to the cluster.

Operating procedure

Log on to the Container Service console.

Click Nodes in the left navigation bar.

Select the cluster of the node to be reset.

Locate the node you want to reset, click More > Reset.

In the pop-up confirmation dialog box, select Migrate Containers based on your need, enter
the instance logon password, and click Confirm.

For notes about container migration, refer to Container Migration below.

Container Service User Guide

27

-

-

-

-

Container Migration

You can select Migrate Containers when you remove or reset a node.
If you select Migrate Containers, all containers on the node are migrated to other machines
in the cluster.
Container migration causes loss of the data in local volumes. Back up the data before
container migration. The node reset process stops if container migration fails. In this case,
you must manually reset the node again. During the second reset, you can deselect Migrate
Containers to forcibly reset the node.
You can click Clusters > Manage > Events to view the container migration log.

Container Service User Guide

28

Security Group

View security group rules

Procedures

Log on to the Container Service console.

Click Clusters in the left navigation pane.

Locate the desired cluster and click Manage on the right side.

Click the security group ID to jump to the details page of this security group on the ECS
Management Console.

Click Security Group Rules on the left navigation pane. You can view the security group
rules.

Container Service User Guide

29

-

-

-

Security group rules

The security groups created by default for Container Service clusters created after February 28 have
been reinforced. The opening rules are as follows.

VPC security group:

Classic network security group (internet inbound and intranet inbound):

Note:

Port 443 and Port 80 can be opened or closed based on your own needs.
ICMP rules are recommended to be retained for the convenience of troubleshooting.
Some tools are also dependent on ICMP.
The Container Service depends on Port 22 and Port 2376 to initialize the machine. Make
sure to keep the two rules.

The security group rules for clusters created before February 28 are loose. Take the classic network
security group rules for example.

Container Service User Guide

30

If you want to tighten the rules, refer to the configurations of the security groups created after
February 28 and make the following changes (use Add Security Group Rules and Delete in the figure
above).

Add Allow + ICMP rule in intranet inbound and internet inbound.

If you want to access Port 80 and Port 443 or other ports of the VM, add intranet and
internet rules to open these ports.

Note: Make sure you open all the ports you need. Otherwise some services may become
unavailable. Do not open ports accessed via Server Load Balancers.

Delete the internet inbound rules and intranet inbound rules with the port range of -1/-1 in
the address range of 0.0.0.0.

Security configuration principles

Each cluster should have one security group.

Every Container Service cluster manages one security group. You can configure rules for this
security group.

Minimal permission principle.

The security group should open the minimal permission required for external access.

For classic network security groups, the internet and intranet rules need to be configured
separately.

Container Service User Guide

31

According to the minimal permission principle, only add rules for the desired NIC type. By
default, ECS instances within a security group can communicate with one another. As a
result, if you want to add intranet inbound rules, it is recommended that you confirm the
reason for the addition, whether access from ECS instances outside the security group is
required.

The Container Service security group adds some default rules.

For easier operations on ECS instances, the Container Service security group adds some
default rules, for example, ports 80/443 are opened. You can delete the rules if you don’t
need them.

Note: Do not block ports 22 and 2376. The Container Service needs the two ports to
initialize the ECS instances.

Try to communicate over the intranet within the container and do not expose
communications to the host machine.

To authorize ECS instances outside the security group for access to the security group,
authorize a security group, instead of an individual IP address.

If you want to authorize ECS instances outside the security group to access the security
group, you should first create a new security group, add these ECS instances to the new
security group, and then authorize the new security group to access the current security
group.

Prioritize the use of the VPC network. Do not bind an EIP address to a node unless necessary.
The VPC network has a better isolation performance.

The container network segment should be opened at the VPC intranet outbound/inbound.

Otherwise, the network between containers might be disconnected.

Image and template management

Container Service User Guide

32

1.

-

-

-

-

View the image list

Operating procedure

Log on to the Container Service console.

Click Images and Templates in the left navigation pane and click Docker Images.

You can view the image category.

Popular: Some common images recommended by the Container Service.
Official: Official images provided by the Docker hub.

View the orchestration template list

Operating procedure

Click Images and Templates in the left navigation pane and click Orchestration Templates.

You can view the template category or click Search to search the templates by their name
prefix.

Sample: Common orchestration templates recommended by the Container Service.
My Templates: The orchestration templates you create.

Log on to the Container Service console.

Container Service User Guide

33

-

-

-

Create an orchestration template

Operating procedure

Log on to the Container Service console.

Click Images and Templates in the left navigation pane and click Orchestration Templates.

Click Create.

In the Create Template page, enter the template information.

Name: The template name.
Description: Information about the template.
Content: The yml file of Docker Compose. For more details, refer to Compose File
details.

The services contained in the orchestration template are displayed on the right side. You
can click Edit to modify the template in Services Contained or click Delete to delete the
selected service.

Container Service User Guide

34

In addition, you can click Add Service and select the desired image to add services to the
orchestration template.

Click Create Orchestration.

Container Service User Guide

35

Subsequent operations

You can view the orchestration template created under My Orchestration in the Template List page.

You can click Details to view the detailed information of the orchestration template or you can click
Create Application to use the orchestration template to create an application.

Update an orchestration template

You can only edit orchestration templates that are displayed under My Orchestrations in the
Template List page. If you want to edit Sample templates, you can first save the sample template as
your own templates and then edit them.

Operating procedure

Log on to the Container Service console.

Click Images and Templates in the left navigation pane and click Orchestration Templates.

Click My Orchestrations, locate the template to be updated and then click Details.

Click Edit in the upper-right corner.

Edit the template content.

Container Service User Guide

36

1.

You can directly make modifications in the template. Or you can select a service at the right
side and click Edit to modify the service or click Delete to delete the service.

In addition, you can click Add Service and select the desired image in the pop-up dialog
box to add the service to the orchestration template.

Click Save in the upper-right corner to save the template content.

Download an orchestration template

Operating procedure

Log on to the Container Service console.

Click Images and Templates in the left navigation pane and click Orchestration Templates.

Select a template and click Details.

Click Download in the upper-right corner to immediately download a template file with the
suffix of yml.

Container Service User Guide

37

Delete an orchestration template

Operating procedure

Log on to the Container Service console.

Click Images and Templates in the left navigation pane and click Orchestration Templates.

Click My Orchestrations, locate the template to be deleted and click Details.

Click Delete in the upper-right corner.

Click OK in the pop-up dialog box.

Container Service User Guide

38

-

-

Service orchestration

Overview

The Container Service supports the Docker Compose orchestration template to describe multi-
container applications.

The orchestration template allows the description an integrated application that can be composed of
several services. For example, a portal application can comprise of a Nginx service, a Web service and
a database service.

One service may have several container instances and the configurations of all the container instances
have to be consistent. For example, the Web service in the above application can activate two or
more containers based on the traffic.

Capacity

The Container Service supports automatic deployment and management of a container application
using the orchestration template file.

The labels used by the orchestration template file are compatible with most of the labels described in
 Docker Compose version 1.5x to 1.7x. For information about specific compatible labels, refer to
Label description.

The orchestration template file also supports the version 1 and version 2 Compose file formats. For
details, refer to Compose file format versioning.

The Container Service also provides many scale capabilities beyond the community version:

Unlike the community versions of Docker Compose and Swarm, Alibaba Cloud Container
Service supports cross-node container link, and thus you can directly deploy the application
described by Docker Compose to the distributed cluster to provide high availability and
scalability.
The Container Service, based on the description in the community Compose template, also
provides capabilities to simplify the deployment, maintenance and operations of Web and
microservice applications. For details, refer to Label description.

Example

The following is a WordPress application. It includes the Web service provided by WordPress image
and the db service provided by MySQL image.

Container Service User Guide

39

Label description

The labels used by the Container Service orchestration templates are compatible with most of
Docker Compose 1.5.x to 1.7.x labels and provides lots of extended capabilities on the basis of the
community version.

Scale capability labels

The Container Service extends the deployment and lifecycle management capabilities for
orchestration templates, and all the scale capabilities are described under labels and deployed for use
as sub-labels.

web:
image: wordpress:4.2
ports:
- "80"
environment:
- WORDPRESS_AUTH_KEY=changeme
- WORDPRESS_SECURE_AUTH_KEY=changeme
- WORDPRESS_LOGGED_IN_KEY=changeme
- WORDPRESS_NONCE_KEY=changeme
- WORDPRESS_AUTH_SALT=changeme
- WORDPRESS_SECURE_AUTH_SALT=changeme
- WORDPRESS_LOGGED_IN_SALT=changeme
- WORDPRESS_NONCE_SALT=changeme
restart: always
links:
- db:mysql
labels:
aliyun.log_store_wordpress: stdout
aliyun.probe.url: http://container/license.txt
aliyun.probe.initial_delay_seconds: "10"
aliyun.routing.port_80: wordpress;http://www.example.com;https://www.nice.com
aliyun.scale: "3"
db:
image: mysql:5.6
environment:
MYSQL_ROOT_PASSWORD: password
restart: always
labels:
aliyun.log_store_mysql: stdout

Label Description

probe Sets service health check.

rolling_updates Sets the rolling update of services.

parallelism Defines the number of containers to be

Container Service User Guide

40

Function enhancement labels

The Container Service provides the Service deployment constraint (affinity:service) label for you to set
the deployment constraints for a service.

Other supported labels

Substitute the variable

The Container Service supports the parameterized Docker Compose template. The template can
include the environmental variables as its parameters. When the template is deployed, you will be
prompted to enter the parameter values, and the template variables will be substituted during
deployment.

For details, refer to Substitute the variable.

updated at a time.
Note: This label must be used with the
rolling_updates label.

depends Sets service dependencies.

scale Sets the number of containers for this service
to scale horizontally.

routing Sets the access domain name of this service.

routing.session_sticky
Sets whether routing maintains session sticky
(that is session persistence) during the routing
request.

lb
Exposes the service port to the public network
or intranet by customizing Alibaba Cloud
Server Load Balancer nat mapping.

global Sets this service as a global service.

Label Description

external Sets this service to forcibly link an external
address.

dns_options
Sets DNS options. The function of this label is
the same with that of --dns-opt in the docker
run command.

oom_kill_disable

Determines whether OOM Killer will be
prohibited. The function of this label is the
same with that of --oom-kill-disable in the
docker run command.

Container Service User Guide

41

-

-

-

-

-

Container rescheduling

The Container Service supports the rescheduling of Docker container: when a node is invalid, the
container can be automatically rescheduled to other available node for operation.

For details, refer to Container rescheduling.

High availability scheduling

To make the application have higher availability, the container Service supports the scheduling of
containers of the same service in different zones. When a zone malfunctions, the application can still
provide services.

For details, refer to High availability scheduling.

Docker Compose labels that are not supported

Currently, some Docker Compose labels are not supported by the Container Service. For these labels,
refer to Docker Compose labels that are not supported.

probe

Set service health check.

URLs can be used to perform the check. HTTP and TCP protocols are supported.
Shell scripts can be used to perform the check.

The health check is initiated from the container host at regular intervals (two seconds by default) to
the container or the shell script command is executed on the container.

The health check is successful if the following criteria are met:

The HTTP request returns the code 2XX/3XX.
The TCP port can establish a link.
The shell scripts return the value 0.

Description of the fields used for check:

aliyun.probe.url: URL requested by HTTP and TCP. You do not have to fill in your own
domain name or IP address. You only need to add the word container, which will be resolved
into a corresponding container IP address for health check. The service passes the health
check when 2XX or 3XX is returned.

Container Service User Guide

42

●

●

-

-

For example, if the container uses Port 8080 to provide the HTTP service and /ping
as the URL for health check, the URL format for the probe is
http://container:8080/ping. The Container Service automatically uses HTTP GET to
request to check the URL for the return results, and if 2XX or 3XX is returned, the
health check is successful.
For example, MySQL container monitors Port 3306, and the URL format for the
probe is tcp://container:3306. The service will check whether Port 3306 is enabled. If
yes, the health check is successful.

aliyun.probe.cmd: The Shell command, /check.sh, is executed during the health check; the
Container Service regularly executes this command within the container. If the shell scripts
return the value 0, the health check is successful.

aliyun.probe.timeout_seconds: Timeout for health check.

aliyun.probe.initial_delay_seconds: The number of seconds delayed to start the health check
after the start of the container.

Note:

One service can only contain either aliyun.probe.url or aliyun.probe.cmd.
If aliyun.probe.url or aliyun.probe.cmd is not included in the service, by default, the
status of the container is healthy, and other aliyun.probe.xxx labels will be ignored.

Example:

Use URL to check the health status of the container.

Use shell scripts to check the health status of the container.

os:
image: my_nginx
labels:
aliyun.probe.url: http://container/ping
aliyun.probe.timeout_seconds: "10"
aliyun.probe.initial_delay_seconds: "3"

os:
image: my_app
labels:
aliyun.probe.cmd: health_check.sh
aliyun.probe.initial_delay_seconds: "3"

Container Service User Guide

43

-

-

-

rolling_updates

During a service update, if this service includes more than one container (by using the scale label),
you can define the Container Service to update the (n+1)th container after the nth container has
been successfully updated, so as to minimize the service downtime.

Example:

Deploy the WordPress service, use the scale label to specify two containers to be deployed, and use
the rolling_updates label to minimize the service downtime for WordPress.

parallelism

The parallelism label defines the number of containers to be updated at a time.

Note: This label must be used with the rolling_updates label.

Label values:

The default value is 1, namely updating one container at a time.
When this value is greater than 1, during rolling_updates, the Container Service updates a
certain number of containers at a time as defined by the parallelism label, thus realizing
batch update.
When this value is invalid, the default value will be used.

Note: To ensure that there is always at least one container that is providing service, it is
recommended that you define the parallelism label to a value less than the number of

web:
image: wordpress
ports:
- 80
restart: always
links:
- 'db:mysql'
labels:
aliyun.logs: /var/log
aliyun.routing.port_80: http://wordpress
aliyun.rolling_updates: 'true'
aliyun.scale: '2'
db:
image: mariadb
environment:
MYSQL_ROOT_PASSWORD: example
restart: always
labels:
aliyun.logs: /var/log/mysql

Container Service User Guide

44

containers in the service.

Sample:

The following example deploys a Nginx service which contains 3 containers as defined by the scale
label and the Container Service will update 2 containers at a time as defined by the rolling_updates
label and the parallelism label.

depends

Set service dependencies.

After setting service dependencies, the Container Service can control the start sequence of
containers, enabling the containers to start one by one.

Example:

web:
image: nginx:latest
restart: always
environment:
- "reschedule:on-node-failure"
ports:
- 80
labels:
aliyun.scale: "3"
aliyun.rolling_updates: 'true'
aliyun.rolling_updates.parallelism: "2"

web:
image: wordpress:4.2
ports:
- 80
links:
- db:mysql
labels:
aliyun.depends: db
db:
image: mysql
environment:
- MYSQL_ROOT_PASSWORD=password

Container Service User Guide

45

-

-

-

-

scale

Set the number of containers for this service to scale horizontally.

Currently, the Docker Compose can only start one container in each service. To expand the number of
containers, you need to manually set the number after the container starts.

You can now use the scale label to scale as the container starts.

Moreover, after a container is deleted, you can redeploy the application in the Container Service
console.(click Applications in the left navigation pane > locate the target application > click Redeploy
) to restart the container or create a new container to restore the number of containers to the
specified quantity.

routing

Set the access domain name of this service.

Format:

Explanation:

$container_port: The container port. Note that this is not the host port.
$domain: The domain name. You need to enter your own domain name.
$domain_prefix: The domain name prefix. If you enter the domain name prefix, the Container
Service will provide you a domain name for testing and the domain name suffix is
wordpress.<cluster_id>.<region_id>.alicontainer.com.
$context_path: The request path. You can select and distinguish different backend containers
according to the request path.

web:
image: wordpress:4.2
ports:
- 80
links:
- db:mysql
labels:
aliyun.scale: "3"
db:
image: mysql
environment:
- MYSQL_ROOT_PASSWORD=password

aliyun.routing.port_$container_port: [http://]$domain|$domain_prefix[:$context_path]

Container Service User Guide

46

-

-

-

-

-

-

-

Domain name selection:

If HTTP protocol is used to expose the service, you can use the Container Service to provide
the internal domain name (the top-level domain is alicontainer.com) for test or you can use
your own domain name.
If HTTPS protocol is used, it only supports the domain name you provide, such as
www.example.com. The DNS settings need to be modified to specify the domain name to be
connected to the Server Load Balancer service provided by the container cluster.

Format requirements of the label statement:

The Container Service allocates subdomain names for each cluster, and you only need to
provide the domain name prefix to bind the internal domain name. The domain name prefix
only indicates the domain level and cannot be divided with periods (.).
If you don’t specify scheme, the HTTP protocol will be used by default.
Both the length of the domain name and the context root should not exceed 128 characters.
When you bind several domain names to the service, use semicolons (;) to separate them.
A backend service can have several ports. Such a port refers to the port that the container
exposes. One port can only use one label for statement and a service with several ports need
to have several labels.

Example:

Bind the internal domain name wordpress.<cluster_id>.<region_id>.alicontainer.com provided by the
Container Service to Port 80 of the Web service. And bind your own domain name
http://wp.sample.com/context to Port 80 of the Web service.

You will then obtain an internal domain name wordpress.cd3dfe269056e4543acbec5e19b01c074.cn-
beijing.alicontainer.com. After starting the Web service, you can access corresponding Web services
with the URL http://wordpress.cd3dfe269056e4543acbec5e19b01c074.cn-beijing.alicontainer.com or
http://wp.sample.com/context.

If the HTTPS service needs to be supported, upload the HTTPS certificate using the Server Load
Balancer management console on the Alibaba Cloud website. Then, bind the corresponding cluster to
access the Server Load Balancer terminal.

web:
image: wordpress:4.2
links:
- db:mysql
labels:
aliyun.routing.port_80: wordpress;http://wp.sample.com/context
db:
image: mysql
environment:
- MYSQL_ROOT_PASSWORD=password

Container Service User Guide

47

-

-

routing.session_sticky

Set whether routing maintains session sticky (that is session persistence) during the routing request.
With session persistence, during the session, the request is routed to the same backend container
instead of being randomly routed to different containers for each request.

Note: The setting can only work after aliyun.routing.port_$contaienr_port has been set.

The setting method is as follows:

Enable session persistence

aliyun.routing.session_sticky: true

Disable session persistence

aliyun.routing.session_sticky: false

Example:

lb

Expose the service port to the public network or intranet by customizing Alibaba Cloud Server Load
Balancer NAT mapping. Agent must be upgraded to the latest version to support this scaling capacity
label.

The label format is as follows, and variables with $ are placeholders.

Example:

web:
image: wordpress:4.2
links:
- db:mysql
labels:
aliyun.routing.port_80: wordpress;http://wp.sample.com/context
aliyun.routing.session_sticky: true
db:
image: mysql
environment:
- MYSQL_ROOT_PASSWORD=password

aliyun.lb.port_$container_port:$scheme://$[slb_name|slb_id]:$front_port

web:
image: wordpress:4.2

Container Service User Guide

48

-

-

-

-

To better utilize the custom load balancing lb label, you need to understand three ports used in a
routing request: the Server Load Balancer front port, Server Load Balancer backend port (that is the
ECS vm port) and container port.

Taking the first lb label aliyun.lb.port_80 of the above 4 lb labels as an example, from left to right,
Port 80 in the key refers to the port exposed by the container, and Port 8080 refers to the front port
exposed by the Server Load Balancer. The Server Load Balancer backend port is the ECS vm port,
which can be obtained from host:container port mapping of the ports label. From this, you can find
that Port 80 of the container corresponds to Port 80 of the host, and thus you can confirm that the
backend port forwarded by the Server Load Balancer is Port 80. Therefore, the first label indicates that
a request sent to the Web service first enters Port 8080 in front of the Server Load Balancer, then it is
forwarded to Port 80 of the backend host vm, and finally according to the port mapping of ports, the
request enters Port 80 of the container and is submitted to the WordPress process in the container
for service provision.

Note: All server load balancings configured by this label do not go through the routing service
built in the cluster, and the routing of the request is controlled by yourself.

Format requirements of the label statement:

The name or ID of the Server Load Balancer instance can be used to specify the Server Load
Balancer instance.
The name of the Server Load Balancer instance is limited to 1~80 characters, including
letters, numbers, hyphens (-), forward slashes (/), periods (.) and underscores (_).
The container port values are limited to 1~65535.
The Server Load Balancer front port values are limited to 1~65535.

Constraints on deploying services with custom Server Load Balancer NAT mapping:

You need to build a Server Load Balancer instance, name it and build the corresponding
monitoring port. Then you need to provide the name of the Server Load Balancer instance

ports:
- 80:80
- 9999:9999
- 8080:8080
- 53:53/udp
links:
- db:mysql
labels:
aliyun.lb.port_80: http://slb_example_name:8080
aliyun.lb.port_9999: tcp://slb_example_name:9999
aliyun.lb.port_8080: https://14a7ba06d3b-cn-hangzhou-dg-a01:80
aliyun.lb.port_53: udp://14a7ba06d3b-cn-hangzhou-dg-a01:53
db:
image: mysql
environment:
- MYSQL_ROOT_PASSWORD=password

Container Service User Guide

49

like $slb_name or $slb_id, the port that will be exposed, the $scheme protocol (possible
values include tcp, http, https, and udp) to be used and the mapping container port using
the scale labels, and specify the front port $front_port of the Server Load Balancer instance.

You must specify the host and container port mapping of the service port to be exposed and
then use the standard Dockerfile label ports to specify the port mapping.

Note: You must specify the host port and what’s more, this port cannot conflict with
the host port mapped by other services. The Server Load Balancer will use the host port
to bind the backend ECS vm machine.

One service can only use one or several Server Load Balancer instances to expose the service
port. Because several services will be distributed to different vm backends, several services
cannot share and use the same Server Load Balancer instance.

The host deployed with the service configured with the Server Load Balancer nat mapping
uses the same host:container port mapping, and thus, these services only have one instance
on each vm host.

The Server Load Balancer protocols $scheme supported include tcp, http, https, and udp.

You need to build the monitoring port on the official Server Load Balancer management
console in Alibaba Cloud.

You can log on to the official Server Load Balancer management console to modify the
specific configuration for the Server Load Balancer instance in the Container Service, such as
bandwidth limitation.

The advantage for the lb label is that you don’t need to bind the ECS vm server of the
Server Load Balancer by yourself. After you configure the corresponding labels, the backend
servers will be bound automatically. Therefore, except for binding the backend server of the
Server Load Balancer, you need to set and modify the Server Load Balancer instances on the
Alibaba Cloud Server Load Balancer management console.

The Container Service will help you generate a RAM sub-account (you need to activate
RAM), and this account comes with some Server Load Balancer permissions (without
permission to create and delete Server Load Balancer instances) to help you manage the
Server Load Balancer instances used in the Container Service, for example, binding some
nodes in the cluster as the service backend.

Container Service User Guide

50

global

Set this service as a global service.

Some services need to be deployed in every node, such as monitoring and logging services. Such
service will be deployed whenever a new node is built.

When a service is set as global, this service will be deployed in every node of the cluster. When a new
node is created or added in the cluster, a new container instance will be automatically deployed to
the new node.

Service deployment constraint
(affinity:service)

Set the deployment constraints for a service.

The Container Service supports the container deployment constraints compatible with Docker Swarm,
and you can control the deployment of a container with the Docker Swarm Filter.

In the community version for Docker Compose, there is no relevant capability in which to control the
deployment constraint for the service directly.

Within the Container Service, you can add affinity:service in environment to constrain the service
affinity so as to control the service deployment policy. The Container Service supports soft affinity
and hard affinity between services.

Example:

In this example, affinity.service!=master is the deployment constraint for the slave service. In this way,
the slave service will always be deployed on nodes on which the master service is not deployed.
Therefore, when a node is invalid, the service availability will not be affected. When your cluster has
only one node, the deployment will fail due to the specified hard anti-affinity, because the
deployment cannot meet the specified mandatory constraints.

monitor:
image: sample
labels:
aliyun.global: true

master:
image: mysql:5.6
environment:

Container Service User Guide

51

-

-

external

Set this service to forcibly link an external address.

For the extension field, the following fields can be used:

host: Set the link domain.
ports: Set the link port.

Example:

Do not use the external label, and directly start a MySQL container.

Use the external label to describe a RDS service that has not been deployed in the cluster and provide
it to the WordPress deployed in the cluster for use.

- MYSQL_USER=user
- MYSQL_PASS=test
- REPLICATION_MASTER=true
- REPLICATION_USER=repl
- REPLICATION_PASS=repl
ports:
- 3306
slave:
image: mysql:5.6
environment:
- MYSQL_USER=user
- MYSQL_PASS=test
- REPLICATION_SLAVE=true
- affinity:service!=master
ports:
- 3306
links:
- master:mysql

web:
image: wordpress:4.2
ports:
- 80
links:
- db:mysql
db:
image: 10.32.161.160:5000/mysql
environment:
- MYSQL_ROOT_PASSWORD=password

WordPress:
image: wordpress:4.2
ports:

Container Service User Guide

52

dns_options

Set DNS options. The function of this label is the same with that of --dns-opt in the docker run
command.

oom_kill_disable

Determine whether OOM Killer will be prohibited. The function of this label is the same with that of --
oom-kill-disable in the docker run command.

Substitute the variable

The Container Service supports the parameterized Docker Compose template. The template can
include the environmental variables as its parameters. When the template is deployed, you will be
prompted to enter the parameter values, and the template variables will be substituted during
deployment.

- 80
links:
- db:mysql
environment:
- WORDPRESS_DB_USER=cloud
- WORDPRESS_DB_PASSWORD=MYPASSWORD
- WORDPRESS_DB_NAME=wordpress
db:
external:
host: rdsxxxx.mysql.rds.aliyuncs.com
ports:
- 3306

WordPress:
image: wordpress:4.2
dns_options:
- "use-vc"

WordPress:
image: wordpress:4.2
oom-kill-disable: true

Container Service User Guide

53

For example, you can define the parameter POSTGRES_VERSION.

When the preceding Compose template is deployed, you will be prompted to enter the value of the
POSTGRES_VERSION parameter, such as 9.3. The Container Service will substitute the variable of the
Compose template with this parameter value. In this example, a postgres:9.3 container will be
deployed.

The Container Service is fully compatible with Docker Compose syntax, and you can use either
$VARIABLE or ${VARIABLE} syntax in the template.

In the Compose template, you can use $$ to switch the character string containing $, and in this way,
the Container Service will not erroneously treat it as the parameter.

For more information on the variable substitution supported in the Compose template, refer to
Variable substitution.

Container rescheduling

The Container Service supports the rescheduling of Docker container: when a node is invalid, the
container can be automatically rescheduled to other available node for operation.

By default, container rescheduling is disabled. If needed, you can enable container rescheduling using
the following configuration.

The Container Service provides a Container rescheduling policy that is compatible with Docker
Swarm. You can enable container rescheduling using environment variable or label.

Environment variable:

Label:

Note: If, after the container has been rescheduled, the persistent state is required for recovering
the Docker container, use a Docker file volume that supports data migration and sharing.

db:
image: "postgres:${POSTGRES_VERSION}"

redis:
image: redis
environment:
- reschedule:on-node-failure

redis:
image: redis
labels:
- com.docker.swarm.reschedule-policies=["on-node-failure"]

Container Service User Guide

54

High availability scheduling

To make the application have higher availability, the container Service supports the scheduling of
containers of the same service in different zones. When a zone malfunctions, the application can still
provide services.

You can select the zone in the orchestration file using the environment variables in one of the
following two formats.

availability:az==3

The service must be distributed in at least three zones. If there are less than three zones in
the current cluster, or the service cannot be distributed in three different zones due to
limited machine resources, the container creation will fail.

availability:az==~3

The service should be distributed in three different zones if possible; container can still be
created even if the condition cannot be fulfilled.

In the following example, the service must be distributed in at least two zones.

Docker Compose labels not supported

nnn:
expose:
- 443/tcp
- 80/tcp
image: 'nginx:latest'
environment:
- 'availability:az==2'
labels:
aliyun.scale: '8'
restart: always
volumes:
- /var/cache/nginx

Label Description

build

This label is used to build container images
using the Dockerfile and other files in the
current directory.
The Container Service does not provide the

Container Service User Guide

55

Application management

Create an application

Operating procedure

function to build images, and it is
recommended that you separate the building
and deployment operations.
You can use Alibaba Cloud Image repository
to build the image from the code source, or
push the image built locally to the image
repository; you can use the image label in the
orchestration template to refer to the image
in the image repository (including private
repository).

dockerfile The same as build.

env_file

The Container Service does not support
setting environment variables in files. You can
add environment variables using the
environment label.

mac_address Mac address is not supported.

detach
All the images in the Container Service are
enabled in the detach mode, and the attach
mode is not allowed.

stdin_open The same as detach.

tty The same as detach.

networks

The network in version 2 Compose file format
allows the service container to start in the
custom network, and the containers in the
Container Service are all in the same cross-
host interconnected container network.
Therefore, the Container Service does not
support the use of the networks label in
version 2 Compose file format. Refer to Cross-
host container network for network
management and service discovery for the
Container Service.

Container Service User Guide

56

-

-

-

-

-

a.

Log on to the Container Service console.

Click Applications in the left navigation pane and click Create Application in the upper-right
corner.

Set the basic application information.

Name: The name of the application to be created. It must contain 1~64 characters,
and can be composed of numbers, Chinese characters, English letters, and hyphen
(-).
Version: The version of the application to be created. By default, the version is 1.0.
Cluster: The cluster which the application will be deployed to.
Description: Information of the application. It can be left blank and, if entered,
cannot exceed 1,024 characters. This information will be displayed in the
Application List page.
Pull Docker Image: Check to use the latest Docker image in registry.

Click Create with Image or Create with Orchestration Template.

Click Create with Image.

Set the Image Name and Image Version.
You can select a recommended image from the Container Service (click
Select image. Click the desired image and click OK) or enter the
information of your own image. By default, the Container Service uses
the latest version of the image. If you want to use another version of the
image, click Select image version, click the desired version and click OK.

Container Service User Guide

57

Set the number of containers (Scale).

Set the Network Mode.
Currently, the Container Service supports two network modes: Default
and host. If you do not set this parameter, the Default mode is used by
default.

Set the Restart parameter, namely whether to restart the container
automatically in case of exception.

Set the launch command (Command and Entrypoint) of the container.
If specified, this will overwrite the image configuration.

Set the resource limits (CPU Limit and Memory Limit) of the container.
For more details of container resource limits, refer to Limit container
resources.

Set the Port Mapping, Web Routing and Load Balancer parameters.

Set the container Data Volume.

Set the Environment variables.

Set the container Labels.
For more information on container labels, refer to Label description.

Set whether to enable container Smooth Upgrade.
For more details, refer to the description of rolling_updates in Label
description.

Set the container Across Multiple zones settings.
You can select Ensure to distribute the containers in two different zones; if
you select this option, the container creation fails if there are less than
two zones in the current cluster or if the containers cannot be distributed
in two different zones due to limited machine resources. If you select Try
best, the Container Service will distribute the containers in two different
zones as long as possible and the containers will still be created
successfully even if they cannot be deployed in two different zones.
If you do not set this setting, the Container Service will distribute the
containers in a single zone by default.
For more information, refer to High-availability scheduling.

Container Service User Guide

58

Set the container Auto Scaling rules.
For more details on how to set container auto scaling, refer to Container
auto scaling.

Click Create and the Container Service creates the application according
to the preceding settings.

Click Create with Orchestration Template.

Click Use Existing Orchestration Template.

Select a template and click Select.

The content of the orchestration template must comply with the Docker
Compose format.

Edit the template.

You can edit the orchestration template according to your needs. You can
directly make modification in the template, or you can select a service at
the right side and click Edit to make modifications or click Delete to
delete the service.

Container Service User Guide

59

In addition, you can click Add Service, select the desired image in the
pop-up dialog box, and set desired configurations to add services to the
template.

Click Create and Deploy.

Restrict container resources

One of the main advantages of Docker containers is that they allow you to restrict resources, such as
CPU, memory, and IO performance. Because these settings are relatively specialized, they are not
shown on the interface. You can use these settings in orchestration templates.

CPU restriction

A single CPU core is equivalent to 100 CPUs. If your machine is configured with 4 cores, the total
number of available CPU resources is 400. In orchestration templates, you can use the cpu_shares
parameter to specify CPU restrictions. cpu_shares: 50 indicates 0.5 cores.

Memory restrictions

The mem_limit parameter is used to restrict memory usage. Memory is measured in bytes and the
minimum memory is 4MB. If you set a memory restriction and a container applies for a memory that
exceeds the limit, the container’s operation will be stopped because of OOM.

The orchestration template below demonstrates how to restrict CPU and memory.

n1:
expose:
- 443/tcp
- 80/tcp
image: 'nginx:latest'

Container Service User Guide

60

-

-

Resource scheduling

In order to ensure that containers obtain sufficient specified resources, such as 0.5 CPU cores and
500MB of memory in the preceding example, we reserve resources for containers. For example, a 4-
core machine can schedule up to eight cpu_shares=50 containers.

If you create containers without specifying the cpu_shares and mem_limit parameters, these
containers will not be allocated resources by default.

Other resource restrictions

For other resource restrictions, refer to the Docker Compose Instructions.

High-availability scheduling

To ensure the application have a high availability, the Container service supports the scheduling of
the same service in different zones. When a zone malfunctions, the application can still provide
services.

You can select the zone in the orchestration file using the environment variables and there are two
formats.

availability:az==3: The service is distributed in at least three zones. If the current cluster does
not have three zones or the machine resources are insufficient for distribution in three zones,
creating a container may fail.
availability:az==~3: The service is distributed in three zones if possible. If this is not possible,
the container can still be created.

The service should be distributed in at least two zones, as shown in the following example.

cpu_shares: 50 #0.5 cores
mem_limit: 500000000 #500MB
labels:
aliyun.scale: '1'
restart: always
volumes:
- /var/cache/nginx

nnn:
expose:
- 443/tcp
- 80/tcp
image: 'nginx:latest'
environment:
- 'availability:az==2'

Container Service User Guide

61

Specified node scheduling

To deploy a service on a specified node, you can use the constraint keyword.

In the example below, the service is deployed on node-1.

The Container Service supports the following expressions:

Specified nodes scheduling

If you want to deploy a service on several specified nodes, you can use user tags and the constraint
keyword.

labels:
aliyun.scale: '8'
restart: always
volumes:
- /var/cache/nginx

web:
image: 'nginx:latest'
restart: always
environment:
- 'constraint:aliyun.node_index==1'
ports:
- 80
labels:
aliyun.scale: 2

Expression Description

constraint:aliyun.node_index==1 Deploy the service on node1.

constraint:aliyun.node_index!=1 Do not deploy the service on node1.

constraint:aliyun.node_index==(1|2|3) Deploy the service on node1, node2, or
node3.

constraint:aliyun.node_index!=(1|2|3) Deploy the service on a machine other than
node1, node2, and node3.

affinity:image==~redis Try to deploy the service on a machine with a
Redis image.

affinity:service!=~redis Try not to deploy the service on a machine
with a Redis image.

Container Service User Guide

62

-

-

Note:

Deployment constraint is only valid for creating new containers; it does not work for
updating the configurations of existing containers.
After you use a user tag to deploy a service, deleting the user tag will not affect the
service deployed, but it will do affect the next deployment of the service. Proceed with
caution when deleting user tags.

Operating procedure

Add user tags for nodes.

Log on to the Container Service console.

Click Clusters in the left navigation pane.

Select the desired cluster and click Manage.

Click User Tags in the left navigation pane.

Select the desired nodes and click Add Tag.

Enter the tag key and tag value and click OK.

Container Service User Guide

63

Create an application, select Create with Orchestration Template and configure the
constraint keyword in the template.

For information about how to create an application, refer to Create an application.

Delete a user tag

Log on to the Container Service console.

Click Clusters in the left navigation pane.

Select the desired cluster and click Manage.

Click User Tags in the left navigation pane.

Select the desired nodes and click Delete Tag.

environment:
- constraint:group==1 #Indicates deploy the application on all the nodes with the "group:1" tag

Container Service User Guide

64

Click OK in the pop-up dialog box.

View application details

Operating procedure

Click Applications in the left navigation pane.

Select the cluster of the desired applications.

Click the name of the target application.

Click Services to view the services of the application.

Click Containers to view the containers of the application.

Click Routes to view the routes of the application.

Click Logs to view the logs of the application.

Log on to the Container Service console.

Container Service User Guide

65

Click Events to view the events of the application.

Stop or activate an application

Operating procedure

Log on to the Container Service console.

Click Applications in the left navigation pane.

Select the cluster of the desired application.

Locate the application to be started or stopped and click Activate or Stop.

In the pop-up dialog box, click OK.

Change application configurations

Operating procedure

Container Service User Guide

66

Log on to the Container Service console.

Click Applications in the left navigation pane.

Select the cluster of the desired application.

Locate the application to be updated and click Update.

In the pop-up dialog box, modify the configuration.

Note: You must update Version; otherwise, the OK button is not available.

Reschedule: When you change the configurations of an application, in order to
avoid losing the container data in the local data volume on the current machine,
the Container Service will restart or recreate the container on the current machine.
If you want to reschedule the container onto another machine, select Reschedule
and the Container Service will create the container on another machine according
to your setting in the Template.

Note: Selecting Reschedule to reschedule the container onto another machine
will clear the container data in the local data volume. Proceed with caution
when performing this operation.

Use Existing Orchestration Template: You can click to select a template to change
the application configurations.

Note: The new template will overwrite the current template.

Click OK.

Subsequent operation
After you updated the application configurations, if the application is not updated, you can redeploy

Container Service User Guide

67

-

-

it to apply the configuration modifications. For more information about how to redeploy an
application, refer to Redeploy an application.

Redeploy an application

After deploying an application, you can redeploy it if needed. Redeploying an application will pull the
image used by the application; therefore, if you updated the application image after you deployed
the application, redeployment will use the updated image to deploy the application.

Note: Redeployment will not update the data volume, which means the old data volume of the
host will still be used. Therefore, if you mounted a data volume to the host and changed the
configurations of the data volume in the new image, the new configurations will not take effect
after the redeployment.

You might use the redeployment function in the following situations:

You updated your image after the application was deployed and want to deploy the
application again according to the updated image.
You stopped or deleted some containers and want to activate or recreate those containers.
During redeployment, the Container Service activates the stopped containers or creates the
deleted containers.

Operating procedure

Log on to the Container Service console.

Click Application in the left navigation pane.

Select the cluster of the application.

Select the application to be redeployed and click Redeploy at the right.

Container Service User Guide

68

Click OK in the pop-up confirmation dialog box.

Check whether the redeployment succeeds

To confirm whether the deployment is successful, you can view the image sha256 to check whether
the image of the redeployed container is the newest image.

Log on to the Container Service console.

Click Application in the left navigation pane.

Select the cluster of the application.

Click the name of the application.

Click Containers to view the image sha256.

The redeployment is successful if the container image is the newest one.

Delete an application

Operating procedure

Click Applications in the left navigation pane.

Log on to the Container Service console.

Container Service User Guide

69

-

-

-

Select the cluster of the desired application.

Locate the application to be deleted and click Delete.

In the pop-up dialog box, click OK.

Run offline tasks

In terms of online applications, especially stateless ones, Docker containers have become the
predominant standard for the execution layer, with many cloud service providers now providing
container services. However, in the offline computing field, very few service providers offer this
capability.

Offline computing is widely used in production, from individual script tasks to big data analysis.
Offline computing requires stronger resource isolation and environment isolation. This is precisely an
advantage of Docker containers. Alibaba Cloud Container Service abstracts basic offline computing
models and introduces their functions based on Docker containers. Its core functions are as follows.

Job orchestration
Job scheduling and lifecycle management
Integration of storage and other functions

Basic concepts

The following table compares the concepts of offline computing with those of online computing.

Concept Offline applications Online applications

Container Task execution element Service execution element

Operation history
History of tasks that
encountered an error and
were re-executed

None

Service (Task)
A special function that can
be divided into several
containers for execution

A group of containers with
the same functions

Application (Job) A combination of several A combination of several

Container Service User Guide

70

-

-

-

-

-

-

-

-

An offline job contains several tasks. Each task can be executed by several containers. Each container
can have multiple operation histories. By contrast, an online application contains several services and
each service can be provided by several containers simultaneously.

Docker Compose-based job orchestration

Similar to online applications, Docker Compose is used to describe and orchestrate jobs. Docker
Compose supports the vast majority of Docker functions, such as the following:

CPU, memory, and other resource restrictions
Volumes
Environment variables and labels
Network models, port exposure, etc.

In addition, Alibaba Cloud Container Service has been expanded to provide the following functions:

Container quantity: The number of containers that each task is divided into.
Retries: The number of retries made by a container.
Remove container: Whether to delete a container after its operation is completed. You can
select the following policies: remove-finished (deletes the container after the operation is
finished), remove-failed (deletes failed containers), remove-all (deletes all containers), and
remove-none (do not delete).
DAG model task dependencies: There may be dependencies between the tasks in a single
job. Tasks that others are dependent on are executed first.

The following is an example of offline job Docker Compose.

tasks services

version: "2"
labels:
aliyun.project_type: "batch"
services:
s1:
image: registry.aliyuncs.com/jimmycmh/testret:latest
restart: no
cpu_shares: 10
mem_limit: 100000000
labels:
aliyun.scale: "10"
aliyun.retry_count: "20"
aliyun.remove_containers: "remove-all"
s2:
image: registry.aliyuncs.com/jimmycmh/testret:latest
cpu_shares: 50
mem_limit: 100000000
labels:
aliyun.scale: "4"

Container Service User Guide

71

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

Note:

Only Docker Compose version 2 is supported.
At the job level, you must add the label aliyun.project_type: "batch". If this label is not
added or its value is not batch, the job is considered an online application.
Any value of restart will be changed to no.
Use the aliyun.depends label to specify dependencies. A task can depend on several
other tasks. Separate the tasks using commas (,).
The default value of aliyun.retry_count is 3.
The default value of aliyun.remove_containers is remove-finished.

Job lifecycle management

The status of a container is determined by the container operation and exit status. The status of a
task is determined by the status of all the containers in the task. The status of a job is determined by
the statuses of all the tasks in the job.

Container statuses

Running: The container is running.
Finished: The container has exited and ExitCode==0.
Failed: The container has exited and ExitCode!=0.

Task statuses

Running: A container is running.
Finished: All containers have finished their tasks.
Failed: The number of failed containers exceeds the set value.

Job statuses

Running: A task is running.
Finished: All tasks have been finished.
Failed: A task has failed.

The preceding statuses can all be retrieved through the API to facilitate O&M automation.

Shared storage
Data are shared and exchanged between containers and tasks. Shared storage can be used to resolve

aliyun.retry_count: "20"
aliyun.remove_containers: "remove-finished"
aliyun.depends: "s1"

Container Service User Guide

72

this issue. For example, when running an MR job on Hadoop, HDFS is used for data exchange. In the
Container Service, two types of shared storage can be used. Their features and application scenarios
are compared below.

Integrated monitoring service

Monitoring is an important tool used to analyze offline jobs. Alibaba Cloud Container Service
integrates the CloudMonitor function. Simply add a label in the orchestration template to collect
container CPU, memory and other data to CloudMonitor. For specific instructions, refer to Container
monitoring service.

Operating procedure

Log on to the Container Service console.

Create a cluster.

For information on how to create a cluster, refer to Create a cluster.

Create an application using the orchestration template above.

For information on how to create a cluster, refer to Create an application.

Click the application name in the Application List page to view the application operation
status.

Storage Pros Cons Applicability

OSSFS volumes Cross-host sharing.

Low reading, writing,
and ls performance;
Modifying a file will
overwrite it.

Sharing
configuration files;
Attachment uploads.

A user’s integrated
third-party storage,
such as Portworx

Virtually combines
the cloud disks in
the cluster into a
large shared disk;
High performance;
Snapshots, multiple
copies.

Requires certain
O&M capabilities.

Data sharing for IO-
intensive
applications, such as
file servers;
Fast migration for
IO-intensive
applications, such as
databases.

Container Service User Guide

73

-

-

-

-

Timing task

You can select one or more machines and realize timing tasks through crontab. However, for large-
scale or a large amount of timing tasks, the preceding method has limitations, such as:

Low reliability. If one machine goes down, all the timing tasks on this machine cannot be
executed.
No scheduling function. Loads among machines cannot be balanced.
No retry mechanism. Tasks might fail.
Cannot run large-scale distributed tasks.

On the basis of offline tasks, the Container Service provides the timing function, with which you can
solve the above problems by some simple descriptions. For more information on offline tasks, refer to
 Run offline tasks.

Note: You can only use this function in case you updated your Agent since October 25th or the
cluster is newly created.

Timing task description based on Docker Compose

The same as offline tasks, timing tasks are also based on Docker Compose. You can realize the timing
function simply by adding the aliyun.schedule label in the orchestration template.

Wherein, aliyun.schedule: "0-59/30 * * * * *" indicates executing this task every 30 seconds; the format
of schedule is the same as that of crontab and uses Beijing time.

As the timing function is only applicable to offline tasks, once you add the aliyun.schedule label, the
Container Service will automatically add the aliyun.project_type: "batch" label. Therefore, in the
example above, you can skip the aliyun.project_type: "batch" label.

In addition, all the functions of offline tasks can still be used in timing tasks (for example, scale,
retry_count, remove_containers and so on). For the meanings of these labels, refer to Run offline tasks
.

version: "2"
labels:
aliyun.project_type: "batch"
aliyun.schedule: "0-59/30 * * * * *"
services:
s1:
image: registry.aliyuncs.com/jimmycmh/busybox:latest
labels:
aliyun.scale: "5"
aliyun.retry_count: "3"
aliyun.remove_containers: "remove-all"
command: date

Container Service User Guide

74

Execution procedure

After a timing task is created, it is in the “wait” state. When the specified time of the task is
reached, the task is started and its subsequent states are the same with those of offline tasks. The
application repeats these states when the next execution time is reached.

For the same timing task, only a single instance can be executed at a time. If the execution time of
the task is longer than its execution period (for example, if the execution time of the above task is
longer than 30s), the next execution enters the execution queue; when the length of the execution
queue is greater than 3, this execution will be discarded.

You can click Events in the application details page to view the execution history. Only the last 10
events are kept.

High availability

The timing task control adopts the master-slave mode. When the master controller fails, the control
function will be switched to the slave controller.

If the task is due to be executed during the master-slave switch period, it will be delayed and be
executed until the switch is completed. If the same task is due to be executed for several times during
the master-slave switch period, the task will only be executed once after the switch is completed.
Therefore, to ensure that the task is not lost, do not design tasks with a repetition period less than
one minute.

Default system application list

Default system application Included service Brief description

acsrouting routing

Layer-7 request routing
service, which consists of
Server Load Balancer and a
HAProxy container. After a
domain name is correctly
configured, requests can be
routed to the specified
container. For how to use
acsrouting, refer to Routing
FAQs.

acslogging logtail and logspout

Used in conjunction with
Alibaba Cloud Log Service to
upload the logs which are
printed by application
programs in containers to
the Log Service for storage,
making log search and
analysis easier.

Container Service User Guide

75

Service management

Instructions for use

An application is composed of one or more services. You can either change the application
configuration to upgrade the application, or you can change the configuration of an individual
service to upgrade it.

View service details

Operating procedure

Log on to the Container Service console.

Click Services in the left navigation pane.

acsmonitoring acs-monitoring-agent

Integrated with Alibaba
CloudMonitor and popular
third-party open source
monitoring frameworks to
support monitoring
information query and
monitoring alarm
configuration. For how to
use acsmonitoring, refer to
Monitoring service.

acsvolumedriver volumedriver

Integrated with Alibaba
Cloud Object Storage Service
(OSS) to enable use of
shared storage as data
volumes and remove the
need for stateful container
O&M. For how to use
acsvolumedriver, refer to
Data volume service.

Container Service User Guide

76

Select the cluster of the service to be viewed.

Click the name of the target service.

The service details page is displayed and you can view all the containers for the service.

Click Logs to view the service-level logs.

Click Configurations to view the configuration information of the service.

Click Events to view the events of the service.

Container Service User Guide

77

1.

Activate or stop a service

Operating procedure

Log on to the Container Service console.

Click Services in the left navigation pane.

Select the cluster of the desired service.

Locate the service to be started or stopped and click Activate or Stop.

In the pop-up dialog box, click OK.

Change service configuration

Operating procedure

Log on to the Container Service console.

Click Services in the left navigation pane.

Container Service User Guide

78

Select the cluster of the desired service.

Locate the service to be reconfigured and click Update.

In the pop-up dialog box, modify the configuration.

Click OK.

Reschedule a service

To rebalance the number of operational containers on each node, this operation moves containers
from nodes with high loads to the newly created nodes or nodes with low loads. This rebalances the
cluster load.

Operating procedure

Log on to the Container Service console.

Click Services in the left navigation pane.

Select the cluster of the desired service.

Locate the service to be rescheduled and click Reschedule.

Container Service User Guide

79

-

-

In the pop-up dialog box, select the two parameters and click OK.

Ignore Local Volumes: During rescheduling, containers with local volumes may be
migrated to other machines, resulting in a loss of data. To ignore local data
volumes, select this option. Otherwise, containers with local volumes will not be
rescheduled.
Force Reschedule: In order to ensure the stability of online services, by default, only
machines with memory usage over 60% and CPU usage over 40% will be
rescheduled. To remove this restriction, select this option. This will reschedule the
machines by force ignoring their resource usage.

Note: The memory and CPU usage values may vary depending on the
container configuration. Therefore, they do not always represent the actual
usage conditions.

Delete a service

Operating procedure

Log on to the Container Service console.

Click Services in the left navigation pane.

Select the cluster of the desired service.

Locate the service to be deleted and click Delete.

In the pop-up dialog box, click OK.

Container Service User Guide

80

Network management

Cross-host container network

The Container Service creates the global network for the container, and the container in the same
cluster can access other containers through eth0 network interface of the container.

For example, create the container respectively on two machines and print their IP addresses.

You can see that the containers of these two services are distributed in different nodes.

Using the ifconfig eth0 log output from the console or container 2, you can see that the IP address of
container 2 is 172.19.0.10. Then, you can connect to a remote terminal to access the IP address of
Container 2 from Container 1.

cross-host-network-test1:
image: busybox
command: sh -c 'ifconfig eth0; sleep 100000'
tty: true
environment:
- 'constraint:aliyun.node_index==(1)'

cross-host-network-test2:
image: busybox
command: sh -c 'ifconfig eth0; sleep 100000'
tty: true
environment:
- 'constraint:aliyun.node_index==(2)'

Container Service User Guide

81

-

-

Data volume

Overview

In Docker, containers are non-persistent. This means that after a container is deleted, its data are also
deleted. Although, Docker provides volumes that can be attached to host directories for persistent
storage, in a cluster environment, host volumes have limitations, such as:

Data cannot be migrated when containers are migrated between machines.
Volumes cannot be shared between different machines.

To resolve these issues, Alibaba Cloud Container Service provides third-party data volumes. By
packaging various cloud storage resources as data volumes, the service allows these data volumes to
be directly attached to containers. This way, the data volumes can be automatically reattached when
a container is restarted or migrated.

Currently, this service supports OSSFS storage.

Create an OSSFS data volume

OSSFS is a FUSE-based file system provided by Alibaba Cloud (To view the project homepage, click
https://github.com/aliyun/ossfs). OSSFS data volumes can package OSS buckets into data volumes.

Because data must be synchronized to the cloud over the network, the performance and functions of
OSSFS differ from those of local file systems. It is recommended that you do not run databases and
other IO-intensive applications, or logs and other applications that require constantly writing files
onto OSSFS. OSSFS is instead better suited for sharing configuration files across containers,

Container Service User Guide

82

-

-

-

-

-

attachment uploads, and other scenarios that do not require rewrite operations.

OSSFS differs from local file systems in the following ways:

Random and append write operations may overwrite the entire file.
Metadata operations, such as list directory, provide poor performance because the system
needs to remotely access the OSS server.
The file/folder rename operation is not atomic.
When multiple clients are attached to a single OSS bucket, you must coordinate the actions
of each client on your own. For example, you need to avoid multiple clients from writing to a
single file.
Hard link is not supported.

Prerequisites

You can only use the data volume function when your cluster meets the following two conditions:

The cluster Agent is version 0.6 or higher.

You can view your Agent version in the Cluster List page. Select the desired cluster, click
More > Upgrade Agent on the right.

If your Agent version is too low, you need to first upgrade your Agent. For how to upgrade
the Agent, refer to Upgrade Agent.

The acsvolumedriver application must be deployed in the cluster. In addition, it is
recommended that you upgrade the acsvolumedriver to the latest version.

You can deploy and upgrade the acsvolumedriver application by upgrading the system

Container Service User Guide

83

services. For detailed operations, refer to Upgrade system services.

Note: When upgrading or restarting the acsvolumedriver, the containers that use the
OSSFS data volume will also be restarted, so will your services.

Operating procedure

Step 1 Create OSS bucket

Log on to the OSS console and create an OSS bucket (refer to Create a bucket).

In this example, an OSS bucket in the China East 1 (Hangzhou) region is created.

Step 2 Create OSSFS data volume

Log on to the Container Service console.

Click Data Volumes in the left navigation pane.

Select the target cluster and click Create.

Set the data volume information and click Create.

Container Service User Guide

84

-

-

-

-

Name: This is the data volume ID and must be unique within the cluster.
Access Key ID, Access Key Secret: These are the parts of the Access Key needed to
access OSS. You can obtain them from the AccessKey console
Access Domain Name: If a bucket shares a region with the ECS instance, select
Intranet domain name. Otherwise, select Internet domain name.
File Caching: If you need to synchronize modifications to the same file on multiple
machines (for example, modify the file in Machine A and then read the modified
content in Machine B), turn off file cache.

Note: Turning off file cache will slow down the ls folder, especially when there
are many files in the same folder. Therefore, if you do not require the above,
turn on file cache to speed up the ls.

Container Service User Guide

85

Subsequent operations

After a data volume is created, you can use it in applications. For how to use data volumes in
applications, refer to Use third party data volumes.

View and delete data Volumes

You can view the data volumes created or delete the data volumes.

Log on to the Container Service console, click Data Volumes in the left navigation pane and select the
target cluster.

All the data volumes in the current cluster are displayed, including local and third-party data volumes.

In addition, you can view the containers that reference the data volumes.

The names of local data volumes follow the format of node_name/volume_name.

For third-party data volumes, you can click View to view the parameters of the data volumes.

When you create a third-party data volume, the Container Service creates a data volume on all the
nodes in the cluster using the same data volume name, allowing containers to be migrated between
nodes. You can delete these volumes by clicking Delete All Volumes with the Same Name.

Note: You cannot delete a data volume when it is referenced by a container. To delete the data
volume, you need to first delete the container.

Use third-party data volumes

Third-party data volumes are used in the same way as local data volumes.

You can set the data volume information when creating an application either by using an image or
using an orchestration template.

Container Service User Guide

86

Operating procedure

This example makes illustrations by taking the OSSFS data volume test in the test cluster as an
example.

Create application from image

Log on to the Container Service console.

Click Applications in the left navigation pane.

Click Create Application in the upper-right corner.

Enter the basic information of the application (in this example, the application name is
volume), and click Create with Image.

In this example, the Cluster is test.

Note: The cluster of the application must be the same with that of the OSSFS data
volume.

Select the desired image and set other parameters.

Note: For how to create an application, refer to Create an application.

Click the plus icon in Data Volume, enter the data volume name in Host Path or Data

Container Service User Guide

87

Volume Name, enter the Container Path and set the Permission.

In the Data Volume List page, you can see that the OSSFS data volume test is referenced by the
container of the volume application.

Create application from orchestration template

Log on to the Container Service console.

Click Applications in the left navigation pane.

Click Create Application in the upper-right corner.

Enter the basic information of the application (in this example, the application name is
volume), and click Create with Orchestration Template.

In this example, the Cluster is test.

Note: The cluster of the application must be the same with that of the OSSFS data
volume.

Click Use Existing Orchestration Template or use your own orchestration template.

Note：For how to create an application, refer to Create an application.

Container Service User Guide

88

In the volumes section of the template, enter the data volume name, container path and
permission.

In the Data Volume List page, you can see that the OSSFS data volume test is referenced by the
container of the volume application.

Change the configuration of an existing application

Log on to the Container Service console.

Click Applications in the left navigation pane.

Select the cluster (in this example, select the test cluster), select the desired application and
Click Update.

For detailed information about how to change application configurations, refer to Change
application configurations.

Note: The application must be in the same cluster as the OSSFS data volume.

In the volumes section of the template, enter the data volume name, container path and
permission.

Container Service User Guide

89

Click OK.

In the Data Volume List page, you can see that the OSSFS data volume test is referenced by the
container of the volume application.

Troubleshooting

If you use the Volume name: directory in the image method for third-party data volumes (for
example, o1:/data, when the /data directory exists in the image), the container cannot be launched.
The system will report an error such as chown /mnt/acs_mnt/ossfs/XXXX: input/output error.

This error occurs because Docker will copy the files in the image to the data volume and use chown
to set the relevant user permissions. However, Linux prohibits the use of chown for mount points.

Container Service User Guide

90

To resolve this error, you can use one of the following solutions:

Upgrade Docker to version 1.11 or later, upgrade Agent to the latest version and specify
nocopy in the template. Docker will not copy the files and thereby, no chown error will occur.

If you need to copy the files, you can use the mount point path (for example,
/mnt/acs_mnt/ossfs/XXXX:/data) instead of the data volume name to set the data volume.
However, because this setting bypasses the volume driver, when the machine restarts, the
container might be started before OSSFS is successfully mounted; in this way, a local data
volume might be mounted onto the container. To avoid this issue, you need to use two data
volumes with one data volume set by the data volume name and the other volume set by
the mount point path. The data volume set by the data volume name is only used for
synchronizing with the volume driver and is not used for storage.

Log management

View logs

View application logs

Log on to the Container Service console.

Click Applications in the left navigation pane.

Select the cluster of the desired application.

 volumes:
- o1:/data:nocopy
- /tmp:/bbb

 volumes:
- o1:/nouse
- /mnt/acs_mnt/ossfs/XXXX:/data
- /tmp:/bbb

Container Service User Guide

91

Click the name of the target application.

Click Logs to view the application logs.

You can then select the log entries displayed, or download all logs to the local device.

View service logs

Log on to the Container Service console.

Click Services in the left navigation pane.

Select the cluster of the desired service.

Click the name of the target service.

Click Logs to view the application logs.

You can select the log entries displayed, or download all logs to local device.

Container Service User Guide

92

View container logs

Log on to the Container Service console.

Click Services in the left navigation pane.

Select the cluster of the desired service.

Click the name of the target service.

Locate a container and click Logs.

You can view the logs of this container.

Monitoring

Container Service User Guide

93

-

-

-

Container monitoring service

Container monitoring service depends on Alibaba Cloud CloudMonitor service, and provides users
with default monitoring, alarm rules configuration and other services for operating and maintaining
the container. Moreover, the Container Service provides the capability to integrate with third-party
open source solutions (for more information, refer to Integrate with third-party monitoring solutions).

Operating procedure

Log on to the Container Service console.

Use one of the following three methods to locate the container list page:

Through nodes.
i. Click Nodes in the left navigation pane.
ii. Click the IP address of the node.
Through applications.
i. Click Applications in the left navigation pane.
ii. Select the cluster of the desired application.
iii. Click the name of the target application.
Through services.
i. Click Services in the left navigation pane.
ii. Select the cluster of the desired service.
iii. Click the name of the target service.

In the container list, locate the target container and click Monitor.

You can view the real-time monitoring information of the container.

Container Service User Guide

94

i.

ii.

iii.

iv.

v.

Click View History Monitoring Data/Set Alarm Rules to go to the CloudMonitor console and
view history monitoring data of this container.

Set alarm rules.

For some services, you can add alarm rules according to your needs, and the container
monitoring service will send a message to the contact listed in the cloud account whenever
the monitoring metrics breach the alarm threshold value.

Click New Alarm Rule in the upper-right corner.
Based on your actual business requirements, define the rules and click Next.

Set the contact for alarms and click OK.
A message is displayed indicating that the alarm rule has been set. Click Close.
Click Alarm rules to view alarm rules and relevant records.

View monitoring information

View server monitoring information

Container Service User Guide

95

1.

-

-

-

Log on to the Container Service console.

Click Clusters in the left navigation pane.

Click the name of the target cluster.

Locate the target node and Click Monitor.

You can view the node monitoring information.

View container monitoring information

Log on to the Container Service console.

Use one of the following three methods to locate the container list page:

Through nodes.
i. Click Nodes in the left navigation pane.
ii. Click the IP address of the node.
Through applications.
i. Click Applications in the left navigation pane.
ii. Select the cluster of the desired application.
iii. Click the name of the target application.
Through services.
i. Click Services in the left navigation pane.

Container Service User Guide

96

ii. Select the cluster of the desired service.
iii. Click the name of the target service.

In the container list, locate the target container and click Monitor.

You can view the container monitoring information.

Custom monitoring

The container monitoring service integrates with the Alibaba CloudMonitor service and provides
monitoring and alarm services for containers, applications, clusters, and nodes. The container
monitoring service can meet the basic requirements for container monitoring. However, in many
business scenarios, you may have to use customized monitoring capabilities for your systems and
applications. In addition to the basic monitoring capabilities, the container monitoring service offers
two custom monitoring modes, enabling you to submit your custom monitoring data by writing your
own data collection script or exposing your HTTP monitoring data interface. The monitoring
framework of the Container Service collects data once per minute by executing the script or calling
the HTTP interface.

Prerequisites

Before using the custom monitoring feature, you must integrate the container monitoring service
with a third-party monitoring solution (for details, refer to Integrate with third-party monitoring
solutions).

Note: The container monitoring service only supports integration with InfluxDB and Prometheus
by default.

Container Service User Guide

97

Your custom monitoring data is submitted to your InfluxDB or Prometheus, and then displayed and
analyzed.

Submit monitoring data using a custom monitoring script

Create a Docker image and add a custom data collection script to this image.

The output data of this collection script must comply with the InfluxDB data format
protocol.

For details about the data format protocol, refer to InfluxDB Line Protocol.

Log on to the Container Service console. Use an orchestration template to create an
application. Then use the aliyun.monitoring.script label to declare the data collection script
used by the monitoring service.

The sample template is as follows:

This label defines the command in the application container that should be executed to
collect monitoring data. The label is configured as below:

Open the InfluxDB Web-based management interface to view the database tables named
after data indexes.

For information about how to view the database tables, refer to Integrate with third-party
monitoring solutions.

weather,location=us-midwest temperature=82 1465839830100400200
| -------------------- -------------- |
| | | |
| | | |
+-----------+--------+-+---------+-+---------+
|measurement|,tag_set| |field_set| |timestamp|
+-----------+--------+-+---------+-+---------+

custom-script:
image: 'Your own image repository address'
labels:
aliyun.monitoring.script: "sh gather_mem.sh"

labels:
aliyun.monitoring.script: "command used to execute the script"

Container Service User Guide

98

Collect data using the custom HTTP monitoring data
interface

Create a Docker image and expose the HTTP interface.

This interface outputs the monitoring data. You can define the monitoring data format as
long as it conforms to the JSON syntax. In addition, the system cannot determine whether
the JSON data returned from the custom HTTP interface is a data index field or a metadata
tag of the data index. You need to use another configuration item to specify what type of
JSON data has the tag attribute. For details, refer to Telegraf JSON data format.

Log on to the Container Service console and use an orchestration template to create an
application. In the template, you must add the aliyun.monitoring.http label to declare the
data collection interface, and use aliyun.monitoring.tags: "your tag attribute name 1, your
tag attribute name 2, ……" to declare what type of the data fields returned from the HTTP
data interface has the tag attribute.

Sample template:

The data returned from the data interface http://container:3000/metrics/data exposed by
the application nodejsapp is shown as below:

The aliyun.monitoring.tags: "tag1,tag2" label defines that in the submitted JSON data, tag1
and tag2 are the tags of the submitted data.

Open the InfluxDB Web-based management interface to view the database tables whose

nodejsapp:
command: "bash /run.sh"
ports:
- "3000:3000"
image: 'Your own image repository address'
labels:
aliyun.monitoring.http: "http://container:3000/metrics/data"
aliyun.monitoring.tags: "tag1,tag2"

{
"tag1": "tag1value",
"tag2": "tag2value",
"field1": 1,
"field2": 2,
"field3": true,
"field4": 1.5
}

Container Service User Guide

99

names consist of the httpjson_ prefix and the container name.

For example, if the container name is nodejsapp_nodejsapp_1, the name of the database
table in InfluxDB should be httpjson_nodejsapp_nodejsapp_1.

For details about how to view the database tables, refer to Integrate with third-party
monitoring solutions.

Integrate with third-party monitoring
solutions

Alibaba Cloud Container Service provides the capability to integrate with third-party monitoring
solutions.

Note: By default, only integration with InfluxDB and Prometheus is supported.

The following example introduces how to integrate the Container Service monitoring service with
third-party monitoring solutions by taking InfluxDB as an example.

Operating procedure

Log on to the Container Service console.

Click Applications in the left navigation pane.

Click Create Application in the upper-right corner.

Enter the basic information of the application and click Create with Orchestration Template.

In this example, the name of the application is influxdb.

Container Service User Guide

100

Enter the following template and click Create and Deploy.

Note: In a real production environment, the template needs to be modified. The
influxdb service definition should not expose the port to the host.

After the application is successfully created, click the name of the application influxdb in the
 Application List page to view the application details. Click Containers to view the node IP
and the exposed port of influxdb and copy the values (in this example, copy the node IP
and port number of 8086).

Click Applications in the left navigation pane to return to the Application List page.

Click Update, add the following contents in the template to declare the integration of
InfluxDB and the container monitoring service and click OK.

version: '2'
services:
#Define influxdb
influxdb:
image: tutum/influxdb:0.9
ports:
- "8083:8083" #Expose Web interface port
- "8086:8086" #Expose data API Web interface port

Container Service User Guide

101

i.

ii.

iii.

Note: By default, only integration with InfluxDB and Prometheus is supported. The
labels for InfluxDB and Prometheus integration are aliyun.monitoring.addon.influxdb
and aliyun.monitoring.addon.prometheus respectively. The label value must be in the
format of schema:hostIp:port.

As the container monitoring service Agent adopts host network mode, the Container
Service cannot use link to identify InfluxDB. You need to first create the influxdb
application and then add the data report address exposed by the application in the
application label to inform the data acquisition client. After that, the monitoring service
automatically writes the collected running status data of containers to influxdb.

In the Application List page, click the application name influxdb and click Containers. Copy
the influxdb port that has been exposed externally.

Access the InfluxDB management page in the browser to view the metric data written by
the container monitoring service.

Select telegraf.
Click Query Templates and click Show Measurements in the drop-down menu.
Press Enter.

You can view the database table, as shown in the figure below.

labels
aliyun.monitoring.addon.influxdb:"http://node IP：port"

Container Service User Guide

102

-

View detailed data in a table.

What to do next

After the Container Service is integrated with InfluxDB, select other data charts and frameworks (such
as Grafana) to display your monitoring data based on your own business situation.

Container auto scaling

To meet the demands of applications under different loads, the Container Service supports auto
scaling for the service, which automatically adjusts the number of containers according to the
container resource utilization rates.

You can configure container auto scaling rules when creating applications or add container auto
scaling rules for existing applications by updating application configurations.

Note: To use the container auto scaling function, you need to first upgrade the cluster Agent to
the latest version. For detailed information about how to upgrade Agent, refer to Upgrade Agent
.

Auto scaling policies:

When the metric value exceeds the upper limit, the Container Service increases the number

Container Service User Guide

103

-

-

-

-

-

-

-

of containers at the step defined by users.
When the metric value is lower than the lower limit, the Container Service reduces the
number of containers at the step defined by users.

Service metrics:

Average CPU usage
Average memory usage

Note: When judging whether the monitoring metric exceeds the specified upper limit or lower
limit, the Container Service uses the average value of the monitoring metric (namely, the average
CPU usage and the average memory usage) within a sample period (one minute) and it will only
trigger container scaling when the average monitoring metrics of three consecutive sample
periods all exceed the specified upper limit or lower limit, in order to avoid container scaling
caused by monitoring data jitter.

Set the container auto scaling

You can set the container auto scaling using one of the following three methods.

Use image to create the application

While creating the application, click Create with Image.

For information about how to create an application, refer to Create an application.

In the Deploy area at the bottom of the page, select Enable for Auto Scaling, and set
automatic scaling parameters.

Constraints:

The range of the Expansion Condition is 50%~100%; the range of the Contraction
Condition is 0%~50%.
The Expansion Condition must be at least 30% higher than the Contraction
Condition.
The range of the Step is 1~5, the default value is 1.
Set the Min Number of Containers and Max Number of Containers. For
contraction, if the number of containers of the application is less than or equal to
the Min Number of Containers, contraction will not be performed. For expansion, if
the number of containers of the application is greater than or equal to the Max
Number of Containers, expansion will not be performed.

Note: Set scaling policies with due care. If the application already meets the specified

Container Service User Guide

104

●

●

●

●

●

●

●

●

scaling rules when you set the scaling rules and the application will still meet the
scaling rules after container scaling, the monitor will continuously trigger container
scaling.

Use orchestration template to create the application

While creating the application, click Create with Orchestration Template.

Select to Use Existing Orchestration Template or use your own orchestration template.

Set container auto scaling rules.

Use Add Service.

In the pop-up dialog box, click More Settings, select Enable for auto scaling, and
set auto scaling parameters.

Set container auto scaling rules in the template manually.

In the labels configuration in the application template, add corresponding labels:

Specify the step size (the default value is 1): aliyun.auto_scaling.step
Specify the maximum number of instances (the default value is 10):
aliyun.auto_scaling.max_instances
CPU usage as the metric

Specify the upper limit: aliyun.auto_scaling.max_cpu
Specify the lower limit: aliyun.auto_scaling.min_cpu

Memory usage as the metric
Specify the upper limit: aliyun.auto_scaling.max_memory
Specify the lower limit: aliyun.auto_scaling.min_memory

Container Service User Guide

105

Update application configurations

You can add container auto scaling rules to existing applications by updating application
configurations.

In the Application List page, select the desired application and click Update on the right.

In the labels configuration in Template, add the corresponding container auto scaling
labels.

Node auto scaling

To meet the needs of applications under different loads, in addition to container elastic scaling, the
Container Service also provides node auto scaling. That is, you can configure the Container Service to
automatically adjust the number of nodes according to the node resource usage monitoring
information.

Node scaling policies:

When the monitoring metrics exceed the specified expansion conditions, the Container
Service increases the number of nodes at the specified expansion step.

When the condition metrics are lower than the specified contraction conditions, the
Container Service reduces the number of nodes at the default contraction step.

Auto scaling monitoring metrics：

Cluster CPU average usage

Cluster memory average usage

Prerequisites

Upgrade the cluster Agent to the latest version. Refer to Upgrade Agent.

Upgrade the cluster monitoring service (acsmonitoring) to the latest version. Refer to
Upgrade system services.

Container Service User Guide

106

Activate the RAM service and update the access authorization information (Operation path:
on the Container Service console, click Clusters in the left navigation pane > select the
desired cluster > click More > Update RAM Authorization Information).

Instructions

When judging whether the monitoring metric exceeds the specified upper limit or lower
limit, the Container Service uses the average value of the monitoring metric (namely, the
average CPU usage and the average memory usage) within a sample period (one minute)
and it will only trigger container scaling when the average monitoring metrics of three
consecutive sample period all exceed the specified upper limit or lower limit, so as to avoid
container scaling caused by monitoring data jitter.

Node contraction only contracts nodes that are added through node expansion; nodes
created or added manually by users will not be affected. If you want to perform auto scaling
on those nodes added manually, you need to add the following label for those nodes.

aliyun.reschedule==true

During node contraction, the system will delete the ECS instances in the cluster; therefore,
back up data before node scaling.

Do not schedule stateful service onto nodes that enable node contraction. For related
information, refer to constraint in Docker Compose.

When new ECS instances are expanded, the deployed containers will not be affected. The
Container Service will deploy new containers according to the container deployment
settings.

During node contraction, the Container Service will migrate containers on the delete ECS
instances onto other ECS instances.

Create a node scaling rule

Log on to the Container Service console.

Click Clusters in the left navigation pane.

Locate the target cluster and click Manage.

Container Service User Guide

107

-

-

-

-

Click Node Scaling in the left navigation pane and click Create Auto Scaling Rule.

Configure the scaling rules and click Next.

Constraints:

The range of the Expansion Condition is 50%~100%; the range of the Contraction
Condition is 0%~50%.
The Expansion Condition must be at least 30% higher than the Contraction
Condition.
The range of the Expansion Step is 1~5, the default value of the Contraction Step
is 1 and you cannot modify it.
Set the Min Number of Cluster Nodes and Max Number of Cluster Nodes. For node
contraction, when the number of nodes of the cluster is less than or equal to the
Min Number of Cluster Nodes, node contraction will not be performed. For node
expansion, when the number of nodes of the cluster is greater than or equal to the
Max Number of Cluster Nodes, node expansion will not be performed.

Note: Set scaling policies with due care. If the cluster already meets the specified
scaling rules when you set the scaling rules and the cluster will still meet the scaling
rules after node scaling, the monitor will trigger node scaling continuously.

Configure the instance specifications and click Submit.

During expansion, the Container Service adds nodes into the cluster according to the
specifications configure here. For more information on instance specifications, refer to
Create a cluster.

Container Service User Guide

108

In addition, you can set to add the IP addresses of the newly added ECS instances to RDS
instance white lists, so that the ECS instances can access the RDS instances.

Note: The ECS instances must be in the same region as the RDS instances.

View the created node scaling rule

Log on to the Container Service console.

Click Clusters in the left navigation pane.

Locate the target cluster and click Manage.

Click Node Scaling in the left navigation pane.

You can view the created node scaling rule.

You can click Modify to modify the node scaling rule or click Delete to delete this rule.

View monitoring metrics

Click Clusters in the left navigation pane.

Locate the target cluster and click Monitor.

The interface switches to the CloudMonitor console and you can see the cluster monitoring
information.

Note: If no monitoring data is displayed, check whether the monitoring service
(acsmonitoring) is correctly installed, whether the cluster Agent is the latest version,
and whether the monitoring service (acsmonitoring) is the latest version; if not,
perform upgrade.

Container Service User Guide

109

-

-

Click Container Service in the left navigation pane to view the cluster list.

Click View all rules to view the alarm rules of auto scaling.

Note: If no alarm rule is displayed, update the access authorization information of the
cluster (in the Cluster List page, select the desired cluster, click More > Update RAM
Authorization Information). Activate the RAM service before update the authorization
information; otherwise, error message will be displayed.

Select an alarm rule. You can then modify the alarm conditions, modify the contact and
notice type (including message and email), or suspend the alarm rule.

Authentication management

Resource access management

When you create several clusters with the Container Service and multiple users in your organization
need to use these clusters, if these users share the access key of your Alibaba cloud account, the
following problems will arise:

It has a high risk of information leakage.
You cannot restrict the access right of users, which may cause security risks due to improper

Container Service User Guide

110

-

-

-

-

operations.
Resource Access Management (RAM) is an Alibaba Cloud service designed for controlling resource
access. Through RAM, you can manage your users and control users’ right to access the resources
under your name in a centralized manner. For the Container Service, over 90% of users are granted
cluster dimensions rights which are mainly used to restrict the addition or deletion of clusters.
Therefore, in order to simplify access control, the Container Service provides two authentication
policies: resource authentication and fine-grained API authentication. For general users, resource
allocation authentication policy can meet most demands. For users who possess knowledge of RAM
and want to perform user authentication at the API level, API authentication is available.

Application scenario

In the following example, an app company want to use Alibaba Cloud service to provide APP backend
service, infrastructure and middleware. Users of the Alibaba Cloud service will include backend
developers, test engineers, operation & maintenance engineers, and basic platform engineers. In
terms of responsibility assignment:

The backend developers are responsible for developing APP backend service.
The test engineers are responsible for testing APP backend service and maintenance of basic
test environment.
The operation & maintenance engineers are responsible for the operation and maintenance
of all kinds of environment (scaling and monitoring of clusters).
The basic platform engineers are responsible for the maintenance of middleware and
construction of basic design, including GitLab, Jenkins, Sentry, and so on.

The different roles of these users mean different demands for resources. In order to ensure that each
role has enough authority to complete its own tasks without violating others’ rights. In this scenario,
resource allocation authentication can be implemented.

Operating procedure

Note: When you enter the RAM console, you may find some RAM child accounts starting with
acs_. These accounts are automatically created by the Container Service. Do not delete them.

Master account authorization

Log on to the RAM console.

Create a RAM subaccount.

Enable console login.

Container Service User Guide

111

For details about how to create a subaccount, refer to the RAM documentation.

Log on to the Container Service console.

Click Clusters in the left navigation pane.

Click Subaccount Authorization.

Select the corresponding subaccount and click Next.

Select corresponding cluster resources and permission type. Click Next and click Confirm in
the pop-up dialog box.

Click Finish to complete the authorization.

Use the subaccount

Use a subaccount to log on (use a master account to log on to the RAM management console and
inform the subusers of the logon address of the management console) and enter the Container
Service console.

The assigned clusters are displayed in the cluster list.

Understand authentication policy

Authentication policy is the verification of a user’s right to use cloud resources, which is divided into
resource allocation authentication and fine-grained API authentication.

Fine-grained API authentication is based on RAM (Resource Access Management) for authentication.

Resource allocation authentication is enveloped by the Container Service, and is an addition to fine-
grained API authentication. It mainly facilitates resource allocation in the Container Service that
cannot be accomplished through the fine-grained API authentication. At the same time, it
encapsulates the fine-grained API authentication policies into read-only and read-write permissions.
With the read-only permission, you can create and delete applications, but cannot perform cluster-
level add, delete, modify and view operations. With the read-write permission, you can fully manage

Container Service User Guide

112

clusters.

Advanced usage

Fine-grained API authentication can realize API-level authentication. At present, the following post
authentication conditions are provided.

Resource List:

Example:

In the preceding example, grant all rights to clusters cc6b56877fd64407fb615dd09ff85303e and
cee52159dd72d4ead9c0ee1b1708b7065.

For more information about fine-grained API authentication usage, refer to RAM documentation.

Authentication Action name Explanation

GetClusterById Get cluster description.

GetClusterCerts Get cluster certificates.

CreateCluster Create cluster.

DeleteCluster Delete cluster.

UpdateClusterSizeById Expand cluster.

Resource Explanation

cluster Cluster

{
"Statement": [
{
"Action": "cs:*",
"Effect": "Allow",
"Resource": "acs:cs:*:*:cluster/cc6b56877fd64407fb615dd09ff85303e"
},
{
"Action": "cs:*",
"Effect": "Allow",
"Resource": "acs:cs:*:*:cluster/cee52159dd72d4ead9c0ee1b1708b7065"
}
],
"Version": "1"
}

Container Service User Guide

113

DevOps

Jenkins-based continuous delivery

As an important step in agile development, continuous integration is designed to maintain high
quality while accelerating product iteration. Every time codes are updated, an automatic test is
performed to test the codes and function validity. The codes can only be delivered and deployed
after they pass the automatic test.

This section describes how to combine Jenkins, one of the most popular integration tools, with
Alibaba Cloud Container Service to realize automatic test and image building push.

The following example demonstrates how to perform automatic test and build a Docker image
through Alibaba Cloud Container Service, which will lead to high-quality continuous integration.

Background information

Every time codes are submitted to nodejs project in GitHub, Alibaba Cloud Container Service Jenkins
will automatically trigger a unit test. If the test is successful, Jenkins continues to build images and
then pushes them to a target image repository. Finally, Jenkins notifies you of the results by email.

A general process is shown in the following figure.

Slave-nodejs is a slave node used for unit testing and for building and pushing the image.

Jenkins introduction

Jenkins is an open-source continuous integration tool developed on Java. It monitors and triggers
continuously-repeated work and supports expansion of multiple platforms and plugins. Jenkins is an
open-source tool featuring easy installation and interface-based management. It uses job to describe

Container Service User Guide

114

every work step, and node is a project execution environment. The master node is a default execution
environment of a Jenkins job and also the installation environment for Jenkins applications.

Master/slave

Master/slave is equivalent to the server/agent concept. A master provides Web interface through
which you manage the job and slave. The job can run on the master or be assigned to the slave. One
master can be associated with several slaves to serve different jobs or different configurations of the
same job.

Several slaves can be configured to prepare a separate test and building environment for different
projects.

Note: Jenkins job and projects mentioned here all refer to a build unit of Jenkins, that is, an
execution unit.

Step 1 Deploy Jenkins applications and slave nodes

The building and testing of different applications need different dependencies. The best practice is to
use different slave containers with corresponding runtime dependencies and tools to execute the test
and building. Through slave images and sample templates provided by Alibaba Cloud Container
Service for different environments such as Python, nodejs and go, you can quickly and easily generate
Jenkins applications and various slave nodes, configure node information in Jenkins applications, and
designate execution nodes in the build projects, so as to implement the entire integration process.

Note: For images provided by Alibaba Cloud Container Service for developing slave nodes, refer
to https://github.com/AliyunContainerService/jenkins-slaves.

1.1 Create a Jenkins orchestration template

Create a new template and create the orchestration based on the following content.

Note: For how to create an orchestration template, refer to Create an orcgestration template.

jenkins:
image: 'registry.aliyuncs.com/acs-sample/jenkins:1.651.3'
volumes:
- /var/lib/docker/jenkins:/var/jenkins_home
restart: always
labels:
aliyun.scale: '1'
aliyun.probe.url: 'tcp://container:8080'
aliyun.probe.initial_delay_seconds: '10'
aliyun.routing.port_8080: jenkins
links:

Container Service User Guide

115

2.1 Use the template to create Jenkins applications and slave nodes

You can also directly use a Jenkins sample template provided by Alibaba Cloud Container Service to
create Jenkins applications and slave nodes.

After a successful creation, Jenkins applications and slave nodes will be displayed in the service list.

After opening the access endpoint provided by the Container Service, the Jenkins application
deployed can now be used.

Step 2 Realize automatic test and automatic build and push of
image

2.1 Configure the slave container as the slave node of the Jenkins application

Open the Jenkins application and enter the System Settings interface. Select Manage Node > Create
Node, and configure corresponding parameters.

- slave-nodejs
slave-nodejs:
image: 'registry.aliyuncs.com/acs-sample/jenkins-slave-dind-nodejs'
volumes:
- /var/run/docker.sock:/var/run/docker.sock
restart: always
labels:
aliyun.scale: '1'

Container Service User Guide

116

-

-

-

Note:

Label is the only identifier of the slave.
The slave container and Jenkins container run on the Alibaba Cloud platform at the
same time. Therefore, you can fill in a container node IP address that is inaccessible to
the Internet to isolate the test environment.

Use the jenkins account and password (the initial password is jenkins) in Dockerfile for
the creation of the slave-nodejs image when adding Credential. Image Dockerfile
address: https://github.com/AliyunContainerService/jenkins-slaves/tree/master/jenkins-
slave-dind-nodejs.

2.2 Create a project to implement the automatic test.

Create an item and choose to build a free style software project.

Enter the project name and select a node for running the project. In this example, enter the
slave-nodejs-ut node created above.

Container Service User Guide

117

Configure the source code management and code branch. In this example, use GitHub to
manage source codes.

Configure the trigger for building. In this example, automatically trigger project execution
by combining GitHub Webhooks and services.

Add the Jenkins service hook to GitHub to implement automatic triggering.

Click the Settings tab on the GitHub project homepage, and click Webhooks & services >
Add service and select Jenkins (Git plugin). Enter ${Jenkins IP}/github-webhook/ in the
Jenkins hook URL dialog box.

 http://jenkins.cd****************.cn-beijing.alicontainer.com/github-webhook/

Container Service User Guide

118

Add a build step of Executes shell type and write shell scripts to execute the test.

The command in this example is as follows.

SVN code example

Select Subversion in Source Code Management and enter the SVN repository address in Repository
URL (if the Jenkins master and SVN server are in different time zones, add @HEAD at the end of the
repository address). Add the username and password of the SVN server in Credentials.

Configure the build trigger. In this example, Post-commit hook is used to perform automatic project
execution. Enter your token in Token Name.

Log on to the SVN server. Create a post-commit in the hooks directory in the source code
repository（svn-java-demo).

 pwd
ls
cd chapter2
npm test

Container Service User Guide

119

Add curl -u ${Jenkins_account}:${password} ${Jenkins_url}/job/svn/build?token=${token} in the post-
commit fiel. For example, curl -u test:test http://127.0.0.1:8080/jenkins/job/svn/build?token=qinyujia.

2.3 Create a project to automatically build and push images

Create an item and choose to build a free style software project.

Enter the project name and select a node to run the project. In this example, enter the
slave-nodejs-ut node created above.

Configure the source code management and code branch. In this example, use GitHub to
manage source codes.

Add the following trigger and set it to implement automatic image building only after
success of the unit test.

Write shell scripts for building and pushing images.

The command in this example is as follows.

cd /home/svn/svn-java-demo/hooks
cp post-commit.tmpl post-commit
chmod 755 post-commit

 cd chapter2
sudo docker build -t registry.aliyuncs.com/qinyujia-test/nodejs-demo .
sudo docker login -u ${yourAccount} -p ${yourPassword} registry.aliyuncs.com
sudo docker push registry.aliyuncs.com/qinyujia-test/nodejs-demo

Container Service User Guide

120

Step 3 Automatically redeploy the application

3.1 Deploy the application for the first time

Use the orchestration template to deploy the image created above to the Container Service and
create the nodejs-demo application.

Example:

3.2 Automatic redeployment

Select the application nodejs-demo just created, and create the trigger.

Note: For how to create a trigger, refer to Trigger.

Add a line to shell scripts wrote in 2.3. The address is the trigger link given by the trigger
created above.

Change the Command in the example of 2.3 as follows.

After pushing the image, Jenkins automatically triggers redeployment of the nodejs-demo
application.

express:
image: 'registry.aliyuncs.com/qinyujia-test/nodejs-demo'
expose:
- '22'
- '3000'
restart: always
labels:
aliyun.routing.port_3000: express

 curl ‘https://cs.console.aliyun.com/hook/trigger?triggerUrl=***==&secret=***’

 cd chapter2
sudo docker build -t registry.aliyuncs.com/qinyujia-test/nodejs-demo .
sudo docker login -u ${yourAccount} -p ${yourPassword} registry.aliyuncs.com
sudo docker push registry.aliyuncs.com/qinyujia-test/nodejs-demo
curl ‘https://cs.console.aliyun.com/hook/trigger?triggerUrl=***==&secret=***’

Container Service User Guide

121

Step 4 Configure email notification of the results

If you want to send the unit test or image configuration results to relevant developers or project
execution initiators through email, perform the following configurations.

On the Jenkins homepage, click System Management > System Settings, and configure a
Jenkins system administrator email.

Install the Extended Email Notification plugin, configure SMTP server and other relevant
information, and set the default recipient list.

The preceding example shows the parameter settings of the Jenkins application system. The
following example shows the relevant configurations for Jenkins projects whose results are
to be pushed through email.

Add post-building operation steps in the Jenkins project, select Editable Email Notification,
and enter a recipient list.

Add a mailing trigger.

Container Service User Guide

122

Service discovery and load balancing

Overview

Communication is classified into two types: communication with externally exposed services and
communication between internal services. Service discovery and load balancing are designed to
address the issue of reliable communication.

The following section introduces different application scenarios of service discovery and load
balancing as well as their solutions.

Scenario 1

Simple routing is recommended for common and simple Layer-7 load balancing and reverse proxy
for web services. For details, refer to Expose HTTP services through acsrouting, Add domain names to
services exposed to the public network, and Change exposed HTTP services to HTTPS services.

Scenario 2

In Layer-4 load balancing, loads are evenly distributed to functionally identical containers, and the
services of non-container clusters access the services of containers deployed in clusters during the
migration of a traditional architecture to a container architecture. In this scenario, Expose services
using custom Server Load Balancer is recommended.

Scenario 3
Services in the same cluster need the ability to discover and communicate with each other, and need

Container Service User Guide

123

load balancing capabilities. In this scenario, Load balancing and automatic service discovery between
microservices is recommended.

Scenario 4

Services in the same cluster need the ability to discover and communicate with each other, but do not
need load balancing capabilities. In this scenario, Service discovery between containers is
recommended.

Scenario 5

Load balancing and service discovery are customized according to relatively high requirements, such
as support for wildcard domain names, custom error page creation, access logging, selection of
backend services based on URL parameter values, and creation of custom HAProxy configuration
files.

Expose HTTP services through acsrouting

Applicable scenario

In simple Layer-7 load balancing with the web routing service, services in a container cluster access
each other using Layer-7 protocols through communication proxy and Server Load Balancer.

Concept

When a cluster is created, by default, it is assigned a Server Load Balancer instance used to add all
nodes in the cluster to the instance backend. Port 80 is exposed at the frontend, and Port 9080 is
exposed on all machines on which backend nodes run. Alibaba Cloud Container Service Routing
(acsrouting) is an ongoing global project and has only one service (routing service). acsrouting sees
that a copy (or a container) of the service (or an image) is deployed on each node (a node is also
called a host or an ECS VM instance). Each node uses its container to route HTTP services or HTTPS
services.

See the figure below. For HTTP services, the mapping between Server Load Balancer frontend and
backend ports is 80:9080, and the host-container port mapping is 9080:80, indicating that Port 80 is
exposed on the containers used for routing. Any ports can be exposed on the other containers used
by the web service. After you set the host-container port mapping during container startup, the
routing service can obtain the corresponding port for request routing. For a complete example about
how to expose HTTP services, refer to Create Nginx from an image.

Container Service User Guide

124

Setup methods

Set through the Container Service console

Set through Services > Update

Log on to the Container Service console.

Click Services in the left navigation pane.

Select the cluster of the desired service.

Locate the service to be exposed (spring-boot is used as an example) and click Update.

Configure the host-container port mapping, as shown in the figure below.

As shown in the following figure, the host port is empty, indicating that a random port on
the host is exposed (when HTTP or HTTPS services are exposed, you do not need to know
what port is exposed on the host, because the container port is directly accessed through
an overlay network or VPC network). The container port is Port 8080. Use spring-boot to

Container Service User Guide

125

enable default exposure of Port 8080 of the web service to provision HTTP services. The
used protocol is TCP.

Routing configuration enables service exposure through a domain name. You must specify
the exposed port (Port 8080 of the web service is used as an example). You only need to
enter the domain name prefix in Domain. If the domain name prefix is XXX, you obtain the
domain name XXX.$cluster_id.$region_id.alicontainer.com used for testing. In this example,
you obtain the domain name spring-boot.c0cffb4340aee47ccb26dea062cfb0b2e.cn-
beijing.alicontainer.com. You can enter your own domain name, which needs to be resolved
to the IP address of the corresponding Server Load Balancer instance. For how to configure
the container port used for routing and the domain name used to access HTTP services,
refer to routing in Label description.

Set through Applications > Update

Log on to the Container Service console.

Click Applications in the left navigation pane.

Select the cluster of the desired application.

Locate the application (in this example, the application wordpress is used) and click Update.

Add a routing label in Template, define the corresponding domain name or domain name
prefix, and check whether the updated project version is correct. Then click OK to update
the domain name.

Container Service User Guide

126

-

-

Set through client

docker help run: View the used “-p” option. Set the routing configuration on the Container
Service management console.
docker-compose: View the supported “ports” option. For routing configuration rules, refer
to routing in Label description.

Add domain names to services exposed to
the public network

Log on to the Container Service console.

Click Services in the left navigation pane.

Select the cluster of the desired service.

Container Service User Guide

127

i.

ii.

iii.

Locate the service to which you want to add a domain name and click Update.

The service web belonging to the application wordpress is used as an example.

Click the plus icon next to Web Routing, enter the domain name to be added
(www.example.com is used as an example), and click OK to update the configuration.

Note: When multiple domain names are added under the same port for the same
service, they must be separated by a semicolon (;).

Wait until the service finishes the update and enters the ready state. After that, the routing
service acsrouting_routing finishes domain name configuration. When requests containing
the domain name www.example.com are sent for access to the service wordpress_web, the
requests can be correctly parsed and forwarded to the corresponding service.

Resolve the domain name to the cluster of the Container Service. When you create a cluster,
the Container Service assigns a Server Load Balancer instance to each cluster, and the
instance belongs to you.

Click Clusters in the left navigation pane in the Container Service console.
Locate the corresponding cluster (the cluster routing-test-online is used as an
example) and click Manage.
Click Load Balancer Settings and click Go to Server Load Balancer Console.

You can view the service address of the Server Load Balancer instance.

Container Service User Guide

128

i.

ii.

iii.

Ask your DNS resolver service provider to resolve your domain (www.example.com in this
example) to the Server Load Balancer VIP address, namely add an A record.

Access http://www.example.com. You will see the Hello World page of WordPress.

Change exposed HTTP services to HTTPS
services

Prerequisite

An HTTP domain name for access has been configured. For details, refer to Add domain names to
services exposed to the public network.

Operating procedure

HTTPS is supported at the Server Load Balancer layer. To support HTTPS, a Server Load
Balancer certificate must be created.

Log on to the Server Load Balancer console.
Click Certificates on the left navigation pane and click Create Certificate in the
upper-right corner.

Enter certificate information, and click Confirm.

Container Service User Guide

129

i.

ii.

After the certificate is successfully created, locate the Server Load Balancer instance that is
assigned during cluster creation.

When you create clusters, the Container Service assigns a Server Load Balancer instance to
each cluster, and the instance belongs to you.

On the Container Service console, click Clusters on the left navigation pane, select
the corresponding cluster (the cluster routing-test-online is used as an example),
and click Manage.

Click Load Balancer Settings and click Go to Server Load Balancer Console.

Container Service User Guide

130

i.

ii.

iii.

iv.

v.

You can view the service address of the Server Load Balancer instance.

Click Listening in the left navigation pane and click Create Listener. In the Add Listener
page, enter the following port information.

Select HTTPS for the frontend protocol.
Set the frontend port to Port 443 and backend port to Port 9080. (Port 9080 is
exposed by the routing service acsrouting_routing on each ECS host. All HTTP
requests are forwarded based on the HOST HTTP header to corresponding
containers that provide various services.)
Select the preceding certificate www.example.com.
Complete other settings based on your needs.
Click Next Step.

 +----------------+-------+------+
| | Protocol | Port |
+----------------+-------+------+
| Front-end protocol (port) | HTTPS | 443 |
+----------------+-------+------+
| Backend protocol (port) | HTTP | 9080 |
+----------------+-------+------+

Container Service User Guide

131

Complete settings on the Health check page. Then click Confirm.

You can select to disable or enable the health check. If you select to enable the health
check, you have to enter your own domain name in Domain Name or enter /haproxy-
monitor in Health Check Route; otherwise, the health check will be abnormal.

Container Service User Guide

132

After the listener is successfully created and started, click Confirm.

Access the page https://www.example.com.

Container Service User Guide

133

1.

Load balancing and automatic service
discovery between microservices

In the Container Service, the HTTP service can be exposed based on domain using acsrouting, and
health checks can be used to automatically enable load balancing and service discovery. When a
container has a problem, the routing will automatically remove the container with a failed health
check at the backend. This enables automatic service discovery.

However, the preceding method exposes the service to Internet, so how can automatic service
discovery and load balancing be achieved between services using this method? The Container Service
uses the Server Load Balancer. You only need to use the domain ending with .local, and add this
domain to external_links in the dependent service, and then the dependent service can access the
service using this domain ending with .local, and work with health checks to achieve automatic
service discovery.

Concept

Docker version later than 1.10 supports alias resolution in the container. In the container of
the restserver.local service which depends on the load, the restserver.local domain is
resolved into the address of the routing service. In this way, the HTTP request can be
forwarded to the routing service container, with HOST in the requested header of
restserver.local.

Routing monitors the health status of the container of the service configured with
aliyun.routing_port_xxx: restserver.local, and attaches the status to the backend of HAProxy.
After HAProxy receives the HTTP request with the restserver.local HOST header, it can
forward that to the corresponding container.

Container Service User Guide

134

Advantages

Compared with the DNS-based method using link or hostname, the inconsistent handling of
DNS caching by different clients will firstly delay service discovery, and secondly, the DNS
solution only include round robin, which is insufficient to support micro-services.

Compared with other microservice discovery solutions, this provides a mechanism to achieve
unrelated service discovery and Server Load Balancer, which can be used without having to
perform any modification at the server side or client application.

Moreover, in decoupling service lifecycle, every microservice can adopt a Docker Compose
template to allow itself to be independently deployed and updated. Only a virtual domain is
required to achieve dynamic mutual binding.

Orchestration instance

restserver: # Simulate the rest service
image: nginx
labels:
aliyun.routing.port_80: restserver.local # Use the local domain and the container only in the cluster can access this
domain
aliyun.scale: "2" # Scale 2 instances, to simulate the Server Load Balancer
aliyun.probe.url: "http://container:80" # Define the policy of container health check as http through Port 80.
aliyun.probe.initial_delay_seconds: "2" # The health check starts 2 seconds after the container is enabled

Container Service User Guide

135

The following restclient service logs show that the HTTP request of restclient curl is routed to the
containers of different rest services. The container ID is respectively
053cb232fdfbcb5405ff791650a0746ab77f26cce74fea2320075c2af55c975f and
b8c36abca525ac7fb02d2a9fcaba8d36641447a774ea956cd93068419f17ee3f.

Expose services using custom Server Load
Balancer

Expose HTTP or HTTPS services

Routing is recommended for exposing HTTP or HTTPS services. If you want to build routes, activate
an intranet-based or Internet-based Server Load Balancer instance with a route destined for the VM

aliyun.probe.timeout_seconds: "2" # Timeout for the health check. A container is deemed unhealthy if no result is
returned in two seconds.
restclient: # Simulate rest service consumer
image: registry.aliyuncs.com/acs-sample/alpine:3.3
command: "sh -c 'apk update; apk add curl; while true; do curl --head restserver.local; sleep 1; done'" # Access the
rest service, and test the Server Load Balancer
tty: true
external_links:
- "restserver.local" # Specify link service domain. Make sure that you set external_links; otherwise, the access might
fail.

internal-loadbalance_restclient_1 | 2016-07-01T06:43:49.066803626Z Server: nginx/1.11.1
internal-loadbalance_restclient_1 | 2016-07-01T06:43:49.066814507Z Date: Fri, 01 Jul 2016 06:43:49 GMT
internal-loadbalance_restclient_1 | 2016-07-01T06:43:49.066821392Z Content-Type: text/html
internal-loadbalance_restclient_1 | 2016-07-01T06:43:49.066829291Z Content-Length: 612
internal-loadbalance_restclient_1 | 2016-07-01T06:43:49.066835259Z Last-Modified: Tue, 31 May 2016 14:40:22
GMT
internal-loadbalance_restclient_1 | 2016-07-01T06:43:49.066841201Z ETag: "574da256-264"
internal-loadbalance_restclient_1 | 2016-07-01T06:43:49.066847245Z Accept-Ranges: bytes
internal-loadbalance_restclient_1 | 2016-07-01T06:43:49.066853137Z Set-Cookie:
CONTAINERID=053cb232fdfbcb5405ff791650a0746ab77f26cce74fea2320075c2af55c975f; path=/

internal-loadbalance_restclient_1 | 2016-07-01T06:43:50.080502413Z HTTP/1.1 200 OK
internal-loadbalance_restclient_1 | 2016-07-01T06:43:50.082548154Z Server: nginx/1.11.1
internal-loadbalance_restclient_1 | 2016-07-01T06:43:50.082559109Z Date: Fri, 01 Jul 2016 06:43:50 GMT
internal-loadbalance_restclient_1 | 2016-07-01T06:43:50.082589299Z Content-Type: text/html
internal-loadbalance_restclient_1 | 2016-07-01T06:43:50.082596541Z Content-Length: 612
internal-loadbalance_restclient_1 | 2016-07-01T06:43:50.082602580Z Last-Modified: Tue, 31 May 2016 14:40:22
GMT
internal-loadbalance_restclient_1 | 2016-07-01T06:43:50.082608807Z ETag: "574da256-264"
internal-loadbalance_restclient_1 | 2016-07-01T06:43:50.082614780Z Accept-Ranges: bytes
internal-loadbalance_restclient_1 | 2016-07-01T06:43:50.082621152Z Set-Cookie:
CONTAINERID=b8c36abca525ac7fb02d2a9fcaba8d36641447a774ea956cd93068419f17ee3f; path=/

Container Service User Guide

136

port (which can be implemented using the label method aliyun.lb.port_$container_port), and then
configure the host-container mapping used to route requests.

Application scenario:

In Layer-7 load balancing, you can define a route for each service. When a traditional architecture is
migrated to a container architecture, the services of non-container clusters access the services of
containers deployed in clusters.

Expose TCP or UDP services

To expose TCP services, you need to configure a Server Load Balancer instance or a public IP address,
and configure the mapping between host port and container port (which can be implemented using
the label method aliyun.lb.port_$container_port).

Application scenario:

In Layer-4 load balancing, you can define a route for each service. When a traditional architecture is
migrated to a container architecture, the services of non-container clusters access the services of
containers deployed in clusters.

Example:

Use a custom Server Load Balancer instance to expose the Redis service in a container cluster to the
Python project outside the container cluster.

On the Server Load Balancer console, buy and create a Server Load Balancer instance used
for routing (click Create Server Load Balancer in the upper-right corner).

An Internet-based instance is used as an example. You can select an Internet-based or
intranet-based instance according to your needs.

Note: As Server Load Balancer does not support cross-region deployment, you should
select the same region as the Container Service cluster that you intend to use.

Return to the Server Load Balancer console and name the created Server Load Balancer
instance as slb_redis_app. This name is used by the Container Service to reference the
instance.

Click Instance Management in the left navigation pane > select the region of the instance >
select the target instance > edit the instance name and click Confirm.

Container Service User Guide

137

Create a listening port.

Click Manage at the right of the instance > click Listening in the left navigation pane > click
Create Listener > set the configurations. The listening port must be a TCP port with
6379:6379 mapping.

Log on to the Container Service console. Select an existing cluster, create an application
named redis-demo, and click Create with Image.

For information about how to create an application, refer to Create an application.

Container Service User Guide

138

●

●

●

●

Note: As Server Load Balancer does not support cross-region deployment, the
Container Service cluster should be in the same region as the Server Load Balancer
instance you created.

Select the Redis image and set the Port Mapping information.

Note: The Redis image only enables Port 6379 on the container. To add a route
destined for Port 6379 to the created Server Load Balancer instance, you need to
obtain the host:port mapping of the Redis image.

To do this, in Port Mapping, specify Host Port as 6379 which is the backend port bound to
the Server Load Balancer instance and specify Protocol as TCP.

To configure custom load balancing, you need to inject the Server Load Balancer
information to the Redis service either by adding a label or by defining Load Balancer.

Add a label. In this example, the label is aliyun.lb.port_6379:
tcp://slb_redis_app:6379.

The label format is shown as follows (the variable with $ is a placeholder).

$container_port indicates the port exposed by the container.
$scheme indicates the protocol supported by the listening port of the
Server Load Balancer instance, which may be tcp, http, https, or udp.
$[slb_name|slb_id] indicates the name or ID of the Server Load Balancer
instance.
$front_port indicates the frontend port exposed by the Server Load
Balancer instance.

For more details, refer to aliyun.lb.port_$container_port.

In the Create Application page, click the plus icon at the right of Load Balancer

aliyun.lb.port_$container_port:$scheme://$[slb_name|slb_id]:$front_port

Container Service User Guide

139

and set the Server Load Balancer information.

This setting is equivalent to the label aliyun.lb.port_6379: tcp://slb_redis_app:6379.

This example sets the destination container port to Port 6379, references the Server Load
Balancer instance named slb_redis_app, sets the protocol used by the listening port to TCP
corresponding to the protocol used by the host:container port mapping, and sets the
frontend port of the Server Load Balancer instance to Port 6379.

Note: In this example, the frontend port and backend port (host port) of the Server
Load Balancer instance as well as the container port are all set to Port 6379, you can
set a different frontend port and host port based on your needs.

Click Create to create the Redis application.

During the creation process, the slb_redis_app Server Load Balancer instance is
automatically bound to the backend host deployed with the Redis image.

When the Redis application is ready, log on to the Server Load Balancer console to view the
status of the slb_redis_app Server Load Balancer instance.

Click Instance Management in the left navigation pane > select the region of the instance >
select the target instance > click Manage at the right of the instance > click Server >
Backend server)

The health status shows that the Server Load Balancer instance is correctly bound to the
backend host.

You can view the IP address of the Server Load Balancer instance in the Instance
Management page of the Server Load Balancer console, and use the command line tool
telnet $Server_Load_Balancer_IP_address 6379 to check port accessibility.

To test the configurations, start a simple Python project locally to access Redis in the
container cluster through the slb_redis_app Server Load Balancer instance.

Note: The Redis host address is the same as the IP address of the Server Load
Balancer instance.

Container Service User Guide

140

app.py

requirements.txt

shell

The access result is as follows.

Service discovery between containers

The Container Service provides several methods of service discovery for the services and containers
within the cluster: by container name, by link, and by hostname.

 from flask import Flask
from redis import Redis
app = Flask(__name__)
redis = Redis(host='$Server_Load_Balancer_IP_address', port=6379)
@app.route('/')
def hello():
redis.incr('hits')
return 'Hello World! I have been seen %s times.' % redis.get('hits')

if __name__ == "__main__":
app.run(host="0.0.0.0", debug=True)

 flask
redis

 $ pip install -r requirements.txt
$ python app.py
Running on http://0.0.0.0:5000/ (Press CTRL+C to quit)
Restarting with stat
Debugger is active!
Debugger pin code: 243-626-653

Container Service User Guide

141

By container name

The Container Service can be accessed either through the container’s IP address or the name of
another container in the network. In the example described in the Container network interconnection
, the service is accessed using the container name cross-host-network-test1 in the cross-host-
network-test2 container.

If the container_name is not specified in the orchestration file, the container name by default is
{project-name}_{service-name}_{container-index}. Therefore, the service can be accessed using the
container name of another service after connecting to the management terminal.

By link

The Container Service supports the link between services in application template. The link between
services can link the container of one service to the container of another service, and a particular
container can also access the container it depends on using the alias of the linked container. In
addition, any change in the IP address of a container depended on by other containers can be
dynamically updated to the alias. For example, the WordPress orchestration can be referenced in the
Container Service orchestration instance. When the Web service in WordPress links db:mysql service
to the container, the container can access the container of the db service using the MySQL domain.

By hostname

If hostname configuration is defined in the orchestration template, the container can be accessed
using this hostname in the cluster.

For example,

In the cluster, you can resolve and access the container for this service with xxserver, and if this
service contains several containers, using the access with this domain allows Server Load Balancer to
take effect.

If the service is not configured with a hostname, the Container Service will by default take the
container name as its hostname. If an application needs to know its own container name for service
registration, such as Eureka Client, a reachable address needs to be registered to the Eureka Server.
The process in the container can obtain the container name for service registration and enable other
service callers to access each other using this container name.

 testhostname:
image: busybox
hostname: xxserver
command: sleep 100000
tty: true

Container Service User Guide

142

●

●

●

Custom routing-Using guide

The custom proxy image is inherited from the image dockercloud/haproxy through FROM
dockercloud/haproxy. It dynamically detects the container status, and realizes backend container load
balancing proxy and service discovery. The feature is that all configurations of the HAProxy Server
Load Balancer are parameterized for you to conveniently customize your configurations according to
your need.

This image is mainly applicable in scenarios in which the default routing service of Alibaba Cloud
Container Service cannot meet your needs. It helps you customize the HAProxy in a convenient way.

The acs/proxy and HAProxy mentioned in this document refer to this image and the HAProxy of this
image respectively.

Working principle of dynamic load balancing proxy and
service discovery

Based on the container’s environment variables, the image acs/proxy determines the global
and default load balancing configurations.

The image acs/proxy listens to events in the cluster, such as changes to the container status,
and re-obtains information about containers to which changes have occurred, so as to
determine the latest load balancing configuration.

The image acs/proxy reloads the latest load balancing configuration to bring the
configuration into effect.

How to determine the backend container of Server Load
Balancer

The range is determined based on the environment variable ADDITIONAL_SERVICES of
acs/proxy.

ADDITIONAL_SERVICES: "*" indicates that the range is the whole cluster.
ADDITIONAL_SERVICES:
"project_name1:service_name1,project_name2:service_name2" indicates that the
range is the current application and specified services in the specified application.
If ADDITIONAL_SERVICES is null or left blank, the range is the containers of the
current application.

Container Service User Guide

143

●

●

The image determines whether to add the container as acs/proxy backend container based
on the container’s label.

aliyun.proxy.VIRTUAL_HOST: "www.toolchainx.com" indicates adding the container
as backend container and the domain name is www.toolchainx.com.
aliyun.proxy.required: "true" indicates adding the container as backend container
and use it as the default backend container.

How to bind a Server Load Balancer instance to the front-
end

You can use a custom load balancing label, such as aliyun.lb.port_80: 'tcp://proxy:80'.

For details about how to use the custom load balancing label, refer to lb.

Sample template

Configuration instructions

Set the global and default configurations through the environment variables of

 lb:
image: registry.aliyuncs.com/acs/proxy:0.5
ports:
- '80:80'
restart: always
labels:
With the use of addon, the proxy image can function as a subscription registry center and dynamically load the
service route.
aliyun.custom_addon: "proxy"
A proxy image container is deployed for each VM.
aliyun.global: "true"
Use a custom load balancing label to bind a Server Load Balancer instance to the front-end.
aliyun.lb.port_80: tcp://proxy_test:80
environment:
It indicates the range of backend containers that support route loading: "*" indicates the whole cluster. The
default value is services in an application.
ADDITIONAL_SERVICES: "*"
appone:
expose: # For proxied services, use expose or ports to tell proxy containers which port should be exposed.
- 80/tcp
image: 'nginx:latest'
labels:
HTTP, HTTPS, WS, and WSS are available in this example.
Use your own domain name instead of the domain name for testing provided by the Container Service.
aliyun.proxy.VIRTUAL_HOST: "http://appone.example.com"
restart: always

Container Service User Guide

144

the image acs/proxy

Note: Settings in this part is immutable, you have to redeploy HAProxy service to make the
changes take effects.

Environment Variable Default Description

ADDITIONAL_SERVICES

List of additional services to
balance (for example,
prj1:web,prj2:sql).
Discovery will be based on
com.docker.compose.[projec
t|service] container
labels.
This environment variable
only works on compose V2,
and the referenced services
must be on a network
resolvable and accessible to
this containers.

BALANCE roundrobin

Load balancing algorithm to
use.
Possible values include:
roundrobin, static-rr, source,
leastconn.
See HAProxy:balance.

CA_CERT_FILE

Path of a ca-cert file.
This allows you to mount
your ca-cert file directly from
a volume instead of from
environment variable.
If set, CA_CERT environment
variable will be ignored.
Possible value:
/cacerts/cert0.pem

CA_CERT

CA cert for haproxy to verify
the client.
Use the same format as
DEFAULT_SSL_CERT.

CERT_FOLDER

Path of certificates.
This allows you to mount
your certificate files directly
from a volume instead of
from environment variables.
If set, DEFAULT_SSL_CERT
and SSL_CERT from linked
services are ignored.
Possible value: /certs/.

DEFAULT_SSL_CERT

Default SSL certificate.
A pem file content with
private key followed by
public certificate, ‘\n’ (two

Container Service User Guide

145

chars) as the line separator.
The content should be
formatted as one line. See
SSL Termination.

EXTRA_BIND_SETTINGS

Comma-separated string
(<port>:<setting>) of extra
settings, and each part will
be appended to the related
port bind section in the
configuration file.
To escape comma, use \,.
Possible value: 443:accept-
proxy, 80:name http.

EXTRA_DEFAULT_SETTINGS

Comma-separated string of
extra settings, and each part
will be appended to
DEFAULT section in the
configuration file.
To escape comma, use \,.

EXTRAFRONTEND_SETTINGS
\<PORT>

Comma-separated string of
extra settings, and each part
will be appended frontend
section with the port number
specified in the name of the
environment variable.
To escape comma, use \,.
For example,
EXTRA_FRONTEND_SETTING
S_80=balance source,
maxconn 2000.

EXTRA_GLOBAL_SETTINGS

Comma-separated string of
extra settings, and each part
will be appended to GLOBAL
section in the configuration
file.
To escape comma, use \,.
Possible value:
tune.ssl.cachesize 20000,
tune.ssl.default-dh-param
2048.

EXTRA_ROUTE_SETTINGS

A string which is appended
to each backend route after
the health check, and can be
overwritten in the linked
services.
Possible value: “send-
proxy”.

EXTRA_SSL_CERTS

List of extra certificate names
separated by comma, for
example, CERT1, CERT2,
CERT3.
You also need to specify
each certificate as a separate
environment variable like so:

Container Service User Guide

146

CERT1="<cert-body1>",
CERT2="<cert-body2>",
CERT3="<cert-body3>".

HEALTH_CHECK check

Sets health check on each
backend route.
Possible value: “check inter
2000 rise 2 fall 3”.
See: HAProxy:check.

HTTP_BASIC_AUTH

A comma-separated list of
credentials (<user>:<pass>)
for HTTP basic
authentication, which applies
to all the backend routes.
To escape comma, use \,.
Note: Do not rely on this for
authentication in production.

MAXCONN 4096
Sets the maximum per-
process number of
concurrent connections.

MODE http

Mode of load balancing for
HAProxy.
Possible values include: http,
tcp, health.

MONITOR_PORT

Port number where
monitor_uri should be added
to.
Use together with
MONTIOR_URI.
Possible value: 80.

MONITOR_URI

The exact URI which we want
to intercept to return
HAProxy’s health status
instead of forwarding the
request.
See:
http://cbonte.github.io/hapr
oxy-dconv/configuration-
1.5.html#4-monitor-uri.
Possible value: /ping.

OPTION redispatch
Comma-separated list of
HAProxy option entries to
the default section.

RSYSLOG_DESTINATION 127.0.0.1 The rsyslog destination to
where HAProxy logs are sent.

SKIP_FORWARDED_PROTO

If set to any value, HAProxy
will not add an X-Forwarded-
headers.
This can be used when
combining HAProxy with
another load balancer.

SSL_BIND_CIPHERS Explicitly sets which SSL

Container Service User Guide

147

Set the backend service configurations by using the the
corresponding service image labels

Configure backend service by adding labels to the backend service image. These configurations are
written to the template section of the proxied service.

Settings here can overwrite the settings in HAProxy, which are only applied to the linked services. If
run in Docker Cloud, when the service redeploys, joins or leaves HAProxy service, HAProxy service will
automatically update itself to apply the changes.

ciphers will be used for the
SSL server.
This sets the HAProxy ssl-
default-bind-ciphers
configuration setting.

SSL_BIND_OPTIONS no-sslv3

Explicitly sets which SSL bind
options will be used for the
SSL server.
This sets the HAProxy ssl-
default-bind-options
configuration setting.
The default will allow only
TLSv1.0+ to be used on the
SSL server.

STATS_AUTH stats:stats
Username and password
required to access the
Haproxy stats.

STATS_PORT 1936

Port for the HAProxy stats
section.
If this port is published, stats
can be accessed at
http://<host-
ip>:<STATS_PORT>/.

TIMEOUT connect 5000, client 50000,
server 50000

Comma-separated list of
HAProxy timeout entries to
the default section.

Labels Description

aliyun.proxy.APPSESSION
Sticky session option.
Possible value JSESSIONID len 52 timeout 3h.
See: HAProxy:appsession.

aliyun.proxy.BALANCE

Load balancing algorithm to use.
Possible values include: roundrobin, static-rr,
source, leastconn.
See:HAProxy:balance.

aliyun.proxy.COOKIE
Sticky session option.
Possible value: SRV insert indirect nocache.
See: HAProxy:cookie.

aliyun.proxy.DEFAULT_SSL_CERT Similar to SSL_CERT, but stores the pem file at

Container Service User Guide

148

/certs/cert0.pem as the default SSL
certificates.
If multiple DEFAULT_SSL_CERT are specified in
linked services and HAProxy, the behavior is
undefined.

aliyun.proxy.EXCLUDE_PORTS

Comma-separated port numbers (for
example, 3306, 3307).
By default, HAProxy will add all the ports
exposed by the application services to the
backend routes.
You can exclude the ports that you don’t
want to be routed, like database port.

aliyun.proxy.EXTRA_ROUTE_SETTINGS
A string which is appended to each backend
route after the health check.
Possible value: “send-proxy”.

aliyun.proxy.EXTRA_SETTINGS

Comma-separated string of extra settings,
and each part will be appended to either
related backend section or listen session in
the configuration file.
To escape comma, use \,.
Possible value: balance source.

aliyun.proxy.FORCE_SSL
If set(any value) together with SSL termination
enabled, HAProxy will redirect HTTP request
to HTTPS request.

aliyun.proxy.GZIP_COMPRESSION_TYPE

Enables gzip compression.
The value of this environment variable is a list
of MIME types that will be compressed.
Possible value: text/html text/plain text/css.

aliyun.proxy.HEALTH_CHECK

Set health check on each backend route.
Possible value: “check inter 2000 rise 2 fall
3”.
See: HAProxy:check.

aliyun.proxy.HSTS_MAX_AGE

Enables HSTS.
It is an integer representing the max age of
HSTS in seconds.
Possible value: 31536000.

aliyun.proxy.HTTP_CHECK

Enables HTTP protocol to check on the servers
health.
Possible value: “OPTIONS *
HTTP/1.1\r\nHost:\ www”.
See: HAProxy:httpchk.

aliyun.proxy.OPTION

Comma-separated list of HAProxy option
entries.
option specified here will be added to related
backend or listen part, and overwrite the
OPTION settings in the HAProxy container.

aliyun.proxy.SSL_CERT

SSL certificate.
A pem file with private key followed by public
certificate, ‘\n’(two chars) as the line
separator.

Container Service User Guide

149

Check the HAProxy configuration manual for more information on the above.

Virtual host and virtual path

Both virtual host and virtual path can be specified in environment variable VIRTUAL_HOST, which is a
set of comma-separated URLs with the format of [scheme://]domain[:port][/path].

Examples of matching

aliyun.proxy.TCP_PORTS

Comma-separated ports (for example, 9000,
9001, 2222/ssl).
The port listed in TCP_PORTS will be load-
balanced in TCP mode.
Port ends with /ssl indicates that port needs
SSL termination.

aliyun.proxy.VIRTUAL_HOST_WEIGHT

An integer of the weight of an virtual host,
used together with VIRTUAL_HOST.
The default value is 0.
It affects the order of ACL rules of the virtual
hosts. The higher weight one virtual host has,
the more priority that ACL rules applies.

aliyun.proxy.VIRTUAL_HOST

Specify virtual host and virtual path.
Format: [scheme://]domain[:port][/path],
Wildcard * can be used in domain and path
part.

Item Default Description

scheme http Possible values: http, https,
wss.

domain
Virtual host.
* can be used as the
wildcard.

port 80/433

Port number of the virtual
host.
When the scheme is https
wss, the default port will be
to 443.

/path
Virtual path, starts with /.
* can be used as the
wildcard.

Virtual host Match Not match

http://domain.com domain.com www.domain.com

domain.com domain.com www.domain.com

domain.com:90 domain.com:90 domain.com

https://domain.com https://domain.com domain.com

Container Service User Guide

150

-

-

Note:

The sequence of the ACL rules generated based on VIRTUAL_HOST are random. In HAProxy,
when an ACL rule with a wide scope (for example, *.domain.com) is put before a rule with
narrow scope (for example, web.domain.com), the narrow rule will never be reached. As a
result, if the virtual hosts you set have overlapping scopes, you need to use
VIRTUAL_HOST_WEIGHT to manually set the order of acl rules, namely, giving the narrow
virtual host a higher weight than the wide one.
Every service that has the same VIRTUAL_HOST environment variable setting will be

https://domain.com:444 https://domain.com:444 https://domain.com

*.domain.com www.domain.com domain.com

*domain.com
www.domain.com,
domain.com,
anotherdomain.com

www.abc.com

www.e*e.com www.domain.com,
www.exxe.com www.axxa.com

www.domain.* www.domain.com,
www.domain.org domain.com

* any website with HTTP

https://* any website with HTTPS

*/path domain.com/path,
domain.org/path?u=user domain.com/path/

*/path/ domain.com/path/,
domain.org/path/?u=user

domain.com/path,
domain.com/path/abc

/path/ domain.com/path/,
domain.org/path/abc domain.com/abc/path/

//path/*
domain.com/path/,
domain.org/abc/path/,
domain.net/abc/path/123

domain.com/path

/.js domain.com/abc.js,
domain.org/path/abc.js domain.com/abc.css

/.do/ domain.com/abc.do/,
domain.org/path/abc.do/ domain.com/abc.do

/path/.php domain.com/path/abc.php domain/abc.php,
domain.com/root/abc.php

.domain.com/.jpg www.domain.com/abc.jpg,
abc.domain.com/123.jpg domain.com/abc.jpg

*/path, */path/ domain.com/path,
domain.org/path/

domain.com:90,
https://domain.com

domain.com:90,
https://domain.com

Container Service User Guide

151

-

-

-

-

considered and merged into one single service. It may be useful for some testing scenario.
SSL termination

acs/proxy supports SSL termination on multiple certificates. For each application that you want SSL
terminates, simply set SSL_CERT and VIRTUAL_HOST. HAProxy, then, reads the certificate from the
link environment and sets the SSL termination up.

Note: There was a bug that if an environment variable value contains “=”, which is common in the
SSL_CERT, Docker skips that environment variable. As a result, multiple SSL termination only works on
Docker 1.7.0 or higher.

SSL termination is enabled when:

At least one SSL certificate is set.
Either VIRTUAL_HOST is not set, or it is set with https as the scheme.

To set SSL certificate, you can either:

Set DEFAULT_SSL_CERT in acs/proxy.
Set aliyun.proxy.SSL_CERT and/or DEFAULT_SSL_CERT in the application services linked to
HAProxy.

The difference between aliyun.proxy.SSL_CERT and DEFAULT_SSL_CERT is that, the multiple
certificates specified by SSL_CERT are stored in as cert1.pem, cert2.pem, ..., whereas the one specified
by DEFAULT_SSL_CERT is always stored as cert0.pem. In that case, HAProxy will use cert0.pem as the
default certificate when there is no SNI match. However, when multiple DEFAULT_SSL_CERTIFICATE is
provided, only one of the certificates can be stored as cert0.pem, others are discarded.

PEM Files

The certificate specified in acs/proxy or in the linked application services is a pem file, containing a
private key followed by a public certificate (private key must be put before the public certificate and
any extra Authority certificates, order matters). You can run the following script to generate a self-
signed certificate.

Once you have the pem file, you can run this command to convert the file correctly to one line.

Copy the output and set it as the value of aliyun.proxy.SSL_CERT or DEFAULT_SSL_CERT.

openssl req -x509 -newkey rsa:2048 -keyout key.pem -out ca.pem -days 1080 -nodes -subj '/CN=*/O=My Company
Name LTD./C=US'
cp key.pem cert.pem
cat ca.pem >> cert.pem

awk 1 ORS='\\n' cert.pem

Container Service User Guide

152

-

-

-

-

Affinity and session stickiness

There are three methods to set up affinity and sticky session.

Set aliyun.proxy.BALANCE=source in your application service. When setting source method
of balance, HAProxy will hash the client IP address and make sure that the same IP always
goes to the same server.
Set aliyun.proxy.APPSESSION=<value>. Use application session to determine which server a
client should connect to. Possible value of <value> could be JSESSIONID len 52 timeout 3h.
Set aliyun.proxy.COOKIE=<value>. Use application cookie to determine which server a client
should connect to. Possible value of <value> could be SRV insert indirect nocache.

Check HAProxy:appsession and HAProxy:cookie for more information.

TCP load balancing

By default, acs/proxy runs in http mode. If you want a linked service to run in a tcp mode, you can
specify the environment variable TCP_PORTS, which is a comma-separated ports (for example, 9000,
9001).

For example, if you run:

Then, Haproxy balances the load between app-1 and app-2 in both port 9000 and 9001 respectively.

Moreover, If you have more exposed ports than TCP_PORTS, the rest of the ports will be balancing
using http mode.

For example, if you run:

Then, Haproxy balances in http mode at port 80 and balances in tcp on port at port 22.

In this way, you can do the load balancing both in tcp and in http at the same time.

In TCP_PORTS, if you set port that ends with /ssl, for example 2222/ssl, HAProxy will set SSL
termination on port 2222.

Note:

You are able to set VIRTUAL_HOST and TCP_PORTS at the same time, giving more control on

docker --name app-1 --expose 9000 --expose 9001 -e TCP_PORTS="9000, 9001" your_app
docker --name app-2 --expose 9000 --expose 9001 -e TCP_PORTS="9000, 9001" your_app
docker run --link app-1:app-1 --link app-2:app-2 -p 9000:9000, 9001:9001 acs/proxy

docker --name app-1 --expose 80 --expose 22 -e TCP_PORTS=22 your_app
docker --name app-2 --expose 80 --expose 22 -e TCP_PORTS=22 your_app
docker run --link app-1:app-2 --link app-2:app-2 -p 80:80 -p 22:22 acs/proxy

Container Service User Guide

153

-

-

-

http mode.
Be careful that, the load balancing on tcp port is applied to all the services. If you link two (or
more) different services using the same TCP_PORTS, acs/proxy considers them coming from
the same service.

WebSocket support

There are two ways to enable the support of websocket.

As websocket starts using HTTP protocol, you can use virtual host to specify the scheme
using ws or wss. For example, `-e VIRTUAL_HOST=”ws://ws.domain.com,
wss://wss.domain.com”.
Websocket itself is a TCP connection, you can also try the TCP load balancing mentioned in
the previous section.

Use case scenarios

My webapp container exposes port 8080 (or any other port), and I want the
proxy to listen in port 80

Use the following:

My webapp container exposes port 80 and database ports 8083/8086, and I want
the proxy to listen in port 80 without my database ports added to haproxy

My webapp container exposes port 8080 (or any other port), and I want the
proxy to listen in port 8080

Use the following:

I want the proxy to terminate SSL connections and forward plain HTTP requests
to my webapp to port 8080 (or any port)

docker run -d --expose 80 --name webapp dockercloud/hello-world
docker run -d --link webapp:webapp -p 80:80 acs/proxy

docker run -d -e EXCLUDE_PORTS=8803,8806 --expose 80 --expose 8033 --expose 8086 --name webapp
dockercloud/hello-world
docker run -d --link webapp:webapp -p 80:80 acs/proxy

docker run -d --expose 8080 --name webapp your_app
docker run -d --link webapp:webapp -p 8080:80 acs/proxy

Container Service User Guide

154

Use the following:

or

The certificate in YOUR_CERT_TEXT is a combination of private key followed by public certificate.
Remember to put \n between each line of the certificate. A way to do this, assuming that your
certificate is stored in ~/cert.pem, is running the following:

I want the proxy to terminate SSL connections and redirect HTTP requests to
HTTPS

Use the following:

I want to load my SSL certificate from volume instead of passing it through
environment variable

You can use CERT_FOLDER environment variable to specify which folder the certificates are mounted
in the container, using the following:

I want to set up virtual host routing by domain

Virtual hosts can be configured by the proxy reading linked container environment variables
(VIRTUAL_HOST). Here is an example:

docker run -d -e SSL_CERT="YOUR_CERT_TEXT" --name webapp dockercloud/hello-world
docker run -d --link webapp:webapp -p 443:443 -p 80:80 acs/proxy

docker run -d --link webapp:webapp -p 443:443 -p 80:80 -e DEFAULT_SSL_CERT="YOUR_CERT_TEXT" acs/proxy

docker run -d --link webapp:webapp -p 443:443 -p 80:80 -e DEFAULT_SSL_CERT="$(awk 1 ORS='\\n' ~/cert.pem)"
acs/proxy

docker run -d -e FORCE_SSL=yes -e SSL_CERT="YOUR_CERT_TEXT" --name webapp dockercloud/hello-world
docker run -d --link webapp:webapp -p 443:443 acs/proxy

docker run -d --name webapp dockercloud/hello-world
docker run -d --link webapp:webapp -e CERT_FOLDER="/certs/" -v $(pwd)/cert1.pem:/certs/cert1.pem -p 443:443
acs/proxy

docker run -d -e VIRTUAL_HOST="www.webapp1.com, www.webapp1.org" --name webapp1 dockercloud/hello-
world
docker run -d -e VIRTUAL_HOST=www.webapp2.com --name webapp2 your/webapp2
docker run -d --link webapp1:webapp1 --link webapp2:webapp2 -p 80:80 acs/proxy

Container Service User Guide

155

In the example above, when you access http://www.webapp1.com or http://www.webapp1.org, it will
show the service running in container webapp1, and http://www.webapp2.com will go to container
webapp2.

If you use the following:

When you access http://www.webapp1.com, it will show the service running in container webapp1,
and http://www.webapp2.com will go to both containers webapp2-1 and webapp2-2 using round
robin (or whatever is configured in BALANCE).

I want all my *.node.io domains point to my service

I want web.domain.com go to one service and *.domain.com go to another
service

I want all the requests to path /path point to my service

I want all the static HTML request point to my service

I want to see stats of HAProxy

docker run -d -e VIRTUAL_HOST=www.webapp1.com --name webapp1 dockercloud/hello-world
docker run -d -e VIRTUAL_HOST=www.webapp2.com --name webapp2-1 dockercloud/hello-world
docker run -d -e VIRTUAL_HOST=www.webapp2.com --name webapp2-2 dockercloud/hello-world
docker run -d --link webapp1:webapp1 --link webapp2-1:webapp2-1 --link webapp2-2:webapp2-2 -p 80:80
acs/proxy

docker run -d -e VIRTUAL_HOST="*.node.io" --name webapp dockercloud/hello-world
docker run -d --link webapp:webapp -p 80:80 acs/proxy

docker run -d -e VIRTUAL_HOST="web.domain.com" -e VIRTUAL_HOST_WEIGHT=1 --name webapp
dockercloud/hello-world
docker run -d -e VIRTUAL_HOST="*.domain.com" -e VIRTUAL_HOST_WEIGHT=0 --name app dockercloud/hello-
world
docker run -d --link webapp:webapp --link app:app -p 80:80 acs/proxy

docker run -d -e VIRTUAL_HOST="*/path, */path/*" --name webapp dockercloud/hello-world
docker run -d --link webapp:webapp -p 80:80 acs/proxy

docker run -d -e VIRTUAL_HOST="*/*.htm, */*.html" --name webapp dockercloud/hello-world
docker run -d --link webapp:webapp -p 80:80 acs/proxy

docker run -d --link webapp:webapp -e STATS_AUTH="auth:auth" -e STATS_PORT=1936 -p 80:80 -p 1936:1936
acs/proxy

Container Service User Guide

156

I want to send all my logs to papertrailapp

Replace <subdomain> and <port> with your values matching your papertrailapp account:

Topologies using virtual hosts

Alibaba Cloud Container Service service proxy topologies:

Manually reload haproxy

In most cases, acs/proxy will configure itself automatically when the linked services change, you
don’t need to reload it manually. But for some reason, if you have to do so, here is how:

docker exec <haproxy_id> /reload.sh, if you are on the node where acs/proxy deploys.

Custom routing-Simple sample

In this example, an acs/proxy container is deployed, services are exposed by using a Server Load
Balancer instance (with the lb label) externally, and an Nginx server is attached at the backend. This
example only shows the Nginx homepage, and other functions will be added based on this example.

Basic example

The compose template is shown as follows.

docker run -d --name web1 dockercloud/hello-world
docker run -d --name web2 dockercloud/hello-world
docker run -it --env RSYSLOG_DESTINATION='<subdomain>.papertrailapp.com:<port>' -p 80:80 --link web1:web1
--link web2:web2 acs/proxy

 |---- container_a1
|----- service_a ----- |---- container_a2
| (virtual host a) |---- container_a3
internet --- SLB -- acs/proxy ----- |
| |---- container_b1
|----- service_b ----- |---- container_b2
(virtual host b) |---- container_b3

lb:
image: registry.aliyuncs.com/acs/proxy:0.5
ports:

Container Service User Guide

157

The following figure shows the page that is displayed after a successful startup.

Enable session persistence

- '80:80'
restart: always
labels:
With the use of Addon, the proxy image can function as a subscription registry center and dynamically load the
service route.
aliyun.custom_addon: "proxy"
A proxy image container is deployed for each VM.
aliyun.global: "true"
A Server Load Balancer instance is bound to the front-end.
aliyun.lb.port_80: tcp://proxy_test:80
environment:
It indicates the range of backend containers that support route loading: "*" indicates the whole cluster. By default,
it indicates services in an application.
ADDITIONAL_SERVICES: "*"
appone:
expose: # For proxied services, use expose or ports to tell proxy containers which port should be exposed.
- 80/tcp
image: 'nginx:latest'
labels:
http/https/ws/wss are available. Use your own domain name instead of the test domain name provided by the
Container Service.
aliyun.proxy.VIRTUAL_HOST: "http://appone.example.com"
restart: always

lb:
image: registry.aliyuncs.com/acs/proxy:0.5
ports:
- '80:80'
restart: always
labels:
With the use of Addon, the proxy image can function as a subscription registry center and dynamically load the
service route.
aliyun.custom_addon: "proxy"
A proxy image container is deployed for each VM.
aliyun.global: "true"
A Server Load Balancer instance is bound to the front-end.
aliyun.lb.port_80: tcp://proxy_test:80
environment:

Container Service User Guide

158

Customize 503 page

When the VIP address of the Server Load Balancer instance instead of the domain name is input, the
503 error page is returned, as shown in the following figure.

If you want to add information to the 503 page, add the /errors folder to the VM where the container
is located and add the /errors/503.http file with the following content.

It indicates the range of backend containers that support route loading: "*" indicates the whole cluster. By default,
it indicates services in an application.
ADDITIONAL_SERVICES: "*"
appone:
ports:
- 80/tcp
- 443/tcp
image: 'nginx:latest'
labels:
http/https/ws/wss are available.
aliyun.proxy.VIRTUAL_HOST: "http://appone.example.com"
Session persistence is enabled, the cookie method is applied, and the key is CONTAINERID.
aliyun.proxy.COOKIE: "CONTAINERID insert indirect"
restart: always

HTTP/1.0 503 Service Unavailable
Cache-Control: no-cache
Connection: close
Content-Type: text/html;charset=UTF-8

<html><body><h1>503 Service Unavailable</h1>

<h3>No server is available to handle this request.</h3>

<h3>If this page is returned, a problem occurs during the service access process. Take the following steps for
troubleshooting:</h3>
If you are the visitor of this application, contact the application maintainer to solve the problem.
If you are the application maintainer, view the following information.
You are using the simple routing service. The request is sent from Server Load Balancer to the acsrouting
application container then to your application container. Take the following steps for troubleshooting.
Log on to the Container Service Management Console, select "Services" in the left navigation pane and select
the corresponding "cluster" in the "Service List". Click the "Services" exposed to the public network, view the
"Access Endpoints" of the services, and check whether your access domain is the same as the domain configured in
the services.
Locate and solve the problem in accordance with <a href="https://www.alibabacloud.com/help/faq-
detail/42660.htm?spm=a3c0i.p39867en1.a3.14.idXIm7">Simple routing service link troubleshooting.

Container Service User Guide

159

You can modify the error page according to your need. The compose template is modified as follows:

The following figure shows the 503 page that is returned after the VIP address of the Server Load
Balancer instance is entered.

Wildcard domain support

Modify the configuration as follows to enable the backend of Nginx to support wildcard domain
names (that is, the Nginx homepage can be accessed through appone.example.com and

Refer to <a href="https://www.alibabacloud.com/help/faq-
detail/42658.htm?spm=a3c0i.p39867en1.a3.12.pyONJ2">Routing FAQs.
</body></html>

lb:
image: registry.aliyuncs.com/acs/proxy:0.5
ports:
- '80:80'
restart: always
labels:
With the use of Addon, the proxy image can function as a subscription registry center and dynamically load the
service route.
aliyun.custom_addon: "proxy"
A proxy image container is deployed for each VM.
aliyun.global: "true"
A Server Load Balancer instance is bound to the front-end.
aliyun.lb.port_80: tcp://proxy_test:80
environment:
It indicates the range of backend containers that support route loading: "*" indicates the whole cluster. By default,
it indicates services in an application.
ADDITIONAL_SERVICES: "*"
EXTRA_FRONTEND_SETTINGS_80: "errorfile 503 /usr/local/etc/haproxy/errors/503.http"
volumes:
- /errors/:/usr/local/etc/haproxy/errors/
appone:
ports:
- 80/tcp
- 443/tcp
image: 'nginx:latest'
labels:
You can specify paths when configuring URLs. In this example, http/https/ws/wss are available.
aliyun.proxy.VIRTUAL_HOST: "http://appone.example.com"
restart: always

Container Service User Guide

160

*.example.com).

Bind a host and enter the domain name www.example.com. The Nginx homepage is displayed, as
shown in the following figure.

Default backend configuration

Remove the URL configuration and modify the configuration as follows to enable access to Nginx at
the backend through an IP address.

lb:
image: registry.aliyuncs.com/acs/proxy:0.5
ports:
- '80:80'
restart: always
labels:
With the use of Addon, the proxy image can function as a subscription registry center and dynamically load the
service route.
aliyun.custom_addon: "proxy"
A proxy image container is deployed for each VM.
aliyun.global: "true"
A Server Load Balancer instance is bound to the front-end.
aliyun.lb.port_80: tcp://proxy_test:80
environment:
It indicates the range of backend containers that support route loading: "*" indicates the whole cluster. By default,
it indicates services in an application.
ADDITIONAL_SERVICES: "*"
EXTRA_FRONTEND_SETTINGS_80: "errorfile 503 /usr/local/etc/haproxy/errors/503.http"
volumes:
- /errors/:/usr/local/etc/haproxy/errors/
appone:
ports:
- 80/tcp
- 443/tcp
image: 'nginx:latest'
labels:
You can specify paths when configuring URLs. In this example, http/https/ws/wss are available.
aliyun.proxy.VIRTUAL_HOST: "http://*.example.com"
restart: always

lb:

Container Service User Guide

161

The following figure shows the Nginx homepage after the VIP address of the Server Load Balancer
instance is entered.

Backend selection based on URL parameter values

You can use different backend proxies based on different URL parameter values.

The following example shows how to access the appone service, that is, Nginx homepage, through
http://www.example.com?backend=appone and how to access the apptwo service, that is, hello
world homepage, through http://www.example.com?backend=apptwo. The application template

image: registry.aliyuncs.com/acs/proxy:0.5
ports:
- '80:80'
restart: always
labels:
With the use of Addon, the proxy image can function as a subscription registry center and dynamically load the
service route.
aliyun.custom_addon: "proxy"
A proxy image container is deployed for each VM.
aliyun.global: "true"
A Server Load Balancer instance is bound to the front-end.
aliyun.lb.port_80: tcp://proxy_test:80
environment:
It indicates the range of backend containers that support route loading: "*" indicates the whole cluster. By default,
it indicates services in an application.
ADDITIONAL_SERVICES: "*"

Specify the error page when 503 is returned.
EXTRA_FRONTEND_SETTINGS_80: "errorfile 503 /usr/local/etc/haproxy/errors/503.http"
volumes:
Mount the error page to the container from the host.
- /errors/:/usr/local/etc/haproxy/errors/
appone:
ports:
- 80/tcp
- 443/tcp
image: 'nginx:latest'
labels:
It indicates that the service must be proxied.
aliyun.proxy.required: "true"
restart: always

Container Service User Guide

162

code is as follows:

Bind a host and enter the link http://www.example.com?backend=appone. Then the Nginx homepage
for the appone service is displayed, as shown in the following figure.

Bind a host and enter the link http://www.example.com?backend=apptwo. Then the hello world

lb:
image: registry.aliyuncs.com/acs/proxy:0.5
ports:
- '80:80'
restart: always
labels:
With the use of Addon, the proxy image can function as a subscription registry center and dynamically load the
service route.
aliyun.custom_addon: "proxy"
A proxy image container is deployed for each VM.
aliyun.global: "true"
A Server Load Balancer instance is bound to the front-end.
aliyun.lb.port_80: tcp://proxy_test:80
environment:
It indicates the range of backend containers that support route loading: "*" indicates the whole cluster. By default,
it indicates services in an application.
ADDITIONAL_SERVICES: "*"
Obtain the value of the "backend" parameter in the URL and modify the HOST header to the backend domain
name which needs to be matched.
EXTRA_FRONTEND_SETTINGS_80: " http-request set-header HOST %[urlp(backend)].example.com"
appone:
ports:
- 80/tcp
- 443/tcp
image: 'nginx:latest'
labels:
You can specify paths when configuring URLs. In this example, http/https/ws/wss are available.
aliyun.proxy.VIRTUAL_HOST: "http://appone.example.com"
restart: always
apptwo:
ports:
- 80/tcp
image: 'registry.cn-hangzhou.aliyuncs.com/linhuatest/hello-world:latest'
labels:
You can specify paths when configuring URLs. In this example, http/https/ws/wss are available.
aliyun.proxy.VIRTUAL_HOST: "http://apptwo.example.com"
restart: always

Container Service User Guide

163

homepage for the apptwo service is displayed, as shown in the following figure.

Access log recording

Logs are printed directly to the standard output of the rsyslog container. The access log of custom
routes can be viewed using docker logs $rsyslog_container_name.

Server Load Balancer between services
The following template is used to create a Server Load Balancer service named lb and an application

lb:
image: registry.aliyuncs.com/acs/proxy:0.5
ports:
- '80:80'
restart: always
labels:
With the use of Addon, the proxy image can function as a subscription registry center and dynamically load the
service route.
aliyun.custom_addon: "proxy"
A proxy image container is deployed for each VM.
aliyun.global: "true"
A Server Load Balancer instance is bound to the front-end.
aliyun.lb.port_80: tcp://proxy_test:80
environment:
It indicates the range of backend containers that support route loading: "*" indicates the whole cluster. By default,
it indicates services in an application.
ADDITIONAL_SERVICES: "*"
EXTRA_DEFAULT_SETTINGS: "log rsyslog local0,log global,option httplog"
links:
- rsyslog:rsyslog
rsyslog:
image: registry.cn-hangzhou.aliyuncs.com/linhuatest/rsyslog:latest
appone:
ports:
- 80/tcp
- 443/tcp
image: 'nginx:latest'
labels:
http/https/ws/wss are available.
aliyun.proxy.VIRTUAL_HOST: "http://appone.example.com"
restart: always

Container Service User Guide

164

service named appone to provide services externally with the domain name appone.example.com.

The following template is used as a client to access the appone application service, but the access
path is used to request access to the Server Load Balancer service lb and then provide a reverse proxy
for the appone application service.

In the containers of the restclient service, the appone.example.com domain name is resolved to the IP
addresses of all containers of the Server Load Balancer service lb.

Custom routing-Support TCP Protocol

When Alibaba Cloud Container Service is in use, the following problem may occur to TCP Server Load

lb:
image: registry.aliyuncs.com/acs/proxy:0.5
hostname: proxy # The domain name of the service is proxy, which is resolved to all containers with the image.
ports:
- '80:80'
restart: always
labels:
With the use of Addon, the proxy image can function as a subscription registry center and dynamically load the
service route.
aliyun.custom_addon: "proxy"
A proxy image container is deployed for each VM.
aliyun.global: "true"
A Server Load Balancer instance is bound to the front-end.
aliyun.lb.port_80: tcp://proxy_test:80
environment:
It indicates the range of backend containers that support route loading: "*" indicates the whole cluster. By default,
it indicates services in an application.
ADDITIONAL_SERVICES: "*"
appone:
ports:
- 80/tcp
- 443/tcp
image: 'nginx:latest'
labels:
http/https/ws/wss are available.
aliyun.proxy.VIRTUAL_HOST: "http://appone.example.com"
restart: always

restclient: # Simulate rest service consumers.
image: registry.aliyuncs.com/acs-sample/alpine:3.3
command: "sh -c 'apk update; apk add curl; while true; do curl --head http://appone.example.com; sleep 1; done'"
#Access the rest service and test Server Load Balancer.
tty: true
external_links:
- "proxy:appone.example.com" #Specify the domain name of the link service and the alias of the domain name.

Container Service User Guide

165

-

-

Balancer: when the client image and server image of an application are deployed on the same node
(ECS), the client cannot access the local server through Server Load Balancer due to limitation. In this
document, common TCP-based Redis is used as an example to describe how to solve the problem
through custom routing acs/proxy.

Solution 1: Deploy client and server containers on different nodes
through scheduling containers.

The following is a sample application template (the lb label and swarm filter are applied):

NOTE:

If the scheduling operation fails, go to the Container Service Management Console, and
click Services in the left navigation pane to go to the service list page. Select the service
you want to schedule, and click Reschedule. Click Force Reschedule in the pop-up
dialog box, and then click OK.
Clicking Force Reschedule will discard the volume of the existing container. Back up and
migrate data in the container before doing so.

Solution 2: Clients inside the container cluster access the server
through links, while clients outside access the server through Server
Load Balancer

The following is a sample application template (the lb label is used):

Solution 3: Clients inside the container cluster access the server
through Custom routing (which is based on HAProxy and serves as
a proxy server), while clients outside access the server through

redis-master:
ports:
- 6379:6379/tcp
image: 'redis:alpine'
labels:
aliyun.lb.port_6379: tcp://proxy_test:6379
redis-client:
image: 'redis:alpine'
links:
- redis-master
command: redis-cli -h redis-master
stdin_open: true
tty: true

Container Service User Guide

166

Server Load Balancer

The following is a sample application template (the lb label and Custom routing image are used):

lb:
image: registry.aliyuncs.com/acs/proxy:0.5
ports:
- '6379:6379/tcp'
restart: always
labels:
With the use of Addon, the proxy image can function as a subscription registry center and dynamically load the
service route.
aliyun.custom_addon: "proxy"
A proxy image container is deployed for each VM.
aliyun.global: "true"
The front-end is bound to Server Load Balancer, and an lb label is used.
aliyun.lb.port_6379: tcp://proxy_test:6379
Indicate that the custom route must be started after the master Redis and slave Redis, and the custom route
depends on the master Redis and slave Redis.
aliyun.depends: redis-master,redis-slave
environment:
It indicates the range of backend containers that support route loading: "*" indicates the whole cluster. By default,
it indicates services in an application.
ADDITIONAL_SERVICES: "*"
EXTRA_DEFAULT_SETTINGS: "log rsyslog local0,log global,option httplog"
Configure HAProxy to work in TCP mode
MODE: "tcp"
links:
- rsyslog:rsyslog
rsyslog:
image: registry.cn-hangzhou.aliyuncs.com/linhuatest/rsyslog:latest
redis-master:
ports:
- 6379/tcp
image: 'redis:alpine'
labels:
Indicate that Port 6379 should be exposed for the custom route.
aliyun.proxy.TCP_PORTS: "6379"
Indicate that the system route should be added to the custom route.
aliyun.proxy.required: "true"
redis-slave:
ports:
- 6379/tcp
image: 'redis:alpine'
links:
- redis-master
labels:
Indicate that Port 6379 should be exposed for the custom route.
aliyun.proxy.TCP_PORTS: "6379"
Indicate that the system route should be added to the custom route.
aliyun.proxy.required: "true"
Indicate that the slave Redis depends on the master Redis and should be started after the master Redis is started.
aliyun.depends: redis-master
command: redis-server --slaveof redis-master 6379
redis-client:

Container Service User Guide

167

This solution provides a master-slave Redis architecture and balances load using a Custom routing
image, so the Container Server becomes highly available.

Custom routing-Support multiple HTTPS
certificates

In this example, an acs/proxy image is used.

image: 'redis:alpine'
links:
- lb:www.example.com
labels:
aliyun.depends: lb
command: redis-cli -h www.example.com
stdin_open: true
tty: true

lb:
image: registry.aliyuncs.com/acs/proxy:0.5
ports:
- '80:80'
- '443:443' # The port for HTTPS must be exposed.
restart: always
labels:
With the use of Addon, the proxy image can function as a subscription registry center and dynamically load the
service route.
aliyun.custom_addon: "proxy"
A proxy image container is deployed for each VM.
aliyun.global: "true"
A Server Load Balancer instance is bound to the front-end.
aliyun.lb.port_80: tcp://proxy_test:80
aliyun.lb.port_443:tcp://proxy_test:443
environment:
It indicates the range of backend containers that support route loading: "*" indicates the whole cluster. By default,
it indicates services in an application.
ADDITIONAL_SERVICES: "*"

appone:
expose: # For proxied services, use expose or ports to tell proxy containers which port should be exposed.
- 80/tcp
image: 'nginx:latest'
labels:
You can specify paths when configuring URLs. In this example, http/https/ws/wss are available.
aliyun.proxy.VIRTUAL_HOST: "https://appone.example.com"

Configure the appone certificate
restart: always
apptwo:
expose: # For proxied services, use expose or ports to tell proxy containers which port should be exposed.

Container Service User Guide

168

As shown above, the domain names of the appone and apptwo services are specified through
aliyun.proxy.VIRTUAL_HOST. If you need to configure the certificate, set the protocol to https. Then
specify the certificate content through aliyun.proxy.SSL_CERT. The method of configuring the
certificate content is described below.

Assume that the key.pem is a private key file, and ca.pem is a public key file. Run the following
commands in the bash (the current directory contains the public and private key files).

Finally, enter the output of the awk command as the value of label aliyun.proxy.SSL_CERT. Use double
quotation marks (“”) for separation. For other information, such as lb label, refer to the templates
mentioned above and corresponding Documentation sample.

Release policy

Background information

Blue-green release is a zero downtime application update policy. During a blue-green release, the old
and new service versions of an application coexist, and also share routes. By adjusting the route
weights, you can switch traffic between different service versions. After verifying that there are no
errors, you can use the release confirmation method to delete the old service version. If the new
version does not pass verification, the release is rolled back and the new version is deleted.

Prerequisite

The routing service must be upgraded to the latest version. For details, refer to Upgrade system
services.

- 80/tcp
image: 'registry.cn-hangzhou.aliyuncs.com/linhuatest/hello-world:latest'
labels:
You can specify paths when configuring URLs. In this example, http/https/ws/wss are available.
aliyun.proxy.VIRTUAL_HOST: "https://apptwo.example.com"

Configure the apptwo certificate
restart: always

$ cp key.pem cert.pem
$ cat ca.pem >> cert.pem
$ awk 1 ORS='\\n' cert.pem

Container Service User Guide

169

Scenario

In the following example, assume that you want to perform a blue-green release for a Nginx static
page application. The initial application template is as follows.

After deployment, the page is as follows.

Operating procedure

Log on to the Container Service console.

Click Applications in the left navigation pane.

Select the cluster of the desired application.

Locate the application and click Update.

Set the release mode and the configuration of the new service version.

nginx-v1:
image: 'registry.aliyuncs.com/ringtail/nginx:1.0'
labels:
aliyun.routing.port_80: nginx
restart: always

Container Service User Guide

170

-

-

-

Note:

The new and old versions cannot share the same name.
To ensure that the application does not experience downtime when switching
versions, the weight of the new service version is set to 0 by default. In the
route management page, you must adjust the weight to switch traffic to the
new version.

The template sample is as follows.

Click OK to release the changed version.

The release process goes through two statuses:

Blue-green release in progress: Indicates that the new service version has not been
launched.

Blue-green release awaiting confirmation: Indicates that the new service version
has been launched. At this point, you need to confirm the release or roll it back, in
order to perform another release.

In the application details page (click the application name), you can see that the
new and old application versions coexist. Here, blue designates the old service
version and green designates the new service version. If a service does not change
from one version to the other, a yellow label is displayed. This indicates that this
application will not change during the blue-green release.

In the application details page, click Routes and click Set Service Weight.

The old version has a weight of 100 and the new version has a weight of 0.

To realize zero downtime update, you need to first set the weight of the new version to 100;
at this point, the new version and old version accounts for 50% of the weight respectively
and they both have stable traffic.

Note: Adjusting the weights of the new version and old version at the same time might
result in the failure of some requests; therefore, you must adjust the weights in two
steps and only adjust the weight of one version in each step. For example, first, adjust
the weight of the new version from 0 to 100; and then, adjust the weight of the old

nginx-v2:
image: 'registry.aliyuncs.com/ringtail/nginx:2.0'
labels:
aliyun.routing.port_80: nginx
restart: always

Container Service User Guide

171

version from 100 to 0.

Then, adjust the old service version weight to 0 and the new version weight to 100.

Because the route service will hold the session by default, you can open a new browser
window to access the new version. The results are shown below.

After the entire release process has been verified, click Confirm Release Completion in the
Application List page and click Confirm in the pop-up dialog box to confirm the release
before you can release subsequent versions.

Now the service list of the application has been updated and the old service version has
been taken offline and deleted.

Blue-green release is a zero downtime application update policy. During a blue-green release, the old
and new service versions of an application coexist, and also share the Server Load Balancer instance.
By adjusting the Server Load Balancer weights, you can switch traffic between different service
versions. After verifying that there are no errors, you can use the release confirmation method to
delete the old service version. If the new version does not pass verification, the release is rolled back
and the new version is deleted.

Scenario

Assume that you want to perform a blue-green release for a Nginx static page application. The initial
application template is as follows.

nginx-v1:
image: 'registry.aliyuncs.com/ringtail/nginx:1.0'

Container Service User Guide

172

After deployment, the page is as follows.

Use instructions

As all containers need to publish host ports, when you perform Server Load Balancer route blue-
green release, make sure that the number of containers of a service is equal to or less than half of the
number of hosts in the cluster; otherwise, port conflict might occur.

It is recommended that you perform scaling in to reduce the number of containers of a service to half
of the number of hosts in the cluster before performing blue-green release; and perform scaling out
to increase the number of containers to the original amount after the blue-green release is
completed.

Operating procedure

Log on to the Container Service console.

Click Applications in the left navigation pane.

Select the cluster of the desired application.

Locate the application and click Update.

Set the release mode and the configuration of the new service version.

ports:
- 80:80/tcp
labels:
aliyun.lb.port_80: tcp://proxy_test:80
restart: always

Container Service User Guide

173

-

-

-

Note:

The new and old versions cannot share the same name.
To ensure that the application does not experience downtime when switching
versions, the Server Load Balancer weight of the new service version is set to 0
by default. In the route management page, you must adjust the weight to
switch traffic to the new version.

The template sample is as follows.

Click OK to release the changed version.

The release process goes through two statuses:

Blue-green release in progress: Indicates that the new service version has not been
launched.

Blue-green release awaiting confirmation: Indicates that the new service version
has been launched. At this time, you need to confirm the release or roll it back, to
perform another release.

In the application details page, you can see that the new and old application
versions coexist. Here, blue designates the old service version and green
designates the new service version. If a service does not change from one version
to the other, a yellow label is displayed. This indicates that this application will not
change during the blue-green release.

Click the application name, click Routes and click Set Service Weight.

The Server Load Balancer weight of the old service is 100 and the Server Load Balancer
weight of the new version is 0.

To realize zero downtime update, you need to first set the weight of the new version to 100;
at this point, the new version and old version accounts for 50% of the weight respectively
and they both have stable traffic.

Note: Adjusting the weights of the new version and old version at the same time might
result in the failure of some requests; therefore, you must adjust the weights in two

nginx-v2:
image: 'registry.aliyuncs.com/ringtail/nginx:2.0'
ports:
- 80:80/tcp
labels:
aliyun.lb.port_80: tcp://proxy_test:80
restart: always

Container Service User Guide

174

steps and only adjust the weight of one version in each step. For example, first, adjust
the weight of the new version from 0 to 100; and then, adjust the weight of the old
version from 100 to 0.

Then, adjust the old service version weight to 0 and the new version weight to 100.

Open a new browser window to access the new version. The results are shown below.

After the entire release process has been verified, click Confirm Release Completion in the
Application List page and click Confirm in the pop-up dialog box to confirm the release
before you can release subsequent versions.

Now the service list of the application has been updated and the old service version has
been taken offline and deleted.

Container Service User Guide

175

	User Guide
	Overview
	Workflow
	Procedure

	Basic concepts and terms
	Cluster
	Node
	Container
	Image
	Orchestration template
	Application
	Service
	Associations

	Cluster management
	Cluster introduction
	Create a cluster
	Manage a cluster

	Lifecycle of a cluster
	Cluster status flow
	Constraints
	Operating procedure
	Subsequent operations
	Prerequisite
	Considerations
	Operating procedure
	Related operation

	Manage cross-zone nodes
	Add nodes of different zones through expanding
	Operating procedure

	Add nodes of different zones through adding existing ECS instances
	Prerequisite
	Operating procedure

	Set the root domain name of a cluster
	Operating procedure

	Download cluster certificate
	Operating procedure
	Limitation
	Operating procedure

	Search for a cluster
	Operating procedure

	Delete a cluster
	Operating procedure

	Clean up a cluster disk
	Operating procedure

	Upgrade Agent
	Operating procedure

	Upgrade Docker Daemon
	Operating procedure

	Upgrade system services
	Operating procedure

	Node management
	Operating procedure
	Container Migration
	Operating procedure

	Container Migration

	Security Group
	View security group rules
	Procedures

	Security group rules
	Security configuration principles

	Image and template management
	View the image list
	Operating procedure

	View the orchestration template list
	Operating procedure

	Create an orchestration template
	Operating procedure
	Subsequent operations

	Update an orchestration template
	Operating procedure

	Download an orchestration template
	Operating procedure

	Delete an orchestration template
	Operating procedure

	Service orchestration
	Overview
	Capacity
	Example

	Label description
	Scale capability labels
	Function enhancement labels
	Other supported labels
	Substitute the variable
	Container rescheduling
	High availability scheduling
	Docker Compose labels that are not supported

	probe
	rolling_updates
	parallelism

	depends
	scale
	routing
	routing.session_sticky
	lb

	global
	Service deployment constraint (affinity:service)
	external
	dns_options
	oom_kill_disable
	Substitute the variable
	Container rescheduling

	High availability scheduling
	Docker Compose labels not supported
	Application management
	Create an application
	Operating procedure

	Restrict container resources
	CPU restriction
	Memory restrictions
	Resource scheduling
	Other resource restrictions

	High-availability scheduling
	Specified node scheduling
	Specified nodes scheduling
	Operating procedure
	Delete a user tag

	View application details
	Operating procedure

	Stop or activate an application
	Operating procedure

	Change application configurations
	Operating procedure
	Subsequent operation

	Redeploy an application
	Operating procedure
	Check whether the redeployment succeeds

	Delete an application
	Operating procedure

	Run offline tasks
	Basic concepts
	Docker Compose-based job orchestration
	Job lifecycle management
	Container statuses
	Task statuses
	Job statuses

	Shared storage
	Integrated monitoring service
	Operating procedure

	Timing task
	Timing task description based on Docker Compose
	Execution procedure
	High availability

	Default system application list
	Service management
	Instructions for use
	View service details
	Operating procedure

	Activate or stop a service
	Operating procedure

	Change service configuration
	Operating procedure

	Reschedule a service
	Operating procedure

	Delete a service
	Operating procedure

	Network management
	Cross-host container network
	Data volume
	Overview
	Create an OSSFS data volume
	Prerequisites
	Operating procedure
	Step 1 Create OSS bucket
	Step 2 Create OSSFS data volume

	Subsequent operations

	View and delete data Volumes
	Use third-party data volumes
	Operating procedure
	Create application from image
	Create application from orchestration template
	Change the configuration of an existing application

	Troubleshooting
	Log management
	View logs
	View application logs
	View service logs
	View container logs

	Monitoring
	Container monitoring service
	Operating procedure

	View monitoring information
	View server monitoring information
	View container monitoring information

	Custom monitoring
	Prerequisites
	Submit monitoring data using a custom monitoring script
	Collect data using the custom HTTP monitoring data interface

	Integrate with third-party monitoring solutions
	Operating procedure
	What to do next

	Container auto scaling
	Set the container auto scaling
	Use image to create the application
	Use orchestration template to create the application
	Update application configurations

	Node auto scaling
	Prerequisites
	Instructions

	Create a node scaling rule
	View the created node scaling rule
	View monitoring metrics

	Authentication management
	Resource access management
	Application scenario
	Operating procedure
	Master account authorization
	Use the subaccount

	Understand authentication policy
	Advanced usage

	DevOps
	Jenkins-based continuous delivery
	Background information
	Jenkins introduction
	Master/slave
	Step 1 Deploy Jenkins applications and slave nodes
	1.1 Create a Jenkins orchestration template
	2.1 Use the template to create Jenkins applications and slave nodes

	Step 2 Realize automatic test and automatic build and push of image
	2.1 Configure the slave container as the slave node of the Jenkins application
	2.2 Create a project to implement the automatic test.
	2.3 Create a project to automatically build and push images

	Step 3 Automatically redeploy the application
	3.1 Deploy the application for the first time
	3.2 Automatic redeployment

	Step 4 Configure email notification of the results

	Service discovery and load balancing
	Overview
	Scenario 1
	Scenario 2
	Scenario 3
	Scenario 4
	Scenario 5

	Expose HTTP services through acsrouting
	Applicable scenario
	Concept
	Setup methods
	Set through the Container Service console
	Set through client

	Add domain names to services exposed to the public network
	Change exposed HTTP services to HTTPS services
	Prerequisite
	Operating procedure

	Load balancing and automatic service discovery between microservices
	Concept
	Advantages
	Orchestration instance

	Expose services using custom Server Load Balancer
	Expose HTTP or HTTPS services
	Expose TCP or UDP services

	Service discovery between containers
	By container name
	By link
	By hostname

	Custom routing-Using guide
	Working principle of dynamic load balancing proxy and service discovery
	How to determine the backend container of Server Load Balancer
	How to bind a Server Load Balancer instance to the front-end
	Sample template
	Configuration instructions
	Set the global and default configurations through the environment variables of the image acs/proxy
	Set the backend service configurations by using the the corresponding service image labels

	Virtual host and virtual path
	Examples of matching

	SSL termination
	PEM Files

	Affinity and session stickiness
	TCP load balancing
	WebSocket support
	Use case scenarios
	My webapp container exposes port 8080 (or any other port), and I want the proxy to listen in port 80
	My webapp container exposes port 80 and database ports 8083/8086, and I want the proxy to listen in port 80 without my database ports added to haproxy
	My webapp container exposes port 8080 (or any other port), and I want the proxy to listen in port 8080
	I want the proxy to terminate SSL connections and forward plain HTTP requests to my webapp to port 8080 (or any port)
	I want the proxy to terminate SSL connections and redirect HTTP requests to HTTPS
	I want to load my SSL certificate from volume instead of passing it through environment variable
	I want to set up virtual host routing by domain
	I want all my *.node.io domains point to my service
	I want web.domain.com go to one service and *.domain.com go to another service
	I want all the requests to path /path point to my service
	I want all the static HTML request point to my service
	I want to see stats of HAProxy
	I want to send all my logs to papertrailapp

	Topologies using virtual hosts
	Manually reload haproxy

	Custom routing-Simple sample
	Basic example
	Enable session persistence
	Customize 503 page
	Wildcard domain support
	Default backend configuration
	Backend selection based on URL parameter values
	Access log recording
	Server Load Balancer between services

	Custom routing-Support TCP Protocol
	Solution 1: Deploy client and server containers on different nodes through scheduling containers.
	Solution 2: Clients inside the container cluster access the server through links, while clients outside access the server through Server Load Balancer
	Solution 3: Clients inside the container cluster access the server through Custom routing (which is based on HAProxy and serves as a proxy server), while clients outside access the server through Server Load Balancer

	Custom routing-Support multiple HTTPS certificates
	Release policy
	Background information
	Prerequisite
	Scenario
	Operating procedure
	Scenario
	Use instructions
	Operating procedure

