
Container Service

Best Practices

Best Practices

Swarm

Run TensorFlow-based AlexNet in Alibaba
Cloud Container Service

AlexNet is a CNN network developed in 2012 by Alex Krizhevsky using five-layer convolution and
three-layer ReLU layer, and won the ImageNet competition (ILSVRC). AlexNet proves the
effectiveness in classification (15.3% error rate) of CNN, against the 25% error rate by previous image
recognition tools. The emergence of this network marks a milestone for deep learning applications in
the computer vision field.

AlexNet is also a common performance indicator tool for deep learning framework. TensorFlow
provides the alexnet_benchmark.py tool to test GPU and CPU performance. This document uses
AlexNet as an example to illustrate how to run a GPU application in Alibaba Cloud Container Service
easily and quickly.

Prerequisite

Create a GN5 GPU cluster in Container Service console.

Procedure

Log on to the Container Service console.

Click Applications in the left-side navigation pane.

Click Create Application in the upper-right corner.

Complete the configurations. Enter the application name (alexNet in this example) in the

Container Service Best Practices

1

Name field and then select the created GN5 GPU cluster from the Cluster list.

Click Create with Image.

Enter registry.cn-beijing.aliyuncs.com/tensorflow-samples/alexnet_benchmark:1.0.0-devel-
gpu in the Image Name field.

In the Container section, enter the command in the Command field. For example, enter
python /alexnet_benchmark.py --batch_size 128 --num_batches 100.

Container Service Best Practices

2

Click the button
in the Label section. Enter the Alibaba Cloud gpu extension label. Enter aliyun.gpu in the
Tag Name field, and the number of scheduling GPUs (1 in this example) in the Tag Value
field.

Click Create after configuring the application.

You can view the created alexNet application on the Application List page.

Container Service Best Practices

3

1.

2.

Click the application name alexNet.

Click the Logs tab.

In this way, you can check the performance of AlexNet on EGS by means of the container
Log Service in Container Service console.

Minimalism serverless practices based on
swarm mode

FaaS is currently the latest cloud service mode. Alibaba Cloud Container Service is based on the
swarm mode clusters to implement a minimalism serverless framework, which supports using any
Unix process as a function for external services.

Architecture principle

The FaaS prototype system contains the following models.

Any process can be converted to a function, packaged and delivered by using the Docker
image.
Implement the scheduling capability of functions in a simple way by using the resource
scheduling of Docker swarm mode clusters and the Server Load Balancer capability of
routing mesh. Each function corresponds to one service in the Docker cluster.

Container Service Best Practices

4

-

Function call monitoring and auto scaling are implemented by using Prometheus.

The design architecture is simple.

The API Gateway is in charge of receiving service calls and routing requests to backend
functions for implementation. It also collects service call indicators and sends the indicators
to Prometheus. Prometheus calls back the API Gateway based on the number of service calls
within a period of time to automatically scale the number of instances in the service
container.

Function Watchdog forwards HTTP requests as process calls, passes the requested data to
the process by STDIN, and then returns the process STDOUT to the caller as the HTTP
response result. Package the function process and Function Watchdog into a container
image for deployment. The call process is as follows.

Install FaaS locally

Prepare a local Docker swarm mode cluster first. If no Docker swarm mode cluster is in
place, you can install the latest Docker Engine and run the following command:

docker swarm init

Run the following command to deploy FaaS:

Container Service Best Practices

5

-

-

After the deployment, you can run the following command to check the FaaS status:

Then, access http://127.0.0.1:8080/ui FaaS in the browser.

Test FaaS in Alibaba Cloud

Limits

Make sure you have the conditions for creating a swarm mode cluster.

By default, you can create at most 5 clusters in all regions, and add at most 20 nodes to each
cluster. To create more clusters or add more nodes to a cluster, open a ticket.
The Server Load Balancer instance created with the cluster only supports the Pay-As-You-Go
billing method.

 git clone https://github.com/alexellis/faas
cd faas
./deploy_stack.sh

 $ docker stack services func
ID NAME MODE REPLICAS IMAGE
1a8b2tb19ulk func_gateway replicated 1/1 functions/gateway:0.5.6
4jdexem6kppg func_webhookstash replicated 1/1 functions/webhookstash:latest
9ju4er5jur9l func_wordcount replicated 1/1 functions/alpine:health
e190suippx7i func_markdown replicated 1/1 alexellis2/faas-markdownrender:latest
l70j4c7kf99t func_alertmanager replicated 1/1 functions/alertmanager:latest
mgujgoa2u8f3 func_decodebase64 replicated 1/1 functions/alpine:health
o44asbnhqbda func_hubstats replicated 1/1 alexellis2/faas-dockerhubstats:latest
q8rx49ow3may func_echoit replicated 1/1 functions/alpine:health
t1ao5psnsj0s func_base64 replicated 1/1 functions/alpine:health
vj5z7rpdlo48 func_prometheus replicated 1/1 functions/prometheus:latest
xmwzd4z7l4dv func_nodeinfo replicated 1/1 functions/nodeinfo:latest

Container Service Best Practices

6

Procedure

Create a swarm mode cluster.
FaaS is deployed based on the Docker swarm mode cluster. Create a swarm mode cluster in
Alibaba Cloud Container Service first.

Create an application by using an orchestration template. For more information, see Create
an application by using an orchestration template.

The orchestration sample is as follows:

 version: "3"
services:

Core API services are pinned, HA is provided for functions.
gateway:
volumes:
- "/var/run/docker.sock:/var/run/docker.sock"
ports:
- 8080:8080
labels:
aliyun.routing.port_8080: faas
image: functions/gateway:0.5.6
networks:
- functions
environment:
dnsrr: "true" # Temporarily use dnsrr in place of VIP while issue persists on PWD
deploy:
placement:
constraints: [node.role == manager]

prometheus:
image: functions/prometheus:latest # autobuild from Dockerfile in repo.
command: "-config.file=/etc/prometheus/prometheus.yml -storage.local.path=/prometheus -
storage.local.memory-chunks=10000 --alertmanager.url=http://alertmanager:9093"
ports:
- 9090:9090
depends_on:
- gateway

Container Service Best Practices

7

- alertmanager
labels:
aliyun.routing.port_9090: prometheus
environment:
no_proxy: "gateway"
networks:
- functions
deploy:
placement:
constraints: [node.role == manager]

alertmanager:
image: functions/alertmanager:latest # autobuild from Dockerfile in repo.
environment:
no_proxy: "gateway"
command:
- '-config.file=/alertmanager.yml'
networks:
- functions
ports:
- 9093:9093
deploy:
placement:
constraints: [node.role == manager]

Sample functions go here.

Service label of "function" allows functions to show up in UI on http://gateway:8080/
webhookstash:
image: functions/webhookstash:latest
labels:
function: "true"
depends_on:
- gateway
networks:
- functions
environment:
no_proxy: "gateway"
https_proxy: $https_proxy

Pass a username as an argument to find how many images user has pushed to Docker Hub.
hubstats:
image: alexellis2/faas-dockerhubstats:latest
labels:
function: "true"
depends_on:
- gateway
networks:
- functions
environment:
no_proxy: "gateway"
https_proxy: $https_proxy

Node.js gives OS info about the node (Host)
nodeinfo:
image: functions/nodeinfo:latest

Container Service Best Practices

8

labels:
function: "true"
depends_on:
- gateway
networks:
- functions
environment:
no_proxy: "gateway"
https_proxy: $https_proxy

Uses `cat` to echo back response, fastest function to execute.
echoit:
image: functions/alpine:health
labels:
function: "true"
depends_on:
- gateway
networks:
- functions
environment:
fprocess: "cat"
no_proxy: "gateway"
https_proxy: $https_proxy

Counts words in request with `wc` utility
wordcount:
image: functions/alpine:health
labels:
function: "true"
com.faas.max_replicas: "10"
depends_on:
- gateway
networks:
- functions
environment:
fprocess: "wc"
no_proxy: "gateway"
https_proxy: $https_proxy

Calculates base64 representation of request body.
base64:
image: functions/alpine:health
labels:
function: "true"
depends_on:
- gateway
networks:
- functions
environment:
fprocess: "base64"
no_proxy: "gateway"
https_proxy: $https_proxy

Decodes base64 representation of request body.
decodebase64:
image: functions/alpine:health

Container Service Best Practices

9

-

-

Compared with the local deployment, only two labels are added, defining the routes of API
Gateway and Prometheus.

aliyun.routing.port_8080: Faas: Virtual domain name of the API Gateway.
aliyun.routing.port_9090: Prometheus: Virtual domain name of the Prometheus
service.

Click the application name on the Application List page and then click the Routes tab.

Click the route address to access the API Gateway and Prometheus service interfaces of
Faas.

labels:
function: "true"
depends_on:
- gateway
networks:
- functions
environment:
fprocess: "base64 -d"
no_proxy: "gateway"
https_proxy: $https_proxy

Converts body in (markdown format) -> (html)
markdown:
image: alexellis2/faas-markdownrender:latest
labels:
function: "true"
depends_on:
- gateway
networks:
- functions
environment:
no_proxy: "gateway"
https_proxy: $https_proxy

networks:
functions:
driver: overlay

Container Service Best Practices

10

Subsequent operations

You can test the service scalability based on this method. For more information, see Open-source
GitHub project address.

Best practices for restarting nodes

Restarting nodes directly might cause an exception in clusters. For example, for the Manager nodes in
swarm mode clusters, if the number of healthy nodes is less than 2, the cluster might be incapable of
self-cure and then become unavailable. In the context of Alibaba Cloud use cases, this document
introduces the best practices for restarting nodes in the situations such as Container Service is
actively operated and maintained.

Check the high availability configurations of business

Before restarting Container Service nodes, we recommend checking or modifying the following
business configurations. In this way, restarting nodes cannot cause the exception of a single node
and the business availability cannot be impaired.

Data persistence strategy of configurations

We recommend the data persistence for external volumes of important data configurations
such as configurations of logs and business. In this way, after the container is restructured,
deleting the former container cannot cause the data loss.

For how to use the Container Service data volumes, see Data volume management.

Restart strategy of configurations

We recommend configuring the restart: always restart strategy for the corresponding
business services so that containers can be automatically pulled up after the nodes are

Container Service Best Practices

11

restarted.

High availability strategy of configurations

We recommend integrating with the product architecture to configure the affinity and
mutual exclusion strategies, such as high availability scheduling (availability:az propery),
specified node scheduling (affinity and constraint properties) , and specified nodes
scheduling (constraint property), for the corresponding businesses. In this way, restarting
nodes cannot cause the exception of a single node. For example, for the database business,
we recommend the active-standby or multi-instance deployment, and integrating with the
preceding characteristics to ensure the different instances are on different nodes and related
nodes are not being restarted at the same time.

Best practices

We recommend checking the high availability configurations of business by reading the preceding
introductions. Then, complete the following steps in sequence on each node.

Note: Do not perform on multiple nodes at the same time.

Back up snapshots

We recommend creating the latest snapshots for all the related disks of the nodes and then
backing up the snapshots. In this way, when starting the shut-down nodes, the exception
does not occur because the server is not restarted for a long time and the business
availability is not impaired.

Verify the container configuration availability of business (ignore this step if the cluster is a
swarm mode cluster)

For a non-swarm mode cluster, restarting the corresponding business containers on nodes
ensures the containers can be pulled up again normally.

Note: The minimum control operation unit of swarm mode clusters is service.
Therefore, you cannot directly process the business containers by starting or stopping
Docker on swarm mode cluster nodes. Otherwise, an error occurs. The correct way is to
perform automatic adjustment for business by readjusting the application replicas in
Container Service console.

Modify node role (apply to swarm mode clusters)

Container Service Best Practices

12

If the corresponding node is a Manager node in the swarm mode cluster, set the node to a
Worker node first.

Verify the running availability of Docker Engine

Try to restart Docker daemon and ensure the Docker Engine can be restarted normally.

Perform related operations and maintenance

Perform the related operations and maintenance in the plan, such as updating business
codes, installing system patches, and adjusting system configurations.

Restarting nodes

Restart nodes normally in the console or system.

Check the status after the restart

Check the health status of the nodes and the running status of the business containers in
Container Service console after restarting the nodes.

Call back node role (apply to swarm mode clusters)

If the corresponding node is a Manager node in the swarm mode cluster, set the node to a
Manager node again.

Use OSSFS data volumes to share WordPress
attachments

This document introduces how to share WordPress attachments across different containers by
creating OSSFS data volumes in Alibaba Cloud Container Service.

Scenarios

Docker containers simplify WordPress deployment. With Alibaba Cloud Container Service, you can
use an orchestration template to deploy WordPress with one click.

Container Service Best Practices

13

Note: For more information, see Create WordPress with an orchestration template.

In this example, the following orchestration template is used to create an application named
wordpress.

This application contains a MySQL container and three WordPress containers (aliyun.scale: '3' is the
extension label of Alibaba Cloud Container Service, and specifies the number of containers. For more
information about the labels supported by Alibaba Cloud Container Service, see Label description).
The WordPress containers access MySQL by using a link. The aliyun.routing.port_80: http://wordpress
label defines the load balancing among the three WordPress containers (for more information, see
Simple routing - supports HTTP and HTTPS).

In this example, the application deployment is simple and the deployed application is of complete
features. However, the attachments uploaded by WordPress are stored in the local disk, which means
they cannot be shared across different containers or opened when requests are routed to other
containers.

Solutions
This document introduces how to use OSSFS data volumes of Alibaba Cloud Container Service to

web:
image: registry.aliyuncs.com/acs-sample/wordpress:4.3
ports:
- '80'
environment:
WORDPRESS_AUTH_KEY: changeme
WORDPRESS_SECURE_AUTH_KEY: changeme
WORDPRESS_LOGGED_IN_KEY: changeme
WORDPRESS_NONCE_KEY: changeme
WORDPRESS_AUTH_SALT: changeme
WORDPRESS_SECURE_AUTH_SALT: changeme
WORDPRESS_LOGGED_IN_SALT: changeme
WORDPRESS_NONCE_SALT: changeme
WORDPRESS_NONCE_AA: changeme
restart: always
links:
- 'db:mysql'
labels:
aliyun.logs: /var/log
aliyun.probe.url: http://container/license.txt
aliyun.probe.initial_delay_seconds: '10'
aliyun.routing.port_80: http://wordpress
aliyun.scale: '3'
db:
image: registry.aliyuncs.com/acs-sample/mysql:5.7
environment:
MYSQL_ROOT_PASSWORD: password
restart: always
labels:
aliyun.logs: /var/log/mysql

Container Service Best Practices

14

share WordPress attachments across different containers, without any code modifications.

OSSFS data volume, a third-party data volume provided by Alibaba Cloud Container Service,
packages various cloud storages (such as Object Storage Service (OSS)) as data volumes and then
directly mounts them to the containers. This means the data volumes can be shared across different
containers and automatically re-mounted to the containers when the containers are restarted or
migrated.

Procedure

Create OSSFS data volumes.

Log on to the Container Service console.

Click Data Volumes in the left-side navigation pane.

Select the cluster in which you want to create data volumes from the Cluster list.

Click Create in the upper-right corner to create the OSSFS data volumes.

For how to create OSSFS data volumes, see Create an OSSFS data volume.

In this example, the created OSSFS data volumes are named wp_upload. Container Service
uses the same name to create data volumes on each node of a cluster.

Use the OSSFS data volumes.

The WordPress attachments are stored in the /var/www/html/wp-content/uploads directory
by default. In this example, map OSSFS data volumes to this directory and then an OSS
bucket can be shared across different WordPress containers.

Container Service Best Practices

15

Log on to the Container Service console.

Click Applications in the left-side navigation pane.

Select the cluster used in this example from the Cluster list.

Click Update at the right of the application wordpress created in this example.

In the Template field, add the mapping from OSSFS data volumes to the
WordPress directory.

Note: You must modify the Version. Otherwise, the application cannot be
redeployed.

Container Service Best Practices

16

Click OK to redeploy the application.

Open WordPress and upload attachments. Then, you can see the uploaded attachments in
the OSS bucket.

Use Docker Compose to test cluster network
connectivity

This document provides a simple Compose file used to realize one-click deployment and you can test
the container network connectivity by visiting the service access endpoint.

Scenarios

When deploying interdependent applications in a Docker cluster, you must make sure that the
applications can access each other to realize cross-host container network connectivity. However,
sometimes containers on different hosts cannot access each other due to network problems. If this
happens, it is difficult to troubleshoot the problem. Therefore, an easy-to-use Compose file can be
used to test the connectivity among cross-host containers within a cluster.

Solutions

Use the provided image and orchestration template to test the connectivity among containers.

This example uses Flask to test the container connectivity.

 web:
image: registry.aliyuncs.com/xianlu/test-link
command: python test-link.py
restart: always
ports:
- 5000
links:
- redis
labels:
aliyun.scale: '3'
aliyun.routing.port_5000: test-link;
redis:
image: redis
restart: always

Container Service Best Practices

17

The preceding orchestration template deploys a Web service and a Redis service. The Web service
contains three Flask containers and these three containers will be evenly distributed to three nodes
when started. The three containers are on different hosts and the current network can realize cross-
host container connectivity if the containers can ping each other. The Redis service runs on one of the
three nodes. When started, each Flask container registers to the Redis service and reports the
container IP address. The Redis service has the IP addresses of all the containers in the cluster after
the three Flask containers are all started. When you access any of the three Flask containers, the
container will send ping command to the other two containers and you can check the network
connectivity of the cluster according to the ping command response.

Procedure

Create a cluster which contains three nodes.

In this example, the cluster name is test-link. For how to create a cluster, see Create a
cluster.

Note: Select to create a Server Load Balancer instance when creating the cluster.

Use the preceding template to create an application (in this example, the application name
is test-cluster-link) to deploy the web service and redis service.

For how to create an application, see Create an application.

On the Application List page, click the application name to view the created services.

Click the name of the web service to enter the service details page.

Container Service Best Practices

18

You can see that the three containers (test-cluster-link_web_1, test-cluster-link_web_2, test-
cluster-link_web_3) are all started and distributed on different nodes.

Visit the access endpoint of the web service.

As shown in the following figure, the container test-cluster-link_web_1 can access the
container test-cluster-link_web_2 and container test-cluster-link_web_3.

Refresh the page. As shown in the following figure, the container test-cluster-link_web_2
can access the container test-cluster-link_web_1 and container test-cluster-link_web_3.

As the preceding results show, the containers in the cluster can access each other.

Log

Use ELK in Container Service

Container Service Best Practices

19

Background

Logs are an important component of the IT system. They record system events and the time when the
events occur. We can troubleshoot system faults according to the logs and make statistical analysis.

Logs are usually stored in the local log files. To view logs, log on to the machine and filter keywords
by using grep or other tools. However, when the application is deployed on multiple machines,
viewing logs in this way is inconvenient. To locate the logs for a specific error, you have to log on to
all the machines and filter files one after another. That is why concentrated log storage has emerged.
All the logs are collected in Log Service and you can view and search for logs in Log Service.

In the Docker environment, concentrated log storage is even more important. Compared with the
traditional operation and maintenance mode, Docker usually uses the orchestration system to
manage containers. The mapping between container and host is not fixed and containers might be
constantly migrated between hosts. You cannot view the logs by logging on to the machine and the
concentrated log becomes the only choice.

Container Service integrates with Alibaba Cloud Log Service and automatically collects container logs
to Log Service by using declarations. However, some users might prefer the ELK (Elasticsearch+
Logstash+ Kibana) combination. This document introduces how to use ELK in Container Service.

Overall structure

An independent Logstash cluster needs to be deployed. Logstash is large and resource-consuming,
so we do not run it on each machine, not to mention in every Docker container. To collect the

Container Service Best Practices

20

1.

2.

container logs, syslog, Logspout, and filebeat are used. You might also use other collection methods.

To try to fit the actual scenario, two clusters are created here: one is the testelk cluster for deploying
ELK, and the other is the app cluster for deploying applications.

Procedure

Note: The clusters and Server Load Balancer instance created in this document must be in the
same region.

Step 1. Create a Server Load Balancer instance

To enable other services to send logs to Logstash, create and configure a Server Load Balancer
instance before configuring Logstash.

Log on to the Server Load Balancer console before creating an application.
Create a Server Load Balancer instance whose Instance type is Internet.

Add 2 listeners for the created Server Load Balancer instance. The frontend and backend
port mappings of the 2 listeners are 5000: 5000 and 5044: 5044 respectively, with no
backend server added.

Container Service Best Practices

21

Step 2. Deploy ELK

Log on to the Container Service console.

Create a cluster named testelk. For how to create a cluster, see Create a cluster.

Note: The cluster and the Server Load Balancer instance created in step 1 must be in
the same region.

Bind the Server Load Balancer instance created in step 1 to this cluster.

On the Cluster List page, click Manage at the right of testelk. Click Load Balancer Settings
in the left-side navigation pane. Click Bind Server Load Balancer. Select the created Server
Load Balancer instance from the Server Load Balancer ID list and then click OK.

Container Service Best Practices

22

Deploy ELK by using the following orchestration template. In this example, an application
named elk is created.

For how to create an application by using an orchestration template, see Create an
application.

Note: Replace ${SLB_ID} in the orchestration file with the ID of the Server Load
Balancer instance created in step 1.

In this orchestration file, the official images are used for Elasticsearch and Kibana, with no
changes made. Logstash needs a configuration file, so make an image on your own to
include the configuration file. The image source codes can be found in demo-logstash.

The Logstash configuration file is as follows. This is a simple Logstash configuration. Two
input formats, syslog and filebeats, are provided and their external ports are 5044 and 5000
respectively.

 version: '2'
services:
elasticsearch:
image: elasticsearch

kibana:
image: kibana
environment:
ELASTICSEARCH_URL: http://elasticsearch:9200/
labels:
aliyun.routing.port_5601: kibana
links:
- elasticsearch

logstash:
image: registry.cn-hangzhou.aliyuncs.com/acs-sample/logstash
hostname: logstash
ports:
- 5044:5044
- 5000:5000
labels:
aliyun.lb.port_5044: 'tcp://${SLB_ID}:5044' #Create a Server Load Balancer instance first.
aliyun.lb.port_5000: 'tcp://${SLB_ID}:5000'
links:
- elasticsearch

 input {
beats {
port => 5044
type => beats
}

tcp {

Container Service Best Practices

23

Configure the Kibana index.

Access Kibana.

The URL can be found under the Routes tab of the application.
On the Application List page, click the application name elk. Click the Routes tab
and then click the route address to access Kibana.

Create an index.

Configure the settings as per your needs and then click Create.

Step 3. Collect logs

In Docker, the standard logs adopt Stdout file pointer. The following example first demonstrates how
to collect Stdout to ELK. If you are using file logs, you can use filebeat directly. WordPress is used for
the demonstration. The following is the orchestration template of WordPress. An application
wordpress is created in another cluster.

port => 5000
type => syslog
}

}

filter {
}

output {
elasticsearch {
hosts => ["elasticsearch:9200"]
}

stdout { codec => rubydebug }
}

Container Service Best Practices

24

Log on to the Container Service console.

Create a cluster named app. For how to create a cluster, see Create a cluster.

Note: The cluster and the Server Load Balancer instance created in step 1 must be in
the same region.

Create the application wordpress by using the following orchestration template:

Note: Replace ${SLB_IP} in the orchestration file with the IP address of the Server Load
Balancer instance created in step 1.

After the application is deployed successfully, click the application name wordpress on the
Application List page. Click the Routes tab and then click the route address to access the
WordPress application.

On the Application List page, click the application name elk. Click the Routes tab and then
click the route address to access Kibana and view the collected logs.

 version: '2'
services:
mysql:
image: mysql
environment:
- MYSQL_ROOT_PASSWORD=password

wordpress:
image: wordpress
labels:
aliyun.routing.port_80: wordpress
links:
- mysql:mysql
environment:
- WORDPRESS_DB_PASSWORD=password
logging:
driver: syslog
options:
syslog-address: 'tcp://${SLB_IP}:5000'

Container Service Best Practices

25

-

-

-

-

-

A new Docker log collection scheme: log-
pilot

This document introduces a new log collection tool for Docker: log-pilot. Log-pilot is a log collection
image we provide for you. You can deploy a log-pilot instance on each machine to collect all the
Docker application logs.

Note: Docker of Linux version is supported, while Docker of Windows or Mac version is not
supported.

Log-pilot has the following features:

A separate log process collects the logs of all the containers on the machine. No need to
start a log process for each container.
Log-pilot supports file logs and stdout logs. Docker log driver or Logspout can only process
stdout, while log-pilot supports collecting the stdout logs and the file logs.
Declarative configuration. When your container has logs to collect, log-pilot will
automatically collect logs of the new container if the path of the log file to be collected is
declared by using the label. No other configurations need to be changed.
Log-pilot supports multiple log storage methods and can deliver the logs to the correct
location for powerful Alibaba Cloud Log Service, popular ElasticSearch combination, or even
Graylog.
Open-source. Log-pilot is fully open-sourced. You can download the codes from log-pilot
GitHub project. If the current features cannot meet your requirements, welcome to raise an
issue.

Quick start

See a simple scenario as follows: start a log-pilot and then start a Tomcat container, letting log-pilot
collect Tomcat logs. For simplicity, here Alibaba Cloud Log Service or ELK is not involved. To run
locally, you only need a machine that runs Docker.

First, start log-pilot.

Note: When log-pilot is started in this way, all the collected logs will be directly output to the
console because no log storage is configured for backend use. Therefore, this method is mainly
for debugging.

Container Service Best Practices

26

-

-

Open the terminal and enter the following commands:

You will see the startup logs of log-pilot.

Do not close the terminal. Open a new terminal to start Tomcat. The Tomcat image is among the few
Docker images that use stdout and file logs at the same time, and is suitable for the demonstration
here.

Note:

aliyun.logs.catalina=stdout tells log-pilot that this container wants to collect stdout logs.
aliyun.logs.access=/usr/local/tomcat/logs/localhost_access_log.*.txt indicates to collect all
log files whose names comply with the localhost_access_log.*.txt format under the
/usr/local/tomcat/logs/ directory in the container. The label usage will be introduced in
details later.

Note: If you deploy Tomcat locally, instead of in the Alibaba Cloud Container Service, specify -v
/usr/local/tomcat/logs. Otherwise, log-pilot cannot read log files. Container Service has
implemented the optimization and you do not need to specify -v on your own.

Log-pilot will monitor the events in the Docker container. When it finds any container with
aliyun.logs.xxx, it will automatically parse the container configuration and start to collect the
corresponding logs. After you start Tomcat, you will find many contents are output immediately by
the log-pilot terminal, including the stdout logs output at the Tomcat startup, and some debugging
information output by log-pilot itself.

docker run --rm -it \
-v /var/run/docker.sock:/var/run/docker.sock \
-v /:/host \
--privileged \
registry.cn-hangzhou.aliyuncs.com/acs-sample/log-pilot:0.1

docker run -it --rm -p 10080:8080 \
-v /usr/local/tomcat/logs \
--label aliyun.logs.catalina=stdout \
--label aliyun.logs.access=/usr/local/tomcat/logs/localhost_access_log.*.txt \
tomcat

Container Service Best Practices

27

-

-

-

You can access the deployed Tomcat in the browser, and find that similar records are displayed on
the log-pilot terminal every time you refresh the browser. The contents after message are the logs
collected from /usr/local/tomcat/logs/localhost_access_log.XXX.txt.

Use ElasticSearch + Kibana

Deploy ElastichSearch + Kibana. See Use ELK in Container Service to deploy ELK in Alibaba Cloud
Container Service, or deploy them directly on your machine by following the ElasticSearch/Kibana
documents. This document assumes that you have deployed the two components.

If you are still running the log-pilot, close it first, and then start it again by using the following
commands:

Note: Before running the following commands, replace the two variables ELASTICSEARCH_HOST
and ELASTICSEARCH_PORT with the actual values you are using. ELASTICSEARCH_PORT is
generally 9200.

Compared with the previous log-pilot startup method, here three environment variables are added:

FLUENTD_OUTPUT=elasticsearch: Send the logs to ElasticSearch.
ELASTICSEARCH_HOST=${ELASTICSEARCH_HOST}: The domain name of ElasticSearch.
ELASTICSEARCH_PORT=${ELASTICSEARCH_PORT}: The port number of ElasticSearch.

Continue to run the Tomcat started previously, and access it again to make Tomcat generate some
logs. All these newly generated logs will be sent to ElasticSearch.

Open Kibana, and no new logs are visible yet. Create an index first. Log-pilot will write logs to the
specific index of ElasticSearch. The rules are as follows:

If label aliyun.logs.tags is used in the application, and tags contains target, use target as the index of
ElasticSearch. Otherwise, use XXX in the label aliyun.logs.XXX as the index.

docker run --rm -it \
-v /var/run/docker.sock:/var/run/docker.sock \
-v /:/host \
--privileged \
-e FLUENTD_OUTPUT=elasticsearch \
-e ELASTICSEARCH_HOST=${ELASTICSEARCH_HOST} \
-e ELASTICSEARCH_PORT=${ELASTICSEARCH_PORT}
registry.cn-hangzhou.aliyuncs.com/acs-sample/log-pilot:0.1

Container Service Best Practices

28

In the previous example about Tomcat, the label aliyun.logs.tags is not used, so access and catalina
are used by default as the index. First create the index access.

After the index is created, you can view the logs.

Use log-pilot in Alibaba Cloud Container Service

Container Service makes some special optimization for log-pilot, which adapts to running log-pilot
best.

To run log-pilot in Container Service, create an application by using the following orchestration file.
For how to create an application, see Create an application.

pilot:
image: registry.cn-hangzhou.aliyuncs.com/acs-sample/log-pilot:0.1
volumes:
- /var/run/docker.sock:/var/run/docker.sock
- /:/host
privileged: true
environment:
FLUENTD_OUTPUT: elasticsearch #Replace based on your requirements
ELASTICSEARCH_HOST: ${elasticsearch} #Replace based on your requirements
ELASTICSEARCH_PORT: 9200
labels:
aliyun.global: true

Container Service Best Practices

29

●

●

●

●

●

-

-

Then, you can use the aliyun.logs.xxx label on the application that you want to collect logs.

Label description

When Tomcat is started, the following two labels are declared to tell log-pilot the location of the
container logs.

You can also add more labels on the application container.

aliyun.logs.$name = $path

The variable name is the log name and can only contain 0–9, a–z, A–Z, and hyphens
(-).
The variable path is the path of the logs to be collected. The path must specify the
file, and cannot only be a directory. Wildcards are supported as part of the file
name, for example, /var/log/he.log and /var/log/*.log are both correct. However,
/var/log is not valid because the path cannot be only a directory. stdout is a special
value, indicating standard output.

aliyun.logs.$name.format: The log format. Currently, the following formats are supported.

none: Unformatted plain text.
json: JSON format. One complete JSON string in each line.
csv: CSV format.

aliyun.logs.$name.tags: The additional field added when the logs are reported. The format is
k1=v1,k2=v2. The key-value pairs are separated by commas, for example,
aliyun.logs.access.tags="name=hello,stage=test". Then, the logs reported to the storage will
contain the name field and the stage field.

If ElasticSearch is used for log storage, the target tag will have a special meaning, indicating
the corresponding index in ElasticSearch.

Log-pilot extension

For most users, the existing features of log-pilot can meet their requirements. If log-pilot cannot
meet your requirements, you can:

Submit an issue at https://github.com/AliyunContainerService/log-pilot.
Directly change the codes and then raise the PR.

--label aliyun.logs.catalina=stdout
--label aliyun.logs.access=/usr/local/tomcat/logs/localhost_access_log.*.txt

Container Service Best Practices

30

-

-

Health check mechanism of Docker
containers

In a distributed system, the service availability needs to be frequently checked by using the health
check mechanism to avoid exceptions when being called by other services. Docker introduced native
health check implementation after version 1.12. This document introduces the health check
mechanism of Docker containers and the new features in Docker swarm mode.

Process-level health check checks whether or not the process is alive and is the simplest health check
for containers. Docker daemon automatically monitors the PID1 process in the container. If the
docker run command specifies the restart policy, closed containers can be restarted automatically
according to the restart policy. In practical use, process-level health check alone is far from enough.
For example, if a container process is still alive, but cannot respond to user requests because of
application deadlock, such problems cannot be discovered by process monitoring.

Kubernetes provides Liveness and Readness probes to check the health status of the container and its
service respectively. Alibaba Cloud Container Service also provides a similar Service health check
mechanism.

Docker native health check capability

Docker introduced the native health check implementation after version 1.12. The health check
configurations of an application can be declared in the Dockerfile. The HEALTHCHECK instruction
declares the health check command that can be used to determine whether the service status of the
container master process is normal. This can reflect the real status of the container.

HEALTHCHECK instruction format:

HEALTHCHECK [option] CMD <command>: The command that sets the container health
check.
HEALTHCHECK NONE: If the basic image has a health check instruction, this line can be used
to block it.

Note: The HEALTHCHECK can only appear once in the Dockerfile. If multiple HEALTHCHECK
instructions exist, only the last one takes effect.

Images built by using Dockerfiles that contain HEALTHCHECK instructions can check the health status
when instantiating Docker containers. Health check is started automatically after the container is
started.

Container Service Best Practices

31

-

-

-

-

-

-

-

-

-

HEALTHCHECK supports the following options:

--interval=<interval>: The time interval between two health checks. The default value is 30
seconds.
--timeout=<interval>: The timeout time for running the health check command. The health
check fails if it lasts longer than this time period. The default value is 30 seconds.
--retries=<number of times>: When the health check fails continuously for a specified
number of times, the container status is regarded as unhealthy. The default value is 3.
--start-period=<interval>: The initialization time of application startup. Failed health check
during the startup is not counted. The default value is 0 second (introduced from version
17.05).

The command after HEALTHCHECK [option] CMD follows the same format as ENTRYPOINT, in either
the shell or the exec format. The returned value of the command determines the success or failure of
the health check:

0: Success.
1: Failure.
2: Reserved value. Do not use.

After a container is started, the initial status is Starting. Docker Engine waits for a period of interval to
regularly run the health check command. If the returned value of a single check is not 0 or the
running lasts longer than the specified timeout time, the health check is considered as failed. If the
health check fails continuously for retries times, the health status changes to Unhealthy.

If the health check succeeds once, Docker will change the container status back to Healthy.
When the container health status changes, Docker Engine issues a health_status event.

Assume that an image is a simple Web service. To enable health check to determine whether its Web
service is working normally or not, curl can be used to help with the determination and the
HEALTHCHECK instruction in its Dockerfile can be written as follows:

You can use docker ps. After several seconds, the Elasticsearch container changes from the Starting
status to Healthy status.

FROM elasticsearch:5.5
HEALTHCHECK --interval=5s --timeout=2s --retries=12 \
CMD curl --silent --fail localhost:9200/_cluster/health || exit 1

docker build -t test/elasticsearch:5.5 .
docker run --rm -d \
--name=elasticsearch \
test/elasticsearch:5.5

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

Container Service Best Practices

32

Another method is to directly specify the health check policy in the docker run command.

To help troubleshoot the issue, all output results of health check commands (including stdout and
stderr) are stored in health status and you can view them with the docker inspect command. Use the
following commands to retrieve the health check results of the past five containers.

Or

The sample result is as follows:

We usually recommend that you declare the corresponding health check policy in the Dockerfile to
facilitate the use of images because application developers know better about the application SLA.
The application deployment and Operation & Maintenance personnel can adjust the health check
policies as needed for deployment scenarios by using the command line parameters and REST API.

The Docker community provides some instance images that contain health checks. Obtain them in

c9a6e68d4a7f test/elasticsearch:5.5 "/docker-entrypoin..." 2 seconds ago Up 2 seconds (health: starting) 9200/tcp,
9300/tcp elasticsearch
$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
c9a6e68d4a7f test/elasticsearch:5.5 "/docker-entrypoin..." 14 seconds ago Up 13 seconds (healthy) 9200/tcp,
9300/tcp elasticsearch

$ docker run --rm -d \
--name=elasticsearch \
--health-cmd="curl --silent --fail localhost:9200/_cluster/health || exit 1" \
--health-interval=5s \
--health-retries=12 \
--health-timeout=2s \
elasticsearch:5.5

docker inspect --format='{{json .State.Health}}' elasticsearch

docker inspect elasticsearch | jq ".[].State.Health"

{
"Status": "healthy",
"FailingStreak": 0,
"Log": [
{
"Start": "2017-08-19T09:12:53.393598805Z",
"End": "2017-08-19T09:12:53.452931792Z",
"ExitCode": 0,
"Output": "..."
},
...
}

Container Service Best Practices

33

-

-

the following project: https://github.com/docker-library/healthchec.

Note:

Alibaba Cloud Container Service supports Docker native health check mechanism and
Alibaba Cloud extension health check mechanism.
Currently, Kubernetes does not support Docker native health check mechanism.

Health check capability for Docker swarm mode services

After Docker 1.13, health check policies are supported in the Docker swarm mode.

You can specify the health check policy in the docker service create command:

In swarm mode, Swarm manager monitors the health status of service tasks. When a container enters
the Unhealthy status, Swarm manager stops the container and starts a new container to replace the
unhealthy one. The backend or DNS records of the Server Load Balancer (routing mesh) are
automatically updated during this process to guarantee the service availability.

After version 1.13, health checks are supported in the service updating phase. In this way, the Server
Load Balancer/DNS resolution do not send requests to a new container before it is fully started and
enters the Healthy status, which makes sure that the requests will not be interrupted when
applications are being updated.

The following is a sequence chart of the service updating process.

$ docker service create -d \
--name=elasticsearch \
--health-cmd="curl --silent --fail localhost:9200/_cluster/health || exit 1" \
--health-interval=5s \
--health-retries=12 \
--health-timeout=2s \
elasticsearch

Container Service Best Practices

34

-

-

-

In a corporate production environment, reasonable health check settings can guarantee the
application availability. Currently, many application frameworks are already built with monitoring and
checking capabilities, such as Spring Boot Actuator. Integrated with the Docker built-in health check
mechanism, you can implement application availability monitoring, automatic fault handling, and
zero downtime updating in a concise manner.

One-click deployment of Docker Datacenter

About DDC

Docker Datacenter (DDC) is an enterprise-level container management and service deployment
package solution platform released by Docker. DDC is composed of the following three components:

Docker Universal Control Plane (Docker UCP): A set of graphical management interfaces.
Docker Trusted Registry (DTR): A trusted Docker image repository.
Docker Engine enterprise edition: The Docker Engine providing technical support.

DDC is available on the Docker official website.

Container Service Best Practices

35

DDC is a counterpart of Docker Cloud, another online product of the Docker company. However, DDC
primarily targets enterprise users for internal deployment. You can register your own Docker image to
DTR and use UCP to manage the entire Docker cluster. Both components provide web interfaces.

You must purchase a license to use DDC, but the Docker company provides a free license for a one-
month trial. You can download the trial license from the Docker official website after signing up.

DDC deployment architecture

In the preceding basic architecture figure, Controller primarily runs the UCP component, DTR runs the
DTR component, and Worker primarily runs your own Docker service. The entire DDC environment is
deployed on the Virtual Private Cloud (VPC) and all Elastic Compute Service (ECS) instances are in the
same security group. Every component provides a Server Load Balancer instance for extranet access.
Operations and maintenance are implemented by using the jump server. To enhance the availability,
the entire DDC environment is deployed for high availability, meaning at least two Controllers and
two DTRs exist.

Container Service Best Practices

36

One-click deployment of DDC

You can use Alibaba Cloud Resource Orchestration Service (ROS) to deploy DDC in one click at the
following link.

One-click deployment of DDC

In the preceding orchestration template, DDC is deployed in the region China North 2 (Beijing) by
default. To change the region for deployment, click Back in the lower-right corner of the page. Select
your region and then click Next.

Complete the configurations. Click Create to deploy a set of DDC.

DDC access

After creating DDC successfully by using ROS, you can enter the ROS stack management page by
clicking Stack Management in the left-side navigation pane. Find the created stack, and then click the
stack name or Manage at the right of the stack. The Stack Overview page appears.

You can view the addresses used to log on to UCP and DTR in the Output section.

Enter the UCP address in the browser and the UCP access page appears. Enter the administrator
account and password created when installing UCP and the system prompts you to import the license
file. Import the license file and then enter the UCP control interface.

Container Service Best Practices

37

Kubernetes

Build Concourse CI in Container Service in an
easy way

Concourse CI is a CI/CD tool, whose charm lies in the minimalist design and is widely applied to the
CI/CD of each Cloud Foundry module. Concourse CI officially provides the standard Docker images
and you can use Alibaba Cloud Container Service to deploy a set of Concourse CI applications rapidly.

Get to know the principle of Concourse if you are not familiar with the Concourse CI tool. For more
information, see Concourse architecture.

Create a swarm mode cluster

Log on to the Container Service console to create a cluster. In this example, create a swarm mode
cluster with one node and whose network type is Virtual Private Cloud (VPC).

For how to create a cluster, see Create a cluster.

Note: You must configure the external URL for Concourse, allowing you to access the web

Container Service Best Practices

38

service of Concourse from the current machine. Therefore, retain the public IP address or Elastic
IP (IP) when creating a container cluster.

Configure security group rules

The Concourse component ATC monitors the port 8080 by default. Therefore, you must configure the
inbound permissions of port 8080 for the cluster security group. For more information about the
principle of Concourse, see Concourse architecture.

In the Container Service console, click Clusters in the left-side navigation pane under Swarm
.

Click Manage at the right of the created cluster.

On the Basic Information page, click the security group ID.

Click Security Group Rules in the left-side navigation pane.

Click Add Security Group Rules.

Configure the inbound permissions of port 8080 for the security group and then click OK.

Container Service Best Practices

39

Create keys in the ECS instance

You must generate three private keys for running Concourse safely. For the specific functions for
these keys, see Generating Keys in the Standalone Binary.

Log on to the Elastic Compute Service (ECS) instance. In the root directory, create the
directories keys/web and keys/worker. You can run the following command to create these
two directories rapidly.

Run the following command to generate three private keys.

 mkdir -p keys/web keys/worker

Container Service Best Practices

40

Copy the certificate to the corresponding directory.

Deploy Concourse CI

Log on to the Container Service console.

Click Configurations in the left-side navigation pane under Swarm.

Click Create in the upper-right corner.

Enter CONCOURSE_EXTERNAL_URL as the Variable Name and http://your-ecs-public-
ip:8080 as the Variable Value.

Click Applications in the left-side navigation pane.

Select the cluster used in this example from the Cluster list.

 ssh-keygen -t rsa -f tsa_host_key -N ''
ssh-keygen -t rsa -f worker_key -N ''
ssh-keygen -t rsa -f session_signing_key -N ''

 cp ./keys/worker/worker_key.pub ./keys/web/authorized_worker_keys
cp ./keys/web/tsa_host_key.pub ./keys/worker

Container Service Best Practices

41

Click Create Application in the upper-right corner.

Enter the basic information for the application you are about to create.

Select Create with Orchestration Template.

Use the following template:

Click Create and Deploy. The Template Parameter dialog box appears.

 version: '2'
services:
concourse-db:
image: postgres:9.5
privileged: true
environment:
POSTGRES_DB: concourse
POSTGRES_USER: concourse
POSTGRES_PASSWORD: changeme
PGDATA: /database
concourse-web:
image: concourse/concourse
links: [concourse-db]
command: web
privileged: true
depends_on: [concourse-db]
ports: ["8080:8080"]
volumes: ["/root/keys/web:/concourse-keys"]
restart: unless-stopped # required so that it retries until conocurse-db comes up
environment:
CONCOURSE_BASIC_AUTH_USERNAME: concourse
CONCOURSE_BASIC_AUTH_PASSWORD: changeme
CONCOURSE_EXTERNAL_URL: "${CONCOURSE_EXTERNAL_URL}"
CONCOURSE_POSTGRES_HOST: concourse-db
CONCOURSE_POSTGRES_USER: concourse
CONCOURSE_POSTGRES_PASSWORD: changeme
CONCOURSE_POSTGRES_DATABASE: concourse
concourse-worker:
image: concourse/concourse
privileged: true
links: [concourse-web]
depends_on: [concourse-web]
command: worker
volumes: ["/keys/worker:/concourse-keys"]
environment:
CONCOURSE_TSA_HOST: concourse-web
dns: 8.8.8.8

Container Service Best Practices

42

Select the configuration file to be associated with from the Associated Configuration File
list.

Click Replace Variable and click OK.

After the application is created, the following three services are started: concourse-worker,
concourse-db, and concourse-web.

Then, the Concourse CI deployment is finished. Open http://your-ecs-public-ip:8080 in the
browser to access the Concourse CI.

Container Service Best Practices

43

Run a CI task (Hello world)

In the browser opened in the last section, download the CLI corresponding to your
operating system and install the CLI client. Use ECS (Ubuntu16.04) as an example.

For Linux and Mac OS X systems, you must add the execution permissions to the
downloaded FLY CLI file first. Then, install the CLI to the system and add it to $PATH.

After the installation, you can check the version.

Connect to the target. The username and password are concourse and changeme by
default.

Save the following configuration template as hello.yml.

Register the task.

 chmod +x fly
install fly /usr/local/bin/fly

 $fly -v
3.4.0

 $ fly -t lite login -c http://your-ecs-public-ip:8080
in to team 'main'
username: concourse
password:
saved

 jobs:
- name: hello-world
plan:
- task: say-hello
config:
platform: linux
image_resource:
type: docker-image
source: {repository: ubuntu}
run:
path: echo
args: ["Hello, world!"]

Container Service Best Practices

44

Start the task.

The page indicating the successful execution is as follows:

For more information about the characteristics of Concourse CI, see Concourse CI project.

Implement Istio distributed tracking in
Kubernetes

Background

Microservice is a focus in the current era. More and more IT enterprises begin to embrace the
microservices. The microservice architecture splits a complex system into several small services and
each service can be developed, deployed, and scaled independently. As a heaven-made match, the
microservice architecture and containers (Docker and Kubernetes) further simplify the microservice
delivery and strengthen the flexibility and robustness of the entire system.

 fly -t lite set-pipeline -p hello-world -c hello.yml

 fly -t lite unpause-pipeline -p hello-world

Container Service Best Practices

45

When monolithic applications are transformed to microservices, the distributed application
architecture composed of a large number of microservices also increases the complexity of operation
& maintenance, debugging, and security management. As microservices grow in scale and
complexity, developers must be faced with complex challenges such as service discovery, Server Load
Balancer, failure recovery, indicator collection, monitoring, A/B testing, throttling, access control, and
end-to-end authentication, which are difficult to resolve.

In May 2017, Google, IBM, and Lyft published the open-source service network architecture Istio,
which provides the connection, management, monitoring, and security protection of microservices.
Istio provides an infrastructure layer for services to communicate with each other, decouples the
issues such as version management, security protection, failover, monitoring, and telemetry in
application logics and service access. Being unrelated to codes, Istio attracts enterprises to transform
to microservices, which will make the microservice ecology develop fast.

Architecture principle of Istio

In Kubernetes, a pod is a collection of close-coupled containers, and these containers share the same
network namespace. With the extension mechanism of Initializer in Kubernetes, an Envoy container is
automatically created and started for each business pod, without modifying the deployment
description of the business pod. The Envoy takes over the inbound and outbound traffic of business
containers in the same pod. Therefore, the microservice governance functions, including the traffic
management, microservice tracking, security authentication, access control, and strategy
implementation, are realized by operating on the Envoy.

An Istio service mesh is logically split into a data plane and a control plane.

The data plane is composed of a collection of intelligent proxies (Envoys) deployed as
sidecars that mediate and control all network communication between microservices.

The control plane is used to manage and configure the proxies to route traffic, and enforce

Container Service Best Practices

46

polices at the runtime.

An Istio is mainly composed of the following components:

Envoy: The Envoy is used to mediate all the inbound and outbound traffic for all the services
in the service mesh. Functions such as dynamic service discovery, Server Load Balancer, fault
injection, and traffic management are supported. The Envoy is deployed as a sidecar to the
pods of related services.

Pilot: The Pilot is used to collect and verify the configurations and distribute the
configurations to all kinds of Istio components.

Mixer: The Mixer is used to enforce the access control and usage policies in the service mesh,
and collect telemetry data from Envoy proxies and other services.

Istio-Auth: Istio-Auth provides strong service-to-service and end user authentication.

For more information about Istio, see the Istio official document.

Install Istio

Use an Alibaba Cloud Container Service Kubernetes cluster as an example.

Alibaba Cloud Container Service has enabled the Initializers plug-in by default for Kubernetes clusters
if the cluster version is later than 1.8. No other configurations are needed.

Note: After you deploy the Istio, a sidecar is injected to each pod to take over the service
communication. Therefore, we recommend that you verify this in the independent test
environment.

Create Kubernetes clusters

Log on to the Container Service console.

Click Kubernetes in the left-side navigation pane.

Click Create Kubernetes Cluster in the upper-right corner.

Configure the parameters to create a cluster. For how to create a Kubernetes cluster, see
Create a cluster.

Container Service Best Practices

47

After the cluster is created, click Manage at the right of the cluster when the cluster status is
changed to Running.

On the cluster Basic Information page, you can configure the corresponding connection
information based on the page information. You can connect to the cluster either by using
kubectl or SSH.

Deploy Istio release version

Log on to the master node and run the following command to get the latest Istio installation
package.

Run the following command:

Run the following command to deploy Istio.

After the deployment, run the following command to verify if the Istio components are successfully
deployed.

curl -L https://git.io/getLatestIstio | sh -

cd istio-0.4.0 ##Change the working directory to Istio.
export PATH=$PWD/bin:$PATH ##Add the istioctl client to PATH environment variable.

kubectl apply -f install/kubernetes/istio.yaml ## Deploy Istio system components.
kubectl apply -f install/kubernetes/istio-initializer.yaml # Deploy Istio initializer plug-in.

$ kubectl get svc,pod -n istio-system

Container Service Best Practices

48

After all the pods are in the running status, the Istio deployment is finished.

Istio distributed service tracking case

Deploy and test the application BookInfo

BookInfo is an application similar to an online bookstore, which is composed of several independent
microservices compiled by different languages. The application BookInfo is deployed in the container
mode and does not have any dependencies on Istio. All the microservices are packaged together with
an Envoy sidecar. The Envoy sidecar intercepts the inbound and outbound call requests of services to
demonstrate the distributed tracking function of Istio service mesh.

For more information about BookInfo, see Bookinfo guide.

Run the following command to deploy and test the application Bookinfo.

In the Alibaba Cloud Kubernetes cluster environment, every cluster has been configured with the
Server Load Balancer and Ingress. Run the following command to obtain the IP address of Ingress.

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
svc/istio-ingress LoadBalancer 172.21.10.18 101.37.113.231 80:30511/TCP,443:31945/TCP 1m
svc/istio-mixer ClusterIP 172.21.14.221 <none>
9091/TCP,15004/TCP,9093/TCP,9094/TCP,9102/TCP,9125/UDP,42422/TCP 1m
svc/istio-pilot ClusterIP 172.21.4.20 <none> 15003/TCP,443/TCP 1m

NAME READY STATUS RESTARTS AGE
po/istio-ca-55b954ff7-crsjq 1/1 Running 0 1m
po/istio-ingress-948b746cb-4t24c 1/1 Running 0 1m
po/istio-initializer-6c84859cd-8mvfj 1/1 Running 0 1m
po/istio-mixer-59cc756b48-tkx6c 3/3 Running 0 1m
po/istio-pilot-55bb7f5d9d-wc5xh 2/2 Running 0 1m

kubectl apply -f samples/bookinfo/kube/bookinfo.yaml

Container Service Best Practices

49

If the preceding command cannot obtain the external IP address, run the following command to
obtain the corresponding address.

The application is successfully deployed if the following command returns 200.

You can open http://${GATEWAY_URL}/productpage in the browser to access the application.
GATEWAY_URL is the IP address of Ingress.

Deploy Jaeger tracking system

Distributed tracking system helps you observe the call chains between services and is useful when
diagnosing performance issues and analyzing system failures.

Istio ecology supports different distributed tracking systems, including Zipkin and Jaeger. Use the
Jaeger as an example.

Istio version 0.4 supports Jaeger. The test method is as follows.

After the deployment is finished, if you connect to the Kubernetes cluster by using kubectl, run the
following command to access the Jaeger control panel by using port mapping and open
http://localhost:16686 in the browser.

$ kubectl get ingress -o wide
NAME HOSTS ADDRESS PORTS AGE
gateway * 101.37.xxx.xxx 80 2m

export GATEWAY_URL=$(kubectl get ingress -o wide -o jsonpath={.items[0].status.loadBalancer.ingress[0].ip})

curl -o /dev/null -s -w "%{http_code}\n" http://${GATEWAY_URL}/productpage

kubectl apply -n istio-system -f https://raw.githubusercontent.com/jaegertracing/jaeger-kubernetes/master/all-in-
one/jaeger-all-in-one-template.yml

kubectl port-forward -n istio-system $(kubectl get pod -n istio-system -l app=jaeger -o
jsonpath='{.items[0].metadata.name}') 16686:16686 &

Container Service Best Practices

50

If you connect to the Alibaba Cloud Kubernetes cluster by using SSH, run the following command to
check the external access address of jaeger-query service.

Record the external access IP address and port of jaeger-query and then open the application in the
browser.

By accessing the application BookInfo for multiple times and generating the call chain information,
we can view the call chain information of services clearly.

Click a specific Trace to view the details.

You can also view DAG.

$ kubectl get svc -n istio-system
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
jaeger-agent ClusterIP None <none> 5775/UDP,6831/UDP,6832/UDP 1h
jaeger-collector ClusterIP 172.21.10.187 <none> 14267/TCP,14268/TCP,9411/TCP 1h
jaeger-query LoadBalancer 172.21.10.197 114.55.82.11 80:31960/TCP ##The external access address is
114.55.82.11:80. 1h
zipkin ClusterIP None <none> 9411/TCP

...

Container Service Best Practices

51

-

-

-

-

-

-

-

Implementation principle of Istio distributed tracking

The kernel of Istio service mesh is the Envoy, which is a high-performance and open-source Layer-7
proxy and communication bus. In Istio, each microservice is injected with an Envoy sidecar and this
instance is responsible for processing all the inbound and outbound network traffic. Therefore, each
Envoy sidecar can monitor all the API calls between services, record the time required by each service
call, and record whether each service call is successful or not.

Whenever a microservice initiates an external call, the client Envoy will create a new span. A span
represents the complete interaction process between a collection of microservices, starting from a
caller (client) sending a request to receiving the response from the server.

In the service interaction process, clients record the request start time and response receipt time, and
the Envoy on the server records the request receipt time and response return time.

Each Envoy distributes their own span view information to the distributed tracking system. When a
microservice processes requests, other microservices might need to be called, which causes the
creation of a causally related span and then forms the complete trace. Then, an application must be
used to collect and forward the following Headers from the request message:

x-request-id
x-b3-traceid
x-b3-spanid
x-b3-parentspanid
x-b3-sampled
x-b3-flags
x-ot-span-context

Container Service Best Practices

52

Envoys in the communication links can intercept, process, and forward the corresponding Headers.

For specific codes, see the Istio document.

Conclusion

Istio is accelerating the application and popularization of service mesh by using the good expansion
mechanism and strong ecology. In addition to those mentioned in the preceding sections, Weave
Scope, Istio Dashboard, and Istio-Analytics projects provide abundant call link visualization and
analysis capabilities.

 Client Tracer Server Tracer
┌──────────────────┐ ┌──────────────────┐
│ │ │ │
│ TraceContext │ Http Request Headers │ TraceContext │
│ ┌──────────────┐ │ ┌───────────────────┐ │ ┌──────────────┐ │
│ │ TraceId │ │ │ X─B3─TraceId │ │ │ TraceId │ │
│ │ │ │ │ │ │ │ │ │
│ │ ParentSpanId │ │ Extract │ X─B3─ParentSpanId │ Inject │ │ ParentSpanId │ │
│ │ ├─┼─────────>│ ├────────┼>│ │ │
│ │ SpanId │ │ │ X─B3─SpanId │ │ │ SpanId │ │
│ │ │ │ │ │ │ │ │ │
│ │ Sampled │ │ │ X─B3─Sampled │ │ │ Sampled │ │
│ └──────────────┘ │ └───────────────────┘ │ └──────────────┘ │
│ │ │ │
└──────────────────┘ └──────────────────┘

Container Service Best Practices

53

	Best Practices
	Swarm
	Run TensorFlow-based AlexNet in Alibaba Cloud Container Service
	Prerequisite
	Procedure

	Minimalism serverless practices based on swarm mode
	Architecture principle
	Install FaaS locally
	Test FaaS in Alibaba Cloud
	Limits
	Procedure

	Subsequent operations

	Best practices for restarting nodes
	Check the high availability configurations of business
	Best practices

	Use OSSFS data volumes to share WordPress attachments
	Scenarios
	Solutions
	Procedure

	Use Docker Compose to test cluster network connectivity
	Scenarios
	Solutions
	Procedure

	Log
	Use ELK in Container Service
	Background
	Overall structure
	Procedure
	Step 1. Create a Server Load Balancer instance
	Step 2. Deploy ELK
	Step 3. Collect logs

	A new Docker log collection scheme: log-pilot
	Quick start
	Use ElasticSearch + Kibana
	Use log-pilot in Alibaba Cloud Container Service
	Label description
	Log-pilot extension

	Health check mechanism of Docker containers
	Docker native health check capability
	Health check capability for Docker swarm mode services

	One-click deployment of Docker Datacenter
	About DDC
	DDC deployment architecture
	One-click deployment of DDC
	DDC access

	Kubernetes
	Build Concourse CI in Container Service in an easy way
	Create a swarm mode cluster
	Configure security group rules
	Create keys in the ECS instance
	Deploy Concourse CI
	Run a CI task (Hello world)

	Implement Istio distributed tracking in Kubernetes
	Background
	Architecture principle of Istio
	Install Istio
	Create Kubernetes clusters
	Deploy Istio release version

	Istio distributed service tracking case
	Deploy and test the application BookInfo

	Deploy Jaeger tracking system
	Implementation principle of Istio distributed tracking
	Conclusion

