
Container Service

Best Practices

-

-

-

Best Practices

In a distributed system, we often need to check service availability by using health checks to prevent
exceptions during other service calls. Docker introduced native health check implementation after
version 1.12. This article introduces the health check mechanism of Docker containers and new
features in Docker Swarm mode.

Process-level health checks check whether or not the process is alive and are the most simple health
checks for containers. Docker daemon will automatically monitor the PID1 process in the container. If
the docker run command specifies the restart policy, closed containers can be restarted
automatically. In practical use, process-level health checks alone are often far from enough. For
example, if a container process is still alive, but is locked by an app deadlock and fails to respond to
user requests, such problems will not be discovered by process monitoring.

Kubernetes provides Liveness and Readness probes to check the container and its service health
respectively. Alibaba Cloud Container Service also provides a similar Service health check mechanism.

Docker native health check capability

Docker introduced the native health check implementation after version 1.12. The health check
configurations of an app can be declared in the Dockerfile. The HEALTHCHECK command declares
the health check command that can be used to determine whether the status of the container master
process service is normal. This can reflect the real status of the container.

HEALTHCHECK command format are as follows:

HEALTHCHECK [option] CMD <command>: The command that sets the container health
check.
HEALTHCHECK NONE: If the basic image has a health check instruction, this line can be used
to block it.

Note: The HEALTHCHECK can only appear once in the Dockerfile. If multiple HEALTHCHECK
instructions are present, only the last one takes effect.

Images built by using Dockerfiles that contain HEALTHCHECK instructions are capable of checking
health when instantiating Docker containers. Health check is started automatically after the container
is started.

HEALTHCHECK supports the following options:

--interval=<interval>: The time interval between two health checks. The value is 30 seconds

Container Service Best Practices

1

-

-

-

-

-

-

-

-

by default.
--timeout=<interval>: The timeout time of the health check command. If a health check lasts
longer than this time period, the health check is determined to have failed. The default value
is 30 seconds.
--retries=<number of retries>: When the health check fails for a specified number of times,
the container will be regarded as unhealthy. The default value is 3.
--start-period=<interval>: The initialization time of app startup. Failed health check during
the startup period is not counted. The default value is 0 second (inherited from version
17.05).

The command after HEALTHCHECK [option] CMD follows the same format as ENTRYPOINT, in either
the shell or the exec format. The returned value of the command tells the success or failure of the
health check:

0: Success.
1: Failure.
2: Reserved value. Do not use.

After a container is started, the initial status is Starting. Docker Engine will wait for a period of interval
to start regularly running the health check command. If the returned value of a single check is not
“0” or the running takes longer than the specified timeout value, the health check is deemed as
failed. If the health check fails for consecutive retries times, the status turns to Unhealthy.

Once one health check succeeds, the Docker returns the container back to Healthy status.
When the container health status changes, Docker Engine issues a health_status event.

Supposing we have an image as a simple Web service, we hope to enable health check to determine
whether its Web service is working normally. We can use curl to help with the determination and the
HEALTHCHECK instruction in its Dockerfile can be written like this:

We can use docker ps. After several seconds, we might find that the Elasticsearch container changes
from the Starting status to Healthy status.

FROM elasticsearch:5.5
HEALTHCHECK --interval=5s --timeout=2s --retries=12 \
CMD curl --silent --fail localhost:9200/_cluster/health || exit 1

docker build -t test/elasticsearch:5.5 .
docker run --rm -d \
--name=elasticsearch \
test/elasticsearch:5.5

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
c9a6e68d4a7f test/elasticsearch:5.5 "/docker-entrypoin..." 2 seconds ago Up 2 seconds (health: starting) 9200/tcp,
9300/tcp elasticsearch

Container Service Best Practices

2

Another method is to specify the health check policy in the docker run command.

To assist in troubleshooting, all output results of health check commands (including stdout and
stderr) are stored in health statuses and you can view them with the docker inspect command. We
can use the following command to retrieve the health check results from the past five containers.

Or

The sample result is as follows:

Since app developers know better about the app SLA, we usually recommend declaring the
corresponding health check policy in the Dockerfile to facilitate the use of images. App deployment
and O&M personnel can adjust the health check policies as needed by using the command line
parameters and REST API.

The Docker community provides some instance images that contain health checks. We can access
them in the following project: https://github.com/docker-library/healthchec.

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
c9a6e68d4a7f test/elasticsearch:5.5 "/docker-entrypoin..." 14 seconds ago Up 13 seconds (healthy) 9200/tcp,
9300/tcp elasticsearch

$ docker run --rm -d \
--name=elasticsearch \
--health-cmd="curl --silent --fail localhost:9200/_cluster/health || exit 1" \
--health-interval=5s \
--health-retries=12 \
--health-timeout=2s \
elasticsearch:5.5

docker inspect --format='{{json .State.Health}}' elasticsearch

docker inspect elasticsearch | jq ".[].State.Health"

{
"Status": "healthy",
"FailingStreak": 0,
"Log": [
{
"Start": "2017-08-19T09:12:53.393598805Z",
"End": "2017-08-19T09:12:53.452931792Z",
"ExitCode": 0,
"Output": "..."
},
...
}

Container Service Best Practices

3

-

-

Note:

Alibaba Cloud Container Service supports Docker native health check mechanism and
Alibaba Cloud extension checking mechanism.
At present, Kubernetes does not support Docker native health check mechanism.

Health check capability for Docker Swarm mode services

After Docker 1.13, health check policies are supported in the Docker Swarm mode.

You can specify the health check policy in the docker service create command:

In Swarm mode, Swarm manager monitors the health statuses of service tasks. When a container
enters the Unhealthy status, the container is stopped and a new container is restarted to replace the
unhealthy one. The backend or DNS records of the Server Load Balancer (routing mesh) are
automatically updated during this process to ensure the service availability.

After version 1.13, health checks are supported in the service updating phase. In this way, the Server
Load Balancer/DNS resolution do not forward requests to a new container before it is fully started
and enters the Healthy status, which ensures that the requests will not be interrupted when
applications are being updated.

The following is a sequence chart of the service updating process.

$ docker service create -d \
--name=elasticsearch \
--health-cmd="curl --silent --fail localhost:9200/_cluster/health || exit 1" \
--health-interval=5s \
--health-retries=12 \
--health-timeout=2s \
elasticsearch

Container Service Best Practices

4

In a corporate production environment, reasonable health check settings help to ensure app
availability. Many current application frameworks are already built with monitoring and checking
capabilities, such as Spring Boot Actuator. With the help of Docker built-in health check mechanism,
you can implement app availability monitoring, automatic fault handling and fault-free updating in a
concise manner.

This document provides a Compose file for you to test the container connectivity within a cluster by
visiting the access endpoint of the service.

Scenario

When you need to deploy interdependent applications in a Docker cluster, you must ensure that the
applications can access one another, namely cross-host container network connectivity is available.
However, due to network problems, the containers deployed on different hosts might not be able to
access one another. If this happens, it is very difficult to troubleshoot the problem. Therefore, an
easy-to-use Compose file that can be used to test the connectivity among cross-host containers
within a cluster can really help a lot.

Solution

You can use the image and application template as shown below to test the connectivity among
containers.

 web:
image: registry.aliyuncs.com/xianlu/test-link

Container Service Best Practices

5

This example uses Flask to test the container connectivity.

The above application template deploys a Web service and a Redis service. The Web service contains
three Flask containers and the containers will be distributed on three nodes when started. Therefore,
if the containers can ping one another, it means that the current network can realize cross-host
container access.

The Redis service runs on one of the three nodes. After the Flask containers start, they register to the
Redis service and report their IP addresses; therefore, the Redis service has the IP addresses of all the
three Flask containers after the Flask containers start. When you visit any of the three Flask
containers, it will send ping commands to the other two and you can check the network connectivity
of the cluster according to the ping command response.

Procedure

Create a cluster which contains three nodes.

In this example, the name of the cluster is test-link. For more information about how to
create a cluster, refer to Create a cluster.

Note: Create a Server Load Balancer instance when you create the cluster.

Use the above template to create an application (in this example, the name of the
application is test-cluster-link) to deploy the web service and redis service.

For more information about how to create an application, refer to Create an application.

command: python test-link.py
restart: always
ports:
- 5000
links:
- redis
labels:
aliyun.scale: '3'
aliyun.routing.port_5000: test-link;
redis:
image: redis
restart: always

Container Service Best Practices

6

In the Application List page, click the name of the application to view the services created.

Click the name of the web service to enter the service details page.

You can see that the three containers (test-cluster-link_web_1, test-cluster-link_web_2, test-
cluster-link_web_3) all start and are distributed on different nodes.

Visit the access endpoint of the web service.

As shown in the figure below, the container test-cluster-link_web_1 can access the container
 test-cluster-link_web_2 and container test-cluster-link_web_3.

Refresh the webage. As shown in the figure below, the container test-cluster-link_web_2
can visit the container test-cluster-link_web_1 and container test-cluster-link_web_3.

As the above results show, the containers in the cluster can access one another.

Container Service Best Practices

7

Use OSSFS data volumes to share WordPress
attachments

This document describes how to share WordPress attachments among different containers by
creating OSSFS data volumes on Alibaba Cloud Container Service.

Scenario

Docker containers simplify WordPress deployment. With Alibaba Cloud Container Service, you can
use an application template for one-click deployment of WordPress.

Note: For details about how to use Alibaba Cloud Container Service to create a WordPress
application, refer to Create WordPress by using an application template.

In this example, the following application template is used to create an application named wordpress.

web:
image: registry.aliyuncs.com/acs-sample/wordpress:4.3
ports:
- '80'
environment:
WORDPRESS_AUTH_KEY: changeme
WORDPRESS_SECURE_AUTH_KEY: changeme
WORDPRESS_LOGGED_IN_KEY: changeme
WORDPRESS_NONCE_KEY: changeme
WORDPRESS_AUTH_SALT: changeme
WORDPRESS_SECURE_AUTH_SALT: changeme
WORDPRESS_LOGGED_IN_SALT: changeme
WORDPRESS_NONCE_SALT: changeme
WORDPRESS_NONCE_AA: changeme
restart: always
links:
- 'db:mysql'
labels:
aliyun.logs: /var/log
aliyun.probe.url: http://container/license.txt
aliyun.probe.initial_delay_seconds: '10'
aliyun.routing.port_80: http://wordpress
aliyun.scale: '3'
db:
image: registry.aliyuncs.com/acs-sample/mysql:5.7
environment:
MYSQL_ROOT_PASSWORD: password
restart: always
labels:
aliyun.logs: /var/log/mysql

Container Service Best Practices

8

This application consists of a MySQL container and three WordPress containers (aliyun.scale: '3' is the
extension label of Alibaba Cloud Container Service, and specifies the number of containers. For
details about the labels supported by Alibaba Cloud Container Service, refer to Label description). The
WordPress containers access MySQL through a link. The aliyun.routing.port_80: http://wordpress label
defines the load balancing among the three WordPress containers (for details, refer to Exposing HTTP
service through acsrouting).

In this example, the application can be deployed with complete features. However, the attachments
uploaded by WordPress are stored in the local disk, which means they cannot be shared across
different containers or opened once requests are routed to other containers.

Solution

This document describes how to use OSSFS data volumes on Alibaba Cloud Container Service to
share WordPress attachments across different containers without any code modifications.

OSSFS data volume is a third-party data volume provided by Alibaba Cloud Container Service to
package various cloud storages (for example, OSS) into data volumes and to directly mount these
data volumes to the containers. This means the data volumes can be shared across different
containers and automatically re-mounted upon container restart and migration.

Operating procedure

Step 1: Create OSSFS data volumes

Log on to the Container Service console.

Click Data Volumes in the left navigation pane.

Select the desired cluster and click Create in the upper-right corner.

For details about how to create OSSFS data volumes, refer to Create an OSSFS data volume.

Here the created OSSFS data volumes are named wp_upload. The Container Service uses
the same name to create data volumes on all nodes of a cluster.

Container Service Best Practices

9

Step 2: Use the OSSFS data volumes

The WordPress attachments are stored in the /var/www/html/wp-content/uploads directory by
default. In this example, we only need to map OSSFS data volumes to this directory for sharing of an
OSS bucket across different WordPress containers.

Log on to the Container Service console.

Click Applications in the left navigation pane.

Select the target cluster as well as the created application wordpress and click Update at the
right side.

In Template, add the mapping of OSSFS data volumes to the WordPress directory.

Note: You must modify the Version; otherwise, the application cannot be re-deployed.

Container Service Best Practices

10

Click OK to re-deploy the application.

Open WordPress and upload attachments. Then you can see the uploaded attachments in
the OSS bucket.

Log

Background

Logs are an important component of the IT system. They record system events and the time when the
events occur. We can troubleshoot system faults according to the logs and make statistical analysis.

Logs are usually stored in the local log files. You need to log on to the server and filter keywords by
using grep or other tools to view the logs. But when the application is deployed on multiple servers,
this log viewing method is very inconvenient. To locate the logs for a specific error, you have to log

Container Service Best Practices

11

on to all the servers and filter files one after another. That is why concentrated log storage has
emerged. All the logs are collected in Log Service and you can view and search for logs in Log
Service.

In the Docker environment, concentrated log storage is even more important. Compared with the
traditional operation and maintenance mode, Docker usually uses the orchestration system to
manage containers. The mapping between containers and hosts is not fixed and containers might be
constantly migrated between hosts. You cannot view the logs by logging on to the server and the
concentrated log becomes the only choice.

Container Service integrates with Alibaba Cloud Log Service and automatically collects container logs
to Log Service by using declarations. But some users might prefer the ELK (Elasticsearch+ Logstash+
Kibana) combination. This document introduces how to use ELK in Container Service.

Overall structure

An independent Logstash cluster needs to be deployed. Logstash is large and resource-consuming,
so we do not run it on every server, not to mention in every Docker container. To collect the
container logs, Syslog, Logspout, and Filebeat are used. Of course, you might also use other
collection methods.

To try to fit the actual scenario, two clusters are created here: one is the testelk cluster for deploying
ELK, and the other is the app cluster for deploying applications.

Procedure

Container Service Best Practices

12

1.

2.

3.

Note: The clusters and Server Load Balancer instances created in this document are all in the
same region.

Step 1. Create a Server Load Balancer instance

To enable other services to send logs to Logstash, create and configure a Server Load Balancer
instance before configuring Logstash.

Log on to the Server Load Balancer console before creating an application.
Create a Server Load Balancer instance whose Instance type is Internet.
Add 2 listeners for the created Server Load Balancer instance. The frontend and backend
port mappings of the 2 listeners are 5000: 5000 and 5044: 5044 respectively, with no
backend server added.

Step 2. Deploy ELK

Log on to the Container Service console.

Create a cluster named testelk. For how to create a cluster, see Create a cluster.

Note: The cluster and the Server Load Balancer instance created in step 1 must be in
the same region.

Bind the created Server Load Balancer instance to this cluster.

On the Cluster List page, click Manage at the right of testelk. Click Load Balancer Settings
in the left-side navigation pane. Click Bind Server Load Balancer. Select the created Server
Load Balancer instance from the Server Load Balancer ID list and then click OK.

Deploy ELK by using the following orchestration template. In this example, an application
named elk is created.

For how to create an application by using orchestration templates, see Create an
application.

Note: Replace ${SLB_ID} in the orchestration file with the ID of the created Server Load
Balancer instance.

version: '2'
services:
elasticsearch:
image: elasticsearch

Container Service Best Practices

13

In this orchestration file, the official images are used for Elasticsearch and Kibana, with no
changes made. Logstash needs a configuration file, so you have to make an image on your
own to store the configuration file. The image source codes can be found in demo-logstash.

The Logstash configuration file is as follows. This is a very simple Logstash configuration.
Two input formats, syslog and filebeats, are provided and their external ports are 5044 and
5000 respectively.

kibana:
image: kibana
environment:
ELASTICSEARCH_URL: http://elasticsearch:9200/
labels:
aliyun.routing.port_5601: kibana
links:
- elasticsearch

logstash:
image: registry.cn-hangzhou.aliyuncs.com/acs-sample/logstash
hostname: logstash
ports:
- 5044:5044
- 5000:5000
labels:
aliyun.lb.port_5044: 'tcp://${SLB_ID}:5044' #First create a Server Load Balancer instance
aliyun.lb.port_5000: 'tcp://${SLB_ID}:5000'
links:
- elasticsearch

 input {
beats {
port => 5044
type => beats
}

tcp {
port => 5000
type => syslog
}

}

filter {
}

output {
elasticsearch {
hosts => ["elasticsearch:9200"]
}

stdout { codec => rubydebug }
}

Container Service Best Practices

14

Configure the Kibana index.

Access Kibana.

The URL can be found under the Routes tab of the application.
On the Application List page, click the application name elk. Click the Routes tab
and then click the route address to access Kibana.

Create an index.

Configure the settings per your needs and then click Create.

Step 3. Collect logs

In Docker, the standard logs adopt Stdout file pointer. The following example first demonstrates how
to collect Stdout to ELK. If you are using file logs, you can also use Filebeat directly. WordPress is
used for the demonstration. The following is an orchestration template of WordPress. An application
wordpress is created in another cluster.

Log on to the Container Service console.

Create a cluster named app. For how to create a cluster, see Create a cluster.

Note: The cluster and the Server Load Balancer instance created in step 1 must be in
the same region.

Create the application wordpress by using the following orchestration template:

Note: Replace ${SLB_IP} in the orchestration file with the IP address of the created
Server Load Balancer instance.

Container Service Best Practices

15

-

After the application is deployed successfully, click the application name wordpress on the
Application List page. Click the Routes tab and then click the route address to access the
WordPress application.

On the Application List page, click the application name elk. Click the Routes tab and then
click the route address to access Kibana and view the collected logs.

A new Docker log collection scheme:
fluentd-pilot

This document introduces a new log collector for Docker: Fluentd-pilot. Fluentd-pilot is a log
collecting image we provide for you. You can deploy a Fluentd-pilot instance on each machine to
collect logs of all the Docker applications.

Fluentd-pilot has the following features:

A separate fluentd process to collect logs of all the containers on the machine. There is no
need to start a fluentd process for each container.

version: '2'
services:
mysql:
image: mysql
environment:
- MYSQL_ROOT_PASSWORD=password

wordpress:
image: wordpress
labels:
aliyun.routing.port_80: wordpress
links:
- mysql:mysql
environment:
- WORDPRESS_DB_PASSWORD=password
logging:
driver: syslog
options:
syslog-address: 'tcp://${SLB_IP}:5000'

Container Service Best Practices

16

-

-

-

-

It supports file logs and stdout logs. Docker log drivers or Logspout can only process stdout,
while fluentd-pilot not only supports collection of stdout logs, but also supports collection of
file logs.
Declarative configuration. When your container has logs to collect, the fluentd-pilot will
automatically collect logs of the new container as long as the path of the log file to be
collected is declared through the label, requiring no changes to any other configuration.
It supports multiple log storage methods. Whether it is a powerful Alibaba Cloud Log
Service, or the more popular ElasticSearch combination, or even Graylog, Fluentd-pilot can
deliver the log to the correct location.
Open-source. Fluentd-pilot is fully open-source. You can download its code here. If the
current features cannot meet your requirements, welcome to raise an issue.

Quick boot

Next I will show a simple scenario: first start Fluentd-pilot, then start a Tomcat container, and let
Fluentd-pilot collect Tomcat logs. For the sake of simplicity, here Alibaba Cloud Log Service or ELK is
not involved. If you want to run it locally, you just need a machine that runs Docker.

First, start Fluentd-pilot.

Note: When Fluentd-pilot is started in this approach, because there is no log storage configured
for backend use, all the collected logs will be directly output to the console.

Open the terminal and input the following commands:

You will see the startup logs of Fluentd-pilot.

Do not close the terminal. Open a new terminal to start Tomcat. The Tomcat image is among the few
Docker images that use stdout and file logs at the same time, and it is very suitable for the
demonstration here.

docker run --rm -it \
-v /var/run/docker.sock:/var/run/docker.sock \
-v /:/host \
registry.cn-hangzhou.aliyuncs.com/acs-sample/fluentd-pilot:0.1

docker run -it --rm -p 10080:8080 \

Container Service Best Practices

17

-

-

Note:

aliyun.logs.catalina=stdout tells Fluentd-pilot that this container wants to collect stdout logs.
aliyun.logs.access=/usr/local/tomcat/logs/localhost_access_log.*.txt indicates to collect all
log files whose names comply with the localhost_access_log.*.txt format under the
/usr/local/tomcat/logs/ directory in the container. The label usage will be introduced in
detail later.

Note: If you deploy Tomcat locally, instead of on the Alibaba Cloud container service, you should
specify -v /usr/local/tomcat/logs. Otherwise, Fluentd-pilot may be unable to read log files. The
Container Service has implemented the optimization and you don’t need to specify -v on your
own.

Fluentd-pilot will monitor the events in the Docker container. When it finds any container with
aliyun.logs.xxx, it will automatically parse the container configuration and starts to collect the
corresponding logs. After you start Tomcat, you will find a pile of contents is output immediately by
the Fluentd-pilot terminal, including the stdout logs output at the Tomcat startup, and some
debugging information output by Fluentd-pilot itself.

You can access the just-deployed Tomcat in the browser, and you will find that similar records can be
found on the Fluentd-pilot terminal every time you refresh the browser. In specific, the content after
message is the logs collected from /usr/local/tomcat/logs/localhost_access_log.XXX.txt.

Use ElasticSearch + Kibana

First you should deploy ElastichSearch + Kibana. You can refer to Use ELK in the Container Service to
deploy ELK in the Alibaba Cloud Container Service, or deploy them directly on your machine
following the ElasticSearch/Kibana documents. This document assumes that you have deployed the
two components.

If you are still running the Fluentd-pilot, close it first, and then start it again using the command
below.

Note: Before executing the following commands, first replace the two variables of
ELASTICSEARCH_HOST and ELASTICSEARCH_PORT with the actual values you are using.

-v /usr/local/tomcat/logs \
--label aliyun.logs.catalina=stdout \
--label aliyun.logs.access=/usr/local/tomcat/logs/localhost_access_log.*.txt \
tomcat

Container Service Best Practices

18

-

-

-

ELASTICSEARCH_PORT is usually 9200.

Compared with the previous Fluentd-pilot startup method, here three environmental variables are
added:

FLUENTD_OUTPUT=elasticsearch: Send the logs to ElasticSearch.
ELASTICSEARCH_HOST=${ELASTICSEARCH_HOST}: The domain name of ElasticSearch.
ELASTICSEARCH_PORT=${ELASTICSEARCH_PORT}: The port number of ElasticSearch.

Continue to run Tomcat started previously, and access it again to make Tomcat generate some logs.
All these newly generated logs will be sent to ElasticSearch.

Open Kibana, and no new logs are visible yet. You need to create an index first. Fluentd-pilot will
write logs to the specific index of ElasticSearch. The rules are as follows:

If the tag aliyun.logs.tags is used in the application, and the tags contains target, you should make
the target as the index in ElasticSearch. Otherwise, you should make the XXX in the tag
aliyun.logs.XXX as the index.

In the previous example about Tomcat, the tag aliyun.logs.tags is not used, so access and catalina are
used by default as the index. First create the index access.

After the index is ready, you can view the logs.

docker run --rm -it \
-v /var/run/docker.sock:/var/run/docker.sock \
-v /:/host \
-e FLUENTD_OUTPUT=elasticsearch \
-e ELASTICSEARCH_HOST=${ELASTICSEARCH_HOST} \
-e ELASTICSEARCH_PORT=${ELASTICSEARCH_PORT}
registry.cn-hangzhou.aliyuncs.com/acs-sample/fluentd-pilot:0.1

Container Service Best Practices

19

●

Use Fluentd-pilot in the Alibaba Cloud Container Service

The Container Service makes some special optimization for Fluentd-pilot to best adapt to running
Fluentd-pilot.

To run Fluentd-pilot in the Container Service, you only need to create a new application using the
following orchestration file. For how to create an application, see Create an application.

Next you can use the aliyun.logs.xxx tag on the application you want to collect logs for.

Label description

When Tomcat is started, the following two labels are declared to tell Fluentd-pilot the location of the
container logs.

You can also add more labels on the application container.

aliyun.logs.$name = $path

The variable name is the log name and can only contain 0~9, a~z, A~Z and hyphen

pilot:
image: registry.cn-hangzhou.aliyuncs.com/acs-sample/fluentd-pilot:0.1
volumes:
- /var/run/docker.sock:/var/run/docker.sock
- /:/host
environment:
FLUENTD_OUTPUT: ElasticSearch # can be replaced based on your requirements
ELASTICSEARCH_HOST: ${elasticsearch} # can be replaced based on your requirements
ELASTICSEARCH_PORT: 9200
labels:
aliyun.global: true

--label aliyun.logs.catalina=stdout
--label aliyun.logs.access=/usr/local/tomcat/logs/localhost_access_log.*.txt

Container Service Best Practices

20

●

●

●

●

-

-

(-).
The variable path is the path of the logs to collect. It must specify the file, and
should not only be a directory. Wildcards are supported as part of the file name,
such as /var/log/he.log and /var/log/*.log. However, /var/log is not valid as the path
should not be only a directory. stdout is a special value, indicating standard output.

aliyun.logs.$name.format: the log format. Currently only the following formats are
supported.

none: unformatted plain text.
json: JSON format. One JSON string in each line.
csv: CSV format.

aliyun.logs.$name.tags: The additional field added when the logs are reported. The format is
k1=v1,k2=v2. The key-value pairs are separated by commas, such as
aliyun.logs.access.tags="name=hello,stage=test". The logs reported to the storage will
contain the name field and the stage field.

If ElasticSearch is used for log storage, the target tag will have a special meaning, indicating
the corresponding index in the ElasticSearch.

Fluentd-pilot extension

For most users, the existing features of Fluentd-pilot can meet their requirements. If Fluentd-pilot is
unable to meet your requirements, you can:

Submit an issue at https://github.com/jzwlqx/fluentd-pilot/issues.
Directly change the code and then raise the PR.

Container Service Best Practices

21

	Best Practices
	Docker native health check capability
	Health check capability for Docker Swarm mode services
	Scenario
	Solution
	Procedure

	Use OSSFS data volumes to share WordPress attachments
	Scenario
	Solution
	Operating procedure
	Step 1: Create OSSFS data volumes
	Step 2: Use the OSSFS data volumes

	Log
	Background
	Overall structure
	Procedure
	Step 1. Create a Server Load Balancer instance
	Step 2. Deploy ELK
	Step 3. Collect logs

	A new Docker log collection scheme: fluentd-pilot
	Quick boot
	Use ElasticSearch + Kibana
	Use Fluentd-pilot in the Alibaba Cloud Container Service
	Label description
	Fluentd-pilot extension

