
Container Service

Best Practices

Best Practices

Kubernetes

Implement blue-green release by using an
Ingress in a Kubernetes cluster

Generally, before releasing an application, you must bring a new version online and test the
availability of this new version with low traffic. The Ingress resource of Kubernetes cannot control and
segment the traffic. Therefore, only one service works under the path of the same domain name,
which is not good for gray release. This document introduces how to implement the blue-green
release and segment the traffic in an easy way by using the Alibaba Cloud Container Service Ingress.

Prerequisites

You have created a Kubernetes cluster. For more information, see Create a cluster.

You have connected to the master node by using SSH. For more information, see Access
Kubernetes clusters by using SSH.

Step 1 Create an application

Log on to the Container Service console.

Click Kubernetes > Application > Deployment in the left-side navigation pane.

Click Create by template in the upper-right corner.

Container Service Best Practices

1

Select the cluster and namespace from the Clusters and Namespace drop-down lists.

Select a sample template or Custom from the Resource Type drop-down list.

Click DEPLOY.

In this example, deploy an Nginx application that contains a deployment, a service, and an
Ingress. The deployment exposes the port by using NodePort and an Ingress is providing
the external service. The orchestration template is as follows:

 apiVersion: extensions/v1beta1
kind: Deployment
metadata:
labels:
run: old-nginx
name: old-nginx
spec:
replicas: 1
selector:
matchLabels:
run: old-nginx
template:
metadata:

Container Service Best Practices

2

After the successful deployment, click Application > Ingress in the left-side navigation pane.

You can see that the virtual hostname points to old-nginx.

labels:
run: old-nginx
spec:
containers:
- image: registry.cn-hangzhou.aliyuncs.com/xianlu/old-nginx
imagePullPolicy: Always
name: old-nginx
ports:
- containerPort: 80
protocol: TCP
restartPolicy: Always

apiVersion: v1
kind: Service
metadata:
labels:
run: old-nginx
name: old-nginx
spec:
ports:
- port: 80
protocol: TCP
targetPort: 80
selector:
run: old-nginx
sessionAffinity: None
type: NodePort

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
name: echo
spec:
backend:
serviceName: default-http-backend
servicePort: 80
rules:
- host: mini-echo.io ##The virtual hostname.
http:
paths:
- path: /
backend:
serviceName: old-nginx
servicePort: 80

Container Service Best Practices

3

Log on to the master node and run the curl commnad to check the Ingress access.

Step 2 Create new deployment and service

Log on to the Container Service console.

Click Kubernetes > Application > Deployment in the left-side navigation pane.

Click Create by template in the upper-right corner.

Select the cluster and namespace from the Clusters and Namespace drop-down lists.

Select a sample template or Custom from the Resource Type drop-down list.

Click DEPLOY.

The orchestration of the new deployment and service is as follows:

curl -H "Host: mini-echo.io" http://101.37.224.229 ##The Ingress access address.
old

 apiVersion: extensions/v1beta1
kind: Deployment
metadata:
labels:
run: new-nginx
name: new-nginx

Container Service Best Practices

4

Step 3 Modify Ingress to implement blue-green release

Log on to the Container Service console.

Click Kubernetes > Application > Ingress in the left-side navigation pane.

Select the cluster and namespace from the Clusters and Namespace drop-down lists.

Click Update at the right of the Ingress created in the preceding step.

spec:
replicas: 1
selector:
matchLabels:
run: new-nginx
template:
metadata:
labels:
run: new-nginx
spec:
containers:
- image: registry.cn-hangzhou.aliyuncs.com/xianlu/new-nginx
imagePullPolicy: Always
name: new-nginx
ports:
- containerPort: 80
protocol: TCP
restartPolicy: Always

apiVersion: v1
kind: Service
metadata:
labels:
run: new-nginx
name: new-nginx
spec:
ports:
- port: 80
protocol: TCP
targetPort: 80
selector:
run: new-nginx
sessionAffinity: None
type: NodePort

Container Service Best Practices

5

In the displayed dialog box, modify the Ingress and then click OK.

Add annotations: The name of the new service new-nginx is after the /. 50 is the
traffic value, representing 50%. The label ingress.aliyun.weight/new-nginx: "50"
indicates to bring 50% of the traffic to the pod of the new service.

Configure new serviceName: Parallel to the old service, configure the new
serviceName, which indicates to mount two services under the same path to
correspond to the new application and old application respectively.

On the Ingress page, you can see a new rule pointing to the new service new-nginx is
added to the Ingress.

Container Service Best Practices

6

Log on to the master node and run the curl command to check the Ingress access.

In this example, run the curl command for six times and you get the new service for three
times and old service for three times as the returned results respectively, which indicates
that the weight configuration takes effect.

You can configure the traffic ratio of the blue-green release by adjusting the value in the Ingress
annotations ingress.aliyun.weight/new-nginx: "50" flexibly.

After completing the test of the new application version, you can configure the Ingress weight to 100
to bring traffic to the new service completely, or delete the annotations and old service version in the
Ingress to implement the blue-green release.

Implement four-layer canary release by using
Alibaba Cloud Server Load Balancer in
Kubernetes clusters

In Kubernetes clusters, seven-layer Ingress cannot meet the requirements of gray release well for
services accessed by using TCP/UDP. This document introduces how to implement four-layer canary
release by using Server Load Balancer.

Prerequisites

You have created a Kubernetes cluster. For more information, see Create a cluster.

You have connected to the master node by using SSH. For more information, see Access

 # curl -H "Host: mini-echo.io" http://101.37.224.229 ##The Ingress access address.
old
curl -H "Host: mini-echo.io" http://101.37.224.229
new
curl -H "Host: mini-echo.io" http://101.37.224.229
old
curl -H "Host: mini-echo.io" http://101.37.224.229
new
curl -H "Host: mini-echo.io" http://101.37.224.229
old
curl -H "Host: mini-echo.io" http://101.37.224.229
new

Container Service Best Practices

7

Kubernetes clusters by using SSH.

Step 1 Deploy old service version

Log on to the Container Service console.

Click Kubernetes > Application > Deployment in the left-side navigation pane.

Click Create by template in the upper-right corner.

Select the cluster and namespace from the Clusters and Namespace drop-down lists.

Select a sample template or Custom from the Resource Type drop-down list.

Click DEPLOY.

In this example, expose the Nginx service by using Server Load Balancer.

Container Service Best Practices

8

Click Application > Deployment and Application > Service in the left-side navigation pane
to check the deployment and service.

 apiVersion: extensions/v1beta1
kind: Deployment
metadata:
labels:
run: old-nginx
name: old-nginx
spec:
replicas: 1
selector:
matchLabels:
run: old-nginx
template:
metadata:
labels:
run: old-nginx
app: nginx
spec:
containers:
- image: registry.cn-hangzhou.aliyuncs.com/xianlu/old-nginx
imagePullPolicy: Always
name: old-nginx
ports:
- containerPort: 80
protocol: TCP
restartPolicy: Always

apiVersion: v1
kind: Service
metadata:
labels:
run: nginx
name: nginx
spec:
ports:
- port: 80
protocol: TCP
targetPort: 80
selector:
app: nginx
sessionAffinity: None
type: LoadBalancer ##Expose the service by using Alibaba Cloud Server Load Balancer.

Container Service Best Practices

9

Click the external endpoint at the right of the service to go to the Nginx default welcome
page. In this example, old is displayed on the Nginx welcome page, which indicates that the
currently accessed service corresponds to the backend pod old-nginx.

To display the results of multiple releases conveniently, we recommend that you log on to
the master node and run the curl command to check the deployment results.

Step 2 Bring new deployment version online

Log on to the Container Service console.

Click Kubernetes > Application > Deployment in the left-side navigation pane.

Click Create by template in the upper-right corner.

bash
for x in {1..10} ; do curl EXTERNAL-IP; done ##EXTERNAL-IP is the external endpoint of the service.
old
old
old
old
old
old
old
old
old
old

Container Service Best Practices

10

Select the cluster and namespace from the Clusters and Namespace drop-down lists.

Select a sample template or Custom from the Resource Type drop-down list.

Click DEPLOY.

In this example, create a new version of Nginx deployment that contains the app:nginx
label. The app:nginx label is used to use the same Nginx service as that of the old
deployment version to bring the corresponding traffic.

The orchestration template in this example is as follows:

Click Deployment in the left-side navigation pane. The deployment new-nginx is displayed
on the Deployment page.

Log on to the master node and run the curl command to check the service access.

 apiVersion: extensions/v1beta1
kind: Deployment
metadata:
labels:
run: new-nginx
name: new-nginx
spec:
replicas: 1
selector:
matchLabels:
run: new-nginx
template:
metadata:
labels:
run: new-nginx
app: nginx
spec:
containers:
- image: registry.cn-hangzhou.aliyuncs.com/xianlu/new-nginx
imagePullPolicy: Always
name: new-nginx
ports:
- containerPort: 80
protocol: TCP
restartPolicy: Always

Container Service Best Practices

11

You can see that the old service and new service are accessed for five times respectively.
This is mainly because the service follows the Server Load Balancer policy for traffic
requests, and the old deployment and new deployment are the same pod, which makes
their traffic ratio as 1:1.

Step 3 Adjust traffic weight

You must adjust the number of pods in the backend to adjust the corresponding weight for the
canary release based on Server Load Balancer. For example, to make the new service to have higher
weight, you can adjust the number of new pods to four.

Note: If the old application version and new application version coexist, the results returned after
running the curl command of a sample do not conform to the configured weight strictly. In this
example, run the curl command for 10 times to obtain the approximate effect by observing more
samples.

Log on to the Container Service console.

Click Kubernetes > Application > Deployment in the left-side navigation pane.

Select the cluster and namespace from the Clusters and Namespace drop-down lists.

Click Update at the right of the deployment.

In the displayed dialog box, modify the number of pods to four.

bash
for x in {1..10} ; do curl EXTERNAL-IP; done ##EXTERNAL-IP is the external endpoint of the service.
new
new
new
old
new
old
new
new
old
old

Container Service Best Practices

12

Note: The update method of Kubernetes deployment resources is rollingUpdate by
default. Therefore, during the update process, the minimum number of pods that
provide the service is guaranteed and this number can be adjusted in the template.

After the deployment, log on to the master node and run the curl command to check the
effect.

You can see the new service is requested for eight times and the old service is requested twice
among the 10 requests.

You can dynamically adjust the number of pods to adjust the weights of the new service and old
service and implement the canary release.

 # bash
for x in {1..10} ; do curl EXTERNAL-IP; done ##EXTERNAL-IP is the external endpoint of the service.
new
new
new
new
new
old
new
new
new
old

Container Service Best Practices

13

Deploy high-reliability Ingress Controller

In Kubernetes clusters, Ingress is a collection of rules that authorize the inbound access to the cluster
and provide you with Layer-7 Server Load Balancer capabilities. You can provide the externally
accessible URL, Server Load Balancer, SSL, and name-based virtual host by using the Ingress
configurations. As the access layer of the cluster traffic, the high reliability of Ingress is important.
This document introduces how to deploy a set of high-reliability Ingress access layer with good
performance.

Prerequisites

You have created a Kubernetes cluster. For more information, see Create a cluster.

You have connected to the master node by using SSH. For more information, see Access
Kubernetes clusters by using SSH.

High-reliability deployment architecture

To implement high reliability, the single point of failure must be solved first. Generally, the single
point of failure is solved by deployment with multiple copies. Similarly, use the multi-node
deployment architecture to deploy the high-reliability Ingress access layer in Kubernetes clusters. As
Ingress is the access point of the cluster traffic, we recommend that you have the Ingress node
exclusive to you to avoid the business applications and Ingress services from competing for
resources.

Container Service Best Practices

14

As mentioned in the preceding deployment architecture figure, multiple exclusive Ingress instances
form a unified access layer to carry the traffic at the cluster entrance and expand or contract the
Ingress nodes based on the backend business traffic. If your cluster scale is not large in the early
stage, you can also deploy the Ingress services and business applications in the hybrid mode, but we
recommend that you limit and isolate the resources.

Instructions on deploying high-reliability Ingress access
layer

Container Service Best Practices

15

Ingress Server Load Balancer: The frontend Server Load Balancer instance of the Ingress
access layer.

Ingress node: The cluster node in which the Ingress pod is deployed.

Ingress pod: The Ingress service.

The Ingress Server Load Balancer, Ingress node, and Ingress pod are associated based on the tag
node-role.kubernetes.io/ingress=true:

The Ingress Server Load Balancer backend only mounts the cluster nodes with the tag
node-role.kubernetes.io/ingress=true.

The Ingress pod is only deployed to the cluster nodes with the tag node-
role.kubernetes.io/ingress=true.

Step 1 Add a label for Ingress nodes

Log on to the Container Service console.

Click Kubernetes > Clusters > Nodes in the left-side navigation pane.

Select the cluster from the Cluster drop-down list.

View the instance IDs of the worker nodes and then click Label Management in the upper-

Container Service Best Practices

16

right corner.

The Label Management page appears. Select the worker nodes and then click Add Tag.

Add the label node-role.kubernetes.io/ingress:true to the worker nodes and then click OK.

On the Label Management page, you can see the label is added to the worker nodes.

You can also log on to the master node and run the command kubectl label no nodeID node-
role.kubernetes.io/ingress=true to add the label to the worker nodes quickly.

Step 2 Create an Ingress service

Log on to the Container Service console.

Click Kubernetes > Application > Deployment in the left-side navigation pane.

Container Service Best Practices

17

Select the cluster from the Clusters drop-down list and kube-system from the Namespace
drop-down list.

Click Delete at the right of nginx-ingress-controller and then click OK in the displayed
dialog box.

An Ingress Controller is deployed by default when the cluster is initialized. For more
information, see ingress-nginx. You must delete the Ingress Controller deployed by default
first and then deploy a new set of high-reliability Ingress Controller access layer.

Note: The Ingress Controller deployed by default is associated with the nginx-ingress-
lb service. Do not delete the associated service when deleting the deployment. The
nginx-ingress-lb service is about to be updated later.

Click Create by template in the upper-right corner.

Select the cluster from the Clusters drop-down list and kube-system from the Namespace
drop-down list.

Select a sample template or Custom from the Resource Type drop-down list.

Click DEPLOY.

Container Service Best Practices

18

In this example, redeploy the Ingress Controller to the target Ingress node in the
DaemonSet method. You can also deploy the Ingress Controller by using deployment
together with the affinity.

 # nginx ingress pods
apiVersion: extensions/v1beta1
kind: DaemonSet
metadata:
name: nginx-ingress-controller
labels:
app: ingress-nginx
namespace: kube-system
spec:
template:
metadata:
labels:
app: ingress-nginx
spec:
nodeSelector:
node-role.kubernetes.io/ingress: "true" ##Deploy the pod to the corresponding node by using the label
selector.
serviceAccount: admin
containers:
- name: nginx-ingress-controller
image: registry.cn-hangzhou.aliyuncs.com/acs/aliyun-ingress-controller:aliyun-nginx-0.9.0-beta.19.2
args:
- /nginx-ingress-controller
- --default-backend-service=$(POD_NAMESPACE)/default-http-backend
- --configmap=$(POD_NAMESPACE)/nginx-configuration
- --tcp-services-configmap=$(POD_NAMESPACE)/tcp-services
- --udp-services-configmap=$(POD_NAMESPACE)/udp-services
- --annotations-prefix=nginx.ingress.kubernetes.io
- --publish-service=$(POD_NAMESPACE)/nginx-ingress-lb
- --v=2

Container Service Best Practices

19

A message indicating the deployment status is displayed after you click DEPLOY. After the
successful deployment, click Kubernetes Dashboard in the message to go to the dashboard.

Select kube-system as the namespace in the left-side navigation pane.

Click Daemon Sets in the left-side navigation pane and view the nginx-ingress-controller.

env:
- name: POD_NAME
valueFrom:
fieldRef:
fieldPath: metadata.name
- name: POD_NAMESPACE
valueFrom:
fieldRef:
fieldPath: metadata.namespace
ports:
- name: http
containerPort: 80
- name: https
containerPort: 443
livenessProbe:
failureThreshold: 3
httpGet:
path: /healthz
port: 10254
scheme: HTTP
initialDelaySeconds: 10
periodSeconds: 10
successThreshold: 1
timeoutSeconds: 1
readinessProbe:
failureThreshold: 3
httpGet:
path: /healthz
port: 10254
scheme: HTTP
periodSeconds: 10
successThreshold: 1
timeoutSeconds: 1

Container Service Best Practices

20

Click Pods in the left-side navigation pane to view the pods of nginx-ingress-controller.

Step 3 Update Ingress Server Load Balancer service

Log on to the Container Service console.

Click Kubernetes > Application > Service in the left-side navigation pane.

Select the cluster from the Clusters drop-down list and kube-system from the Namespace
drop-down list.

Click Update at the right of nginx-ingress-lb.

An Ingress Server Load Balancer service is deployed by default when the cluster is
initialized. For more information, see ingress-nginx. You must update the Ingress Server
Load Balancer service to automatically identify the Ingress nodes with the tag node-
role.kubernetes.io/ingress=true.

Container Service Best Practices

21

In the displayed dialog box, add the annotation service.beta.kubernetes.io/alicloud-
loadbalancer-backend-label: "node-role.kubernetes.io/ingress=true", and then click OK.

You can also log on to the master node of the cluster and run the command kubectl apply -
f https://acs-k8s-ingress.oss-cn-hangzhou.aliyuncs.com/nginx-ingress-slb-service.yml to
update the nginx-ingress-lb service.

Then, you have deployed the high-reliability access layer of Ingress, which allows you to effectively
deal with the challenges of single point of failure and business traffic, and quickly expand the Ingress
access layer by adding tags.

Implement Istio distributed tracking in
Kubernetes

Container Service Best Practices

22

Background

Microservice is a focus in the current era. More and more IT enterprises begin to embrace the
microservices. The microservice architecture splits a complex system into several small services and
each service can be developed, deployed, and scaled independently. As a heaven-made match, the
microservice architecture and containers (Docker and Kubernetes) further simplify the microservice
delivery and strengthen the flexibility and robustness of the entire system.

When monolithic applications are transformed to microservices, the distributed application
architecture composed of a large number of microservices also increases the complexity of operation
& maintenance, debugging, and security management. As microservices grow in scale and
complexity, developers must be faced with complex challenges such as service discovery, Server Load
Balancer, failure recovery, indicator collection, monitoring, A/B testing, throttling, access control, and
end-to-end authentication, which are difficult to resolve.

In May 2017, Google, IBM, and Lyft published the open-source service network architecture Istio,
which provides the connection, management, monitoring, and security protection of microservices.
Istio provides an infrastructure layer for services to communicate with each other, decouples the
issues such as version management, security protection, failover, monitoring, and telemetry in
application logics and service access. Being unrelated to codes, Istio attracts enterprises to transform
to microservices, which will make the microservice ecology develop fast.

Architecture principle of Istio

In Kubernetes, a pod is a collection of close-coupled containers, and these containers share the same
network namespace. With the extension mechanism of Initializer in Kubernetes, an Envoy container is
automatically created and started for each business pod, without modifying the deployment
description of the business pod. The Envoy takes over the inbound and outbound traffic of business
containers in the same pod. Therefore, the microservice governance functions, including the traffic
management, microservice tracking, security authentication, access control, and strategy
implementation, are realized by operating on the Envoy.

Container Service Best Practices

23

An Istio service mesh is logically split into a data plane and a control plane.

The data plane is composed of a collection of intelligent proxies (Envoys) deployed as
sidecars that mediate and control all network communication between microservices.

The control plane is used to manage and configure the proxies to route traffic, and enforce
polices at the runtime.

An Istio is mainly composed of the following components:

Envoy: The Envoy is used to mediate all the inbound and outbound traffic for all the services
in the service mesh. Functions such as dynamic service discovery, Server Load Balancer, fault
injection, and traffic management are supported. The Envoy is deployed as a sidecar to the
pods of related services.

Pilot: The Pilot is used to collect and verify the configurations and distribute the
configurations to all kinds of Istio components.

Mixer: The Mixer is used to enforce the access control and usage policies in the service mesh,
and collect telemetry data from Envoy proxies and other services.

Istio-Auth: Istio-Auth provides strong service-to-service and end user authentication.

For more information about Istio, see the Istio official document.

Install Istio
Use an Alibaba Cloud Container Service Kubernetes cluster as an example.

Container Service Best Practices

24

Alibaba Cloud Container Service has enabled the Initializers plug-in by default for Kubernetes clusters
if the cluster version is later than 1.8. No other configurations are needed.

Note: After you deploy the Istio, a sidecar is injected to each pod to take over the service
communication. Therefore, we recommend that you verify this in the independent test
environment.

Create Kubernetes clusters

Log on to the Container Service console.

Click Kubernetes in the left-side navigation pane.

Click Create Kubernetes Cluster in the upper-right corner.

Configure the parameters to create a cluster. For how to create a Kubernetes cluster, see
Create a cluster.

After the cluster is created, click Manage at the right of the cluster when the cluster status is
changed to Running.

On the cluster Basic Information page, you can configure the corresponding connection
information based on the page information. You can connect to the cluster either by using
kubectl or SSH.

Container Service Best Practices

25

Deploy Istio release version

Log on to the master node and run the following command to get the latest Istio installation
package.

Run the following command:

Run the following command to deploy Istio.

After the deployment, run the following command to verify if the Istio components are successfully
deployed.

After all the pods are in the running status, the Istio deployment is finished.

Istio distributed service tracking case

Deploy and test the application BookInfo

BookInfo is an application similar to an online bookstore, which is composed of several independent
microservices compiled by different languages. The application BookInfo is deployed in the container
mode and does not have any dependencies on Istio. All the microservices are packaged together with
an Envoy sidecar. The Envoy sidecar intercepts the inbound and outbound call requests of services to
demonstrate the distributed tracking function of Istio service mesh.

curl -L https://git.io/getLatestIstio | sh -

cd istio-0.4.0 ##Change the working directory to Istio.
export PATH=$PWD/bin:$PATH ##Add the istioctl client to PATH environment variable.

kubectl apply -f install/kubernetes/istio.yaml ## Deploy Istio system components.
kubectl apply -f install/kubernetes/istio-initializer.yaml # Deploy Istio initializer plug-in.

$ kubectl get svc,pod -n istio-system
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
svc/istio-ingress LoadBalancer 172.21.10.18 101.37.113.231 80:30511/TCP,443:31945/TCP 1m
svc/istio-mixer ClusterIP 172.21.14.221 <none>
9091/TCP,15004/TCP,9093/TCP,9094/TCP,9102/TCP,9125/UDP,42422/TCP 1m
svc/istio-pilot ClusterIP 172.21.4.20 <none> 15003/TCP,443/TCP 1m

NAME READY STATUS RESTARTS AGE
po/istio-ca-55b954ff7-crsjq 1/1 Running 0 1m
po/istio-ingress-948b746cb-4t24c 1/1 Running 0 1m
po/istio-initializer-6c84859cd-8mvfj 1/1 Running 0 1m
po/istio-mixer-59cc756b48-tkx6c 3/3 Running 0 1m
po/istio-pilot-55bb7f5d9d-wc5xh 2/2 Running 0 1m

Container Service Best Practices

26

For more information about BookInfo, see Bookinfo guide.

Run the following command to deploy and test the application Bookinfo.

In the Alibaba Cloud Kubernetes cluster environment, every cluster has been configured with the
Server Load Balancer and Ingress. Run the following command to obtain the IP address of Ingress.

If the preceding command cannot obtain the external IP address, run the following command to
obtain the corresponding address.

The application is successfully deployed if the following command returns 200.

You can open http://${GATEWAY_URL}/productpage in the browser to access the application.
GATEWAY_URL is the IP address of Ingress.

kubectl apply -f samples/bookinfo/kube/bookinfo.yaml

$ kubectl get ingress -o wide
NAME HOSTS ADDRESS PORTS AGE
gateway * 101.37.xxx.xxx 80 2m

export GATEWAY_URL=$(kubectl get ingress -o wide -o jsonpath={.items[0].status.loadBalancer.ingress[0].ip})

curl -o /dev/null -s -w "%{http_code}\n" http://${GATEWAY_URL}/productpage

Container Service Best Practices

27

Deploy Jaeger tracking system

Distributed tracking system helps you observe the call chains between services and is useful when
diagnosing performance issues and analyzing system failures.

Istio ecology supports different distributed tracking systems, including Zipkin and Jaeger. Use the
Jaeger as an example.

Istio version 0.4 supports Jaeger. The test method is as follows.

After the deployment is finished, if you connect to the Kubernetes cluster by using kubectl, run the
following command to access the Jaeger control panel by using port mapping and open
http://localhost:16686 in the browser.

If you connect to the Alibaba Cloud Kubernetes cluster by using SSH, run the following command to
check the external access address of jaeger-query service.

Record the external access IP address and port of jaeger-query and then open the application in the
browser.

kubectl apply -n istio-system -f https://raw.githubusercontent.com/jaegertracing/jaeger-kubernetes/master/all-in-
one/jaeger-all-in-one-template.yml

kubectl port-forward -n istio-system $(kubectl get pod -n istio-system -l app=jaeger -o
jsonpath='{.items[0].metadata.name}') 16686:16686 &

$ kubectl get svc -n istio-system
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
jaeger-agent ClusterIP None <none> 5775/UDP,6831/UDP,6832/UDP 1h
jaeger-collector ClusterIP 172.21.10.187 <none> 14267/TCP,14268/TCP,9411/TCP 1h
jaeger-query LoadBalancer 172.21.10.197 114.55.82.11 80:31960/TCP ##The external access address is
114.55.82.11:80. 1h
zipkin ClusterIP None <none> 9411/TCP

...

Container Service Best Practices

28

By accessing the application BookInfo for multiple times and generating the call chain information,
we can view the call chain information of services clearly.

Click a specific Trace to view the details.

You can also view DAG.

Container Service Best Practices

29

-

-

-

-

-

-

-

Implementation principle of Istio distributed tracking

The kernel of Istio service mesh is the Envoy, which is a high-performance and open-source Layer-7
proxy and communication bus. In Istio, each microservice is injected with an Envoy sidecar and this
instance is responsible for processing all the inbound and outbound network traffic. Therefore, each
Envoy sidecar can monitor all the API calls between services, record the time required by each service
call, and record whether each service call is successful or not.

Whenever a microservice initiates an external call, the client Envoy will create a new span. A span
represents the complete interaction process between a collection of microservices, starting from a
caller (client) sending a request to receiving the response from the server.

In the service interaction process, clients record the request start time and response receipt time, and
the Envoy on the server records the request receipt time and response return time.

Each Envoy distributes their own span view information to the distributed tracking system. When a
microservice processes requests, other microservices might need to be called, which causes the
creation of a causally related span and then forms the complete trace. Then, an application must be
used to collect and forward the following Headers from the request message:

x-request-id
x-b3-traceid
x-b3-spanid
x-b3-parentspanid
x-b3-sampled
x-b3-flags
x-ot-span-context

Container Service Best Practices

30

Envoys in the communication links can intercept, process, and forward the corresponding Headers.

For specific codes, see the Istio document.

Conclusion

Istio is accelerating the application and popularization of service mesh by using the good expansion
mechanism and strong ecology. In addition to those mentioned in the preceding sections, Weave
Scope, Istio Dashboard, and Istio-Analytics projects provide abundant call link visualization and
analysis capabilities.

Swarm

Run TensorFlow-based AlexNet in Alibaba
Cloud Container Service

AlexNet is a CNN network developed in 2012 by Alex Krizhevsky using five-layer convolution and
three-layer ReLU layer, and won the ImageNet competition (ILSVRC). AlexNet proves the
effectiveness in classification (15.3% error rate) of CNN, against the 25% error rate by previous image
recognition tools. The emergence of this network marks a milestone for deep learning applications in
the computer vision field.

 Client Tracer Server Tracer
┌──────────────────┐ ┌──────────────────┐
│ │ │ │
│ TraceContext │ Http Request Headers │ TraceContext │
│ ┌──────────────┐ │ ┌───────────────────┐ │ ┌──────────────┐ │
│ │ TraceId │ │ │ X─B3─TraceId │ │ │ TraceId │ │
│ │ │ │ │ │ │ │ │ │
│ │ ParentSpanId │ │ Extract │ X─B3─ParentSpanId │ Inject │ │ ParentSpanId │ │
│ │ ├─┼─────────>│ ├────────┼>│ │ │
│ │ SpanId │ │ │ X─B3─SpanId │ │ │ SpanId │ │
│ │ │ │ │ │ │ │ │ │
│ │ Sampled │ │ │ X─B3─Sampled │ │ │ Sampled │ │
│ └──────────────┘ │ └───────────────────┘ │ └──────────────┘ │
│ │ │ │
└──────────────────┘ └──────────────────┘

Container Service Best Practices

31

AlexNet is also a common performance indicator tool for deep learning framework. TensorFlow
provides the alexnet_benchmark.py tool to test GPU and CPU performance. This document uses
AlexNet as an example to illustrate how to run a GPU application in Alibaba Cloud Container Service
easily and quickly.

Prerequisite

Create a GN5 GPU cluster in Container Service console.

Procedure

Log on to the Container Service console.

Click Applications in the left-side navigation pane.

Click Create Application in the upper-right corner.

Complete the configurations. Enter the application name (alexNet in this example) in the
Name field and then select the created GN5 GPU cluster from the Cluster list.

Click Create with Image.

Enter registry.cn-beijing.aliyuncs.com/tensorflow-samples/alexnet_benchmark:1.0.0-devel-
gpu in the Image Name field.

In the Container section, enter the command in the Command field. For example, enter
python /alexnet_benchmark.py --batch_size 128 --num_batches 100.

Container Service Best Practices

32

Click the button
in the Label section. Enter the Alibaba Cloud gpu extension label. Enter aliyun.gpu in the
Tag Name field, and the number of scheduling GPUs (1 in this example) in the Tag Value
field.

Container Service Best Practices

33

Click Create after configuring the application.

You can view the created alexNet application on the Application List page.

Click the application name alexNet.

Click the Logs tab.

In this way, you can check the performance of AlexNet on EGS by means of the container
Log Service in Container Service console.

Best practices for restarting nodes

Restarting nodes directly may cause an exception in clusters. In the context of Alibaba Cloud use
cases, this document introduces the best practices for restarting nodes in the situations such as
performing active Operation & Maintenance (O&M) on Container Service.

Check the high availability configurations of business

Before restarting Container Service nodes, we recommend that you check or modify the following
business configurations. In this way, restarting nodes cannot cause the exception of a single node
and the business availability cannot be impaired.

Container Service Best Practices

34

Data persistence policy of configurations

We recommend the data persistence for external volumes of important data configurations
such as configurations of logs and business. In this way, after the container is restructured,
deleting the former container cannot cause the data loss.

For how to use the Container Service data volumes, see Manage data volumes.

Restart policy of configurations

We recommend that you configure the restart: always restart policy for the corresponding
business services so that containers can be automatically pulled up after the nodes are
restarted.

High availability policy of configurations

We recommend that you integrate with the product architecture to configure the affinity and
mutual exclusion policies, such as high availability scheduling (availability:az propery),
specified node scheduling (affinity and constraint properties) , and specified nodes
scheduling (constraint property), for the corresponding business. In this way, restarting
nodes cannot cause the exception of a single node. For example, for the database business,
we recommend the active-standby or multi-instance deployment, and integrating with the
preceding characteristics to make sure that different instances are on different nodes and
related nodes are not restarted at the same time.

Best practices

We recommend that you check the high availability configurations of business by reading the
preceding instructions. Then, follow these steps in sequence on each node.

Note: Do not perform operations on multiple nodes at the same time.

Back up snapshots

We recommend that you create the latest snapshots for all the related disks of the nodes
and then back up the snapshots. When starting the shut-down nodes, an exception occurs
because the server is not restarted for a long time and the business availability is impaired.
However, by backing up the snapshots, this can be avoided.

Verify the container configuration availability of business

For a swarm cluster, restarting the corresponding business containers on nodes makes sure

Container Service Best Practices

35

that the containers can be pulled up again normally.

Verify the running availability of Docker Engine

Try to restart Docker daemon and make sure that the Docker Engine can be restarted
normally.

Perform related O&M

Perform the related O&M in the plan, such as updating business codes, installing system
patches, and adjusting system configurations.

Restart nodes

Restart nodes normally in the console or system.

Check the status after the restart

Check the health status of the nodes and the running status of the business containers in
the Container Service console after restarting the nodes.

Use OSSFS data volumes to share WordPress
attachments

This document introduces how to share WordPress attachments across different containers by
creating OSSFS data volumes in Alibaba Cloud Container Service.

Scenarios

Docker containers simplify WordPress deployment. With Alibaba Cloud Container Service, you can
use an orchestration template to deploy WordPress with one click.

Note: For more information, see Create WordPress with an orchestration template.

In this example, the following orchestration template is used to create an application named
wordpress.

Container Service Best Practices

36

This application contains a MySQL container and three WordPress containers (aliyun.scale: '3' is the
extension label of Alibaba Cloud Container Service, and specifies the number of containers. For more
information about the labels supported by Alibaba Cloud Container Service, see Label description).
The WordPress containers access MySQL by using a link. The aliyun.routing.port_80: http://wordpress
label defines the load balancing among the three WordPress containers (for more information, see
Simple routing - supports HTTP and HTTPS).

In this example, the application deployment is simple and the deployed application is of complete
features. However, the attachments uploaded by WordPress are stored in the local disk, which means
they cannot be shared across different containers or opened when requests are routed to other
containers.

Solutions

This document introduces how to use OSSFS data volumes of Alibaba Cloud Container Service to
share WordPress attachments across different containers, without any code modifications.

OSSFS data volume, a third-party data volume provided by Alibaba Cloud Container Service,
packages various cloud storages (such as Object Storage Service (OSS)) as data volumes and then

web:
image: registry.aliyuncs.com/acs-sample/wordpress:4.3
ports:
- '80'
environment:
WORDPRESS_AUTH_KEY: changeme
WORDPRESS_SECURE_AUTH_KEY: changeme
WORDPRESS_LOGGED_IN_KEY: changeme
WORDPRESS_NONCE_KEY: changeme
WORDPRESS_AUTH_SALT: changeme
WORDPRESS_SECURE_AUTH_SALT: changeme
WORDPRESS_LOGGED_IN_SALT: changeme
WORDPRESS_NONCE_SALT: changeme
WORDPRESS_NONCE_AA: changeme
restart: always
links:
- 'db:mysql'
labels:
aliyun.logs: /var/log
aliyun.probe.url: http://container/license.txt
aliyun.probe.initial_delay_seconds: '10'
aliyun.routing.port_80: http://wordpress
aliyun.scale: '3'
db:
image: registry.aliyuncs.com/acs-sample/mysql:5.7
environment:
MYSQL_ROOT_PASSWORD: password
restart: always
labels:
aliyun.logs: /var/log/mysql

Container Service Best Practices

37

directly mounts them to the containers. This means the data volumes can be shared across different
containers and automatically re-mounted to the containers when the containers are restarted or
migrated.

Procedure

Create OSSFS data volumes.

Log on to the Container Service console.

Click Data Volumes in the left-side navigation pane.

Select the cluster in which you want to create data volumes from the Cluster list.

Click Create in the upper-right corner to create the OSSFS data volumes.

For how to create OSSFS data volumes, see Create an OSSFS data volume.

In this example, the created OSSFS data volumes are named wp_upload. Container Service
uses the same name to create data volumes on each node of a cluster.

Use the OSSFS data volumes.

The WordPress attachments are stored in the /var/www/html/wp-content/uploads directory
by default. In this example, map OSSFS data volumes to this directory and then an OSS
bucket can be shared across different WordPress containers.

Log on to the Container Service console.

Container Service Best Practices

38

Click Applications in the left-side navigation pane.

Select the cluster used in this example from the Cluster list.

Click Update at the right of the application wordpress created in this example.

In the Template field, add the mapping from OSSFS data volumes to the
WordPress directory.

Note: You must modify the Version. Otherwise, the application cannot be
redeployed.

Click OK to redeploy the application.

Container Service Best Practices

39

Open WordPress and upload attachments. Then, you can see the uploaded attachments in
the OSS bucket.

Use Docker Compose to test cluster network
connectivity

This document provides a simple Compose file used to realize one-click deployment and you can test
the container network connectivity by visiting the service access endpoint.

Scenarios

When deploying interdependent applications in a Docker cluster, you must make sure that the
applications can access each other to realize cross-host container network connectivity. However,
sometimes containers on different hosts cannot access each other due to network problems. If this
happens, it is difficult to troubleshoot the problem. Therefore, an easy-to-use Compose file can be
used to test the connectivity among cross-host containers within a cluster.

Solutions

Use the provided image and orchestration template to test the connectivity among containers.

This example uses Flask to test the container connectivity.

The preceding orchestration template deploys a Web service and a Redis service. The Web service
contains three Flask containers and these three containers will be evenly distributed to three nodes

 web:
image: registry.aliyuncs.com/xianlu/test-link
command: python test-link.py
restart: always
ports:
- 5000
links:
- redis
labels:
aliyun.scale: '3'
aliyun.routing.port_5000: test-link;
redis:
image: redis
restart: always

Container Service Best Practices

40

when started. The three containers are on different hosts and the current network can realize cross-
host container connectivity if the containers can ping each other. The Redis service runs on one of the
three nodes. When started, each Flask container registers to the Redis service and reports the
container IP address. The Redis service has the IP addresses of all the containers in the cluster after
the three Flask containers are all started. When you access any of the three Flask containers, the
container will send ping command to the other two containers and you can check the network
connectivity of the cluster according to the ping command response.

Procedure

Create a cluster which contains three nodes.

In this example, the cluster name is test-link. For how to create a cluster, see Create a
cluster.

Note: Select to create a Server Load Balancer instance when creating the cluster.

Use the preceding template to create an application (in this example, the application name
is test-cluster-link) to deploy the web service and redis service.

For how to create an application, see Create an application.

On the Application List page, click the application name to view the created services.

Click the name of the web service to enter the service details page.

You can see that the three containers (test-cluster-link_web_1, test-cluster-link_web_2, test-
cluster-link_web_3) are all started and distributed on different nodes.

Container Service Best Practices

41

Visit the access endpoint of the web service.

As shown in the following figure, the container test-cluster-link_web_1 can access the
container test-cluster-link_web_2 and container test-cluster-link_web_3.

Refresh the page. As shown in the following figure, the container test-cluster-link_web_2
can access the container test-cluster-link_web_1 and container test-cluster-link_web_3.

As the preceding results show, the containers in the cluster can access each other.

Log

Use ELK in Container Service

Background
Logs are an important component of the IT system. They record system events and the time when the

Container Service Best Practices

42

events occur. We can troubleshoot system faults according to the logs and make statistical analysis.

Logs are usually stored in the local log files. To view logs, log on to the machine and filter keywords
by using grep or other tools. However, when the application is deployed on multiple machines,
viewing logs in this way is inconvenient. To locate the logs for a specific error, you have to log on to
all the machines and filter files one after another. That is why concentrated log storage has emerged.
All the logs are collected in Log Service and you can view and search for logs in Log Service.

In the Docker environment, concentrated log storage is even more important. Compared with the
traditional operation and maintenance mode, Docker usually uses the orchestration system to
manage containers. The mapping between container and host is not fixed and containers might be
constantly migrated between hosts. You cannot view the logs by logging on to the machine and the
concentrated log becomes the only choice.

Container Service integrates with Alibaba Cloud Log Service and automatically collects container logs
to Log Service by using declarations. However, some users might prefer the ELK (Elasticsearch+
Logstash+ Kibana) combination. This document introduces how to use ELK in Container Service.

Overall structure

An independent Logstash cluster needs to be deployed. Logstash is large and resource-consuming,
so we do not run it on each machine, not to mention in every Docker container. To collect the
container logs, syslog, Logspout, and filebeat are used. You might also use other collection methods.

To try to fit the actual scenario, two clusters are created here: one is the testelk cluster for deploying
ELK, and the other is the app cluster for deploying applications.

Container Service Best Practices

43

1.

2.

Procedure

Note: The clusters and Server Load Balancer instance created in this document must be in the
same region.

Step 1. Create a Server Load Balancer instance

To enable other services to send logs to Logstash, create and configure a Server Load Balancer
instance before configuring Logstash.

Log on to the Server Load Balancer console before creating an application.
Create a Server Load Balancer instance whose Instance type is Internet.

Add 2 listeners for the created Server Load Balancer instance. The frontend and backend
port mappings of the 2 listeners are 5000: 5000 and 5044: 5044 respectively, with no
backend server added.

Container Service Best Practices

44

Step 2. Deploy ELK

Log on to the Container Service console.

Create a cluster named testelk. For how to create a cluster, see Create a cluster.

Note: The cluster and the Server Load Balancer instance created in step 1 must be in
the same region.

Bind the Server Load Balancer instance created in step 1 to this cluster.

On the Cluster List page, click Manage at the right of testelk. Click Load Balancer Settings
in the left-side navigation pane. Click Bind Server Load Balancer. Select the created Server
Load Balancer instance from the Server Load Balancer ID list and then click OK.

Deploy ELK by using the following orchestration template. In this example, an application
named elk is created.

For how to create an application by using an orchestration template, see Create an
application.

Note: Replace ${SLB_ID} in the orchestration file with the ID of the Server Load
Balancer instance created in step 1.

 version: '2'
services:
elasticsearch:
image: elasticsearch

kibana:
image: kibana
environment:
ELASTICSEARCH_URL: http://elasticsearch:9200/
labels:
aliyun.routing.port_5601: kibana
links:
- elasticsearch

logstash:
image: registry.cn-hangzhou.aliyuncs.com/acs-sample/logstash
hostname: logstash
ports:
- 5044:5044
- 5000:5000
labels:

Container Service Best Practices

45

In this orchestration file, the official images are used for Elasticsearch and Kibana, with no
changes made. Logstash needs a configuration file, so make an image on your own to
include the configuration file. The image source codes can be found in demo-logstash.

The Logstash configuration file is as follows. This is a simple Logstash configuration. Two
input formats, syslog and filebeats, are provided and their external ports are 5044 and 5000
respectively.

Configure the Kibana index.

Access Kibana.

The URL can be found under the Routes tab of the application.
On the Application List page, click the application name elk. Click the Routes tab
and then click the route address to access Kibana.

aliyun.lb.port_5044: 'tcp://${SLB_ID}:5044' #Create a Server Load Balancer instance first.
aliyun.lb.port_5000: 'tcp://${SLB_ID}:5000'
links:
- elasticsearch

 input {
beats {
port => 5044
type => beats
}

tcp {
port => 5000
type => syslog
}

}

filter {
}

output {
elasticsearch {
hosts => ["elasticsearch:9200"]
}

stdout { codec => rubydebug }
}

Container Service Best Practices

46

Create an index.

Configure the settings as per your needs and then click Create.

Step 3. Collect logs

In Docker, the standard logs adopt Stdout file pointer. The following example first demonstrates how
to collect Stdout to ELK. If you are using file logs, you can use filebeat directly. WordPress is used for
the demonstration. The following is the orchestration template of WordPress. An application
wordpress is created in another cluster.

Log on to the Container Service console.

Create a cluster named app. For how to create a cluster, see Create a cluster.

Note: The cluster and the Server Load Balancer instance created in step 1 must be in
the same region.

Create the application wordpress by using the following orchestration template:

Note: Replace ${SLB_IP} in the orchestration file with the IP address of the Server Load
Balancer instance created in step 1.

 version: '2'
services:
mysql:
image: mysql
environment:
- MYSQL_ROOT_PASSWORD=password

wordpress:
image: wordpress
labels:
aliyun.routing.port_80: wordpress
links:
- mysql:mysql
environment:

Container Service Best Practices

47

-

-

-

-

After the application is deployed successfully, click the application name wordpress on the
Application List page. Click the Routes tab and then click the route address to access the
WordPress application.

On the Application List page, click the application name elk. Click the Routes tab and then
click the route address to access Kibana and view the collected logs.

A new Docker log collection scheme: log-
pilot

This document introduces a new log collection tool for Docker: log-pilot. Log-pilot is a log collection
image we provide for you. You can deploy a log-pilot instance on each machine to collect all the
Docker application logs.

Note: Docker of Linux version is supported, while Docker of Windows or Mac version is not
supported.

Log-pilot has the following features:

A separate log process collects the logs of all the containers on the machine. No need to
start a log process for each container.
Log-pilot supports file logs and stdout logs. Docker log driver or Logspout can only process
stdout, while log-pilot supports collecting the stdout logs and the file logs.
Declarative configuration. When your container has logs to collect, log-pilot will
automatically collect logs of the new container if the path of the log file to be collected is
declared by using the label. No other configurations need to be changed.
Log-pilot supports multiple log storage methods and can deliver the logs to the correct

- WORDPRESS_DB_PASSWORD=password
logging:
driver: syslog
options:
syslog-address: 'tcp://${SLB_IP}:5000'

Container Service Best Practices

48

-

location for powerful Alibaba Cloud Log Service, popular ElasticSearch combination, or even
Graylog.
Open-source. Log-pilot is fully open-sourced. You can download the codes from log-pilot
GitHub project. If the current features cannot meet your requirements, welcome to raise an
issue.

Quick start

See a simple scenario as follows: start a log-pilot and then start a Tomcat container, letting log-pilot
collect Tomcat logs. For simplicity, here Alibaba Cloud Log Service or ELK is not involved. To run
locally, you only need a machine that runs Docker.

First, start log-pilot.

Note: When log-pilot is started in this way, all the collected logs will be directly output to the
console because no log storage is configured for backend use. Therefore, this method is mainly
for debugging.

Open the terminal and enter the following commands:

You will see the startup logs of log-pilot.

Do not close the terminal. Open a new terminal to start Tomcat. The Tomcat image is among the few
Docker images that use stdout and file logs at the same time, and is suitable for the demonstration
here.

docker run --rm -it \
-v /var/run/docker.sock:/var/run/docker.sock \
-v /:/host \
--privileged \
registry.cn-hangzhou.aliyuncs.com/acs-sample/log-pilot:0.1

docker run -it --rm -p 10080:8080 \
-v /usr/local/tomcat/logs \
--label aliyun.logs.catalina=stdout \
--label aliyun.logs.access=/usr/local/tomcat/logs/localhost_access_log.*.txt \
tomcat

Container Service Best Practices

49

-

-

Note:

aliyun.logs.catalina=stdout tells log-pilot that this container wants to collect stdout logs.
aliyun.logs.access=/usr/local/tomcat/logs/localhost_access_log.*.txt indicates to collect all
log files whose names comply with the localhost_access_log.*.txt format under the
/usr/local/tomcat/logs/ directory in the container. The label usage will be introduced in
details later.

Note: If you deploy Tomcat locally, instead of in the Alibaba Cloud Container Service, specify -v
/usr/local/tomcat/logs. Otherwise, log-pilot cannot read log files. Container Service has
implemented the optimization and you do not need to specify -v on your own.

Log-pilot will monitor the events in the Docker container. When it finds any container with
aliyun.logs.xxx, it will automatically parse the container configuration and start to collect the
corresponding logs. After you start Tomcat, you will find many contents are output immediately by
the log-pilot terminal, including the stdout logs output at the Tomcat startup, and some debugging
information output by log-pilot itself.

You can access the deployed Tomcat in the browser, and find that similar records are displayed on
the log-pilot terminal every time you refresh the browser. The contents after message are the logs
collected from /usr/local/tomcat/logs/localhost_access_log.XXX.txt.

Use ElasticSearch + Kibana

Deploy ElastichSearch + Kibana. See Use ELK in Container Service to deploy ELK in Alibaba Cloud
Container Service, or deploy them directly on your machine by following the ElasticSearch/Kibana
documents. This document assumes that you have deployed the two components.

If you are still running the log-pilot, close it first, and then start it again by using the following
commands:

Note: Before running the following commands, replace the two variables ELASTICSEARCH_HOST
and ELASTICSEARCH_PORT with the actual values you are using. ELASTICSEARCH_PORT is
generally 9200.

docker run --rm -it \
-v /var/run/docker.sock:/var/run/docker.sock \
-v /:/host \
--privileged \

Container Service Best Practices

50

-

-

-

Compared with the previous log-pilot startup method, here three environment variables are added:

FLUENTD_OUTPUT=elasticsearch: Send the logs to ElasticSearch.
ELASTICSEARCH_HOST=${ELASTICSEARCH_HOST}: The domain name of ElasticSearch.
ELASTICSEARCH_PORT=${ELASTICSEARCH_PORT}: The port number of ElasticSearch.

Continue to run the Tomcat started previously, and access it again to make Tomcat generate some
logs. All these newly generated logs will be sent to ElasticSearch.

Open Kibana, and no new logs are visible yet. Create an index first. Log-pilot will write logs to the
specific index of ElasticSearch. The rules are as follows:

If label aliyun.logs.tags is used in the application, and tags contains target, use target as the index of
ElasticSearch. Otherwise, use XXX in the label aliyun.logs.XXX as the index.

In the previous example about Tomcat, the label aliyun.logs.tags is not used, so access and catalina
are used by default as the index. First create the index access.

After the index is created, you can view the logs.

-e FLUENTD_OUTPUT=elasticsearch \
-e ELASTICSEARCH_HOST=${ELASTICSEARCH_HOST} \
-e ELASTICSEARCH_PORT=${ELASTICSEARCH_PORT}
registry.cn-hangzhou.aliyuncs.com/acs-sample/log-pilot:0.1

Container Service Best Practices

51

●

●

●

Use log-pilot in Alibaba Cloud Container Service

Container Service makes some special optimization for log-pilot, which adapts to running log-pilot
best.

To run log-pilot in Container Service, create an application by using the following orchestration file.
For how to create an application, see Create an application.

Then, you can use the aliyun.logs.xxx label on the application that you want to collect logs.

Label description

When Tomcat is started, the following two labels are declared to tell log-pilot the location of the
container logs.

You can also add more labels on the application container.

aliyun.logs.$name = $path

The variable name is the log name and can only contain 0–9, a–z, A–Z, and hyphens
(-).
The variable path is the path of the logs to be collected. The path must specify the
file, and cannot only be a directory. Wildcards are supported as part of the file
name, for example, /var/log/he.log and /var/log/*.log are both correct. However,
/var/log is not valid because the path cannot be only a directory. stdout is a special
value, indicating standard output.

aliyun.logs.$name.format: The log format. Currently, the following formats are supported.

none: Unformatted plain text.

pilot:
image: registry.cn-hangzhou.aliyuncs.com/acs-sample/log-pilot:0.1
volumes:
- /var/run/docker.sock:/var/run/docker.sock
- /:/host
privileged: true
environment:
FLUENTD_OUTPUT: elasticsearch #Replace based on your requirements
ELASTICSEARCH_HOST: ${elasticsearch} #Replace based on your requirements
ELASTICSEARCH_PORT: 9200
labels:
aliyun.global: true

--label aliyun.logs.catalina=stdout
--label aliyun.logs.access=/usr/local/tomcat/logs/localhost_access_log.*.txt

Container Service Best Practices

52

●

●

-

-

json: JSON format. One complete JSON string in each line.
csv: CSV format.

aliyun.logs.$name.tags: The additional field added when the logs are reported. The format is
k1=v1,k2=v2. The key-value pairs are separated by commas, for example,
aliyun.logs.access.tags="name=hello,stage=test". Then, the logs reported to the storage will
contain the name field and the stage field.

If ElasticSearch is used for log storage, the target tag will have a special meaning, indicating
the corresponding index in ElasticSearch.

Log-pilot extension

For most users, the existing features of log-pilot can meet their requirements. If log-pilot cannot
meet your requirements, you can:

Submit an issue at https://github.com/AliyunContainerService/log-pilot.
Directly change the codes and then raise the PR.

Health check of Docker containers

In a distributed system, the service availability is frequently checked by using the health check to
avoid exceptions when being called by other services. Docker introduced native health check
implementation after version 1.12. This document introduces the health check of Docker containers.

Process-level health check checks whether or not the process is alive and is the simplest health check
for containers. Docker daemon automatically monitors the PID1 process in the container. If the
docker run command specifies the restart policy, closed containers can be restarted automatically
according to the restart policy. In many real scenarios, process-level health check alone is far from
enough. For example, a container process is still alive, but cannot respond to user requests because
of application deadlock, such problems cannot be discovered by monitoring the process.

Kubernetes provides Liveness and Readness probes to check the health status of the container and its
service respectively. Alibaba Cloud Container Service also provides a similar Service health check.

Docker native health check capability

Docker introduced the native health check implementation after version 1.12. The health check
configurations of an application can be declared in the Dockerfile. The HEALTHCHECK instruction
declares the health check command that can be used to determine whether or not the service status

Container Service Best Practices

53

-

-

-

-

-

-

-

-

-

-

-

of the container master process is normal. This can reflect the real status of the container.

HEALTHCHECK instruction format:

HEALTHCHECK [option] CMD <command>: The command that sets the container health
check.
HEALTHCHECK NONE: If the basic image has a health check instruction, this line can be used
to block it.

Note: The HEALTHCHECK can only appear once in the Dockerfile. If multiple HEALTHCHECK
instructions exist, only the last one takes effect.

Images built by using Dockerfiles that contain HEALTHCHECK instructions can check the health status
when instantiating Docker containers. Health check is started automatically after the container is
started.

HEALTHCHECK supports the following options:

--interval=<interval>: The time interval between two health checks. The default value is 30
seconds.
--timeout=<interval>: The timeout for running the health check command. The health check
fails if the timeout is exceeded. The default value is 30 seconds.
--retries=<number of times>: The container status is regarded as unhealthy if the health
check fails continuously for a specified number of times. The default value is 3.
--start-period=<interval>: The initialization time of application startup. Failed health check
during the startup is not counted. The default value is 0 second (introduced since version
17.05).

The command after HEALTHCHECK [option] CMD follows the same format as ENTRYPOINT, in either
the shell or the exec format. The returned value of the command determines the success or failure of
the health check:

0: Success.
1: Failure.
2: Reserved value. Do not use.

After a container is started, the initial status is Starting. Docker Engine waits for a period of interval to
regularly run the health check command. If the returned value of a single check is not 0 or the
running lasts longer than the specified timeout time, the health check is considered as failed. If the
health check fails continuously for retries times, the health status changes to Unhealthy.

If the health check succeeds once, Docker changes the container status back to Healthy.
Docker Engine issues a health_status event if the container health status changes.

Assume that an image is a simple Web service. To enable health check to determine whether or not
its Web service is working normally, curl can be used to help with the determination and the

Container Service Best Practices

54

HEALTHCHECK instruction in its Dockerfile can be written as follows:

You can use docker ps. After several seconds, the Elasticsearch container changes from the Starting
status to Healthy status.

Another method is to directly specify the health check policy in the docker run command.

To help troubleshoot the issue, all output results of health check commands (including stdout and
stderr) are stored in health status and you can view them with the docker inspect command. Use the
following commands to retrieve the health check results of the past five containers.

Or

The sample result is as follows:

FROM elasticsearch:5.5
HEALTHCHECK --interval=5s --timeout=2s --retries=12 \
CMD curl --silent --fail localhost:9200/_cluster/health || exit 1

docker build -t test/elasticsearch:5.5 .
docker run --rm -d \
--name=elasticsearch \
test/elasticsearch:5.5

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
c9a6e68d4a7f test/elasticsearch:5.5 "/docker-entrypoin..." 2 seconds ago Up 2 seconds (health: starting) 9200/tcp,
9300/tcp elasticsearch
$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
c9a6e68d4a7f test/elasticsearch:5.5 "/docker-entrypoin..." 14 seconds ago Up 13 seconds (healthy) 9200/tcp,
9300/tcp elasticsearch

$ docker run --rm -d \
--name=elasticsearch \
--health-cmd="curl --silent --fail localhost:9200/_cluster/health || exit 1" \
--health-interval=5s \
--health-retries=12 \
--health-timeout=2s \
elasticsearch:5.5

docker inspect --format='{{json .State.Health}}' elasticsearch

docker inspect elasticsearch | jq ".[].State.Health"

{

Container Service Best Practices

55

-

-

-

-

-

Generally, we recommend that you declare the corresponding health check policy in the Dockerfile to
facilitate the use of images because application developers know better about the application SLA.
The application deployment and Operation & Maintenance personnel can adjust the health check
policies as needed for deployment scenarios by using the command line parameters and REST API.

The Docker community provides some instance images that contain health check. Obtain them in the
following project: https://github.com/docker-library/healthcheck.

Note:

Alibaba Cloud Container Service supports Docker native health check and Alibaba Cloud
extension health check.
Currently, Kubernetes does not support Docker native health check.

One-click deployment of Docker Datacenter

About DDC

Docker Datacenter (DDC) is an enterprise-level container management and service deployment
package solution platform released by Docker. DDC is composed of the following three components:

Docker Universal Control Plane (Docker UCP): A set of graphical management interfaces.
Docker Trusted Registry (DTR): A trusted Docker image repository.
Docker Engine enterprise edition: The Docker Engine providing technical support.

DDC is available on the Docker official website.

"Status": "healthy",
"FailingStreak": 0,
"Log": [
{
"Start": "2017-08-19T09:12:53.393598805Z",
"End": "2017-08-19T09:12:53.452931792Z",
"ExitCode": 0,
"Output": "..."
},
...
}

Container Service Best Practices

56

DDC is a counterpart of Docker Cloud, another online product of the Docker company. However, DDC
primarily targets enterprise users for internal deployment. You can register your own Docker image to
DTR and use UCP to manage the entire Docker cluster. Both components provide web interfaces.

You must purchase a license to use DDC, but the Docker company provides a free license for a one-
month trial. You can download the trial license from the Docker official website after signing up.

DDC deployment architecture

In the preceding basic architecture figure, Controller primarily runs the UCP component, DTR runs the
DTR component, and Worker primarily runs your own Docker service. The entire DDC environment is
deployed on the Virtual Private Cloud (VPC) and all Elastic Compute Service (ECS) instances are in the
same security group. Every component provides a Server Load Balancer instance for extranet access.
Operations and maintenance are implemented by using the jump server. To enhance the availability,
the entire DDC environment is deployed for high availability, meaning at least two Controllers and
two DTRs exist.

Container Service Best Practices

57

One-click deployment of DDC

You can use Alibaba Cloud Resource Orchestration Service (ROS) to deploy DDC in one click at the
following link.

One-click deployment of DDC

In the preceding orchestration template, DDC is deployed in the region China North 2 (Beijing) by
default. To change the region for deployment, click Back in the lower-right corner of the page. Select
your region and then click Next.

Complete the configurations. Click Create to deploy a set of DDC.

DDC access

After creating DDC successfully by using ROS, you can enter the ROS stack management page by
clicking Stack Management in the left-side navigation pane. Find the created stack, and then click the
stack name or Manage at the right of the stack. The Stack Overview page appears.

You can view the addresses used to log on to UCP and DTR in the Output section.

Enter the UCP address in the browser and the UCP access page appears. Enter the administrator
account and password created when installing UCP and the system prompts you to import the license
file. Import the license file and then enter the UCP control interface.

Container Service Best Practices

58

Build Concourse CI in Container Service in an
easy way

Concourse CI, a CI/CD tool whose charm lies in the minimalist design, is widely applied to the CI/CD
of each Cloud Foundry module. Concourse CI officially provides the standard Docker images and you
can use Alibaba Cloud Container Service to deploy a set of Concourse CI applications rapidly.

Get to know the principle of Concourse if you are not familiar with the Concourse CI tool. For more
information, see Concourse official website.

Create a swarm cluster

Log on to the Container Service console to create a cluster. In this example, create a swarm cluster
with one node.

For how to create a cluster, see Create a cluster.

Note: You must configure the external URL for Concourse, which allows you to access the Web
service of Concourse from the current machine. Therefore, retain the Elastic IP (EIP) when
creating a cluster.

Container Service Best Practices

59

Configure security group rules

The Concourse component ATC listens to the port 8080 by default. Therefore, you must configure the
inbound permissions of port 8080 for the cluster security group.

In the Container Service console, click Swarm > Clusters in the left-side navigation pane.

Click Manage at the right of the created cluster.

On the Basic Information page, click the security group ID.

Click Security Group Rules in the left-side navigation pane.

Click Add Security Group Rules in the upper-right corner.

Configure the inbound permissions of port 8080 for the security group and then click OK.

Container Service Best Practices

60

Create keys in the ECS instance

You must generate three private keys for running Concourse safely.

Log on to the Elastic Compute Service (ECS) instance. In the root directory, create the
directories keys/web and keys/worker. You can run the following command to create these
two directories rapidly.

Run the following command to generate three private keys.

 mkdir -p keys/web keys/worker

Container Service Best Practices

61

Copy the certificate to the corresponding directory.

Deploy Concourse CI

Log on to the Container Service console.

Click Swarm > Configurations in the left-side navigation pane.

Click Create in the upper-right corner.

Enter CONCOURSE_EXTERNAL_URL as the Variable Name and http://your-ecs-public-
ip:8080 as the Variable Value.

Click Applications in the left-side navigation pane.

Select the cluster used in this example from the Cluster list.

Click Create Application in the upper-right corner.

 ssh-keygen -t rsa -f tsa_host_key -N ''
ssh-keygen -t rsa -f worker_key -N ''
ssh-keygen -t rsa -f session_signing_key -N ''

 cp ./keys/worker/worker_key.pub ./keys/web/authorized_worker_keys
cp ./keys/web/tsa_host_key.pub ./keys/worker

Container Service Best Practices

62

Enter the basic information for the application you are about to create.

Select Create with Orchestration Template.

Use the following template:

Click Create and Deploy. The Template Parameter dialog box appears.

Select the configuration file to be associated with from the Associated Configuration File
list.

Click Replace Variable and then click OK.

 version: '2'
services:
concourse-db:
image: postgres:9.5
privileged: true
environment:
POSTGRES_DB: concourse
POSTGRES_USER: concourse
POSTGRES_PASSWORD: changeme
PGDATA: /database
concourse-web:
image: concourse/concourse
links: [concourse-db]
command: web
privileged: true
depends_on: [concourse-db]
ports: ["8080:8080"]
volumes: ["/root/keys/web:/concourse-keys"]
restart: unless-stopped # required so that it retries until conocurse-db comes up
environment:
CONCOURSE_BASIC_AUTH_USERNAME: concourse
CONCOURSE_BASIC_AUTH_PASSWORD: changeme
CONCOURSE_EXTERNAL_URL: "${CONCOURSE_EXTERNAL_URL}"
CONCOURSE_POSTGRES_HOST: concourse-db
CONCOURSE_POSTGRES_USER: concourse
CONCOURSE_POSTGRES_PASSWORD: changeme
CONCOURSE_POSTGRES_DATABASE: concourse
concourse-worker:
image: concourse/concourse
privileged: true
links: [concourse-web]
depends_on: [concourse-web]
command: worker
volumes: ["/keys/worker:/concourse-keys"]
environment:
CONCOURSE_TSA_HOST: concourse-web
dns: 8.8.8.8

Container Service Best Practices

63

After the application is created, the following three services are started.

Then, the Concourse CI deployment is finished. Enter http://your-ecs-public-ip:8080 in the
browser to access the Concourse CI.

Run a CI task (Hello world)

Container Service Best Practices

64

In the browser opened in the last section, download the CLI corresponding to your
operating system and install the CLI client. Use ECS (Ubuntu 16.04) as an example.

For Linux and Mac OS X systems, you must add the execution permissions to the
downloaded FLY CLI file first. Then, install the CLI to the system and add it to $PATH.

After the installation, you can check the version.

Connect to the target. The username and password are concourse and changeme by
default.

Save the following configuration template as hello.yml.

Register the task.

 chmod +x fly
install fly /usr/local/bin/fly

 $fly -v
3.4.0

 $ fly -t lite login -c http://your-ecs-public-ip:8080
in to team 'main'
username: concourse
password:
saved

 jobs:
- name: hello-world
plan:
- task: say-hello
config:
platform: linux
image_resource:
type: docker-image
source: {repository: ubuntu}
run:
path: echo
args: ["Hello, world!"]

 fly -t lite set-pipeline -p hello-world -c hello.yml

Container Service Best Practices

65

Start the task.

The page indicating the successful execution is as follows.

For more information about the characteristics of Concourse CI, see Concourse CI project.

Deploy Container Service clusters by using
Terraform

This document introduces how to use Terraform to deploy an Alibaba Cloud Container Service cluster
in the Virtual Private Cloud (VPC) environment and deploy a sample WordPress application in the
deployed cluster. In this document, a solution used to build Alibaba Cloud infrastructures is provided
for you to use codes to automatically create, orchestrate, and manage services in Container Service.

Prerequisites

You must activate Alibaba Cloud Container Service and create an AccessKey for your account. Keep
your AccessKey ID and AccessKey Secret properly.

 fly -t lite unpause-pipeline -p hello-world

Container Service Best Practices

66

Step 1 Install Terraform

Download Terraform

Download Terraform from the official website. Select the corresponding version and platform. In this
document, install the Terraform on Linux (the procedure is similar to that of installing the Terraform
on Mac OS X).

Under Linux, click to download the terraform_0.11.3_linux_amd64.zip file.

Copy the .zip file to an appropriate path (/usr/local/terraform in this example).

Extract the .zip file and then get a binary file terraform.

Create the following entries in the /etc/profile directory and add the path where the binary
file resides (/usr/local/terraform in this example) to the PATH environment variable.

Install Alibaba Cloud Terraform package

In this example, Alibaba Cloud provides its own Terraform package. You can download the package
here.

Download the latest version for your system. In this example, download the package for Linux.

Copy the downloaded file terraform-provider-alicloud_linux-amd64.tgz to the
/usr/local/terraform folder.

Extract the downloaded file and then get a bin folder in which the terraform-provider-
alicloud file resides.

Create a .terraformrc file in the /usr/local/terraform directory.

Add the following contents in the file:

 export TERRAFORM_HOME=/usr/local/terraform
export PATH=$PATH:$TERRAFORM_HOME

 $ vim .terraformrc

Container Service Best Practices

67

Run the following command to test the working of Terraform. If Terraform is successfully
installed, the following contents are displayed:

Step 2 Download Container Service Terraform scripts

You can download the script file acs_terraform.zip here. The .zip file defines the resource files related
to creating swarm clusters so that you can create a sample cluster quickly.

The .zip file contains the following files after being extracted:

main.tf

The main file of Terraform, which defines the resources to be deployed.

Region

Defines the region where resources will be created.

VPC

 providers {
alicloud = "/usr/local/terraform/bin/terraform-provider-alicloud"
}

 $ terraform
Usage: terraform [--version] [--help] <command> [args]

The available commands for execution are listed below.
The most common, useful commands are shown first, followed by
less common or more advanced commands. If you're just getting
started with Terraform, stick with the common commands. For the
other commands, please read the help and docs before usage.

Common commands:
....

All other commands:
debug Debug output management (experimental)
force-unlock Manually unlock the terraform state
state Advanced state management

 provider "alicloud" {
region = "cn-hongkong"
}

 resource "alicloud_vpc" "vpc" {

Container Service Best Practices

68

VSwitch

Security group

Container Service cluster

RDS instance

Database account

name = "${var.vpc_name}"
cidr_block = "${var.vpc_cidr}"
}

 resource "alicloud_vswitch" "vswitch" {
availability_zone = "${data.alicloud_zones.default.zones.0.id}"
name = "${var.vswitch_name}"
cidr_block = "${var.vswitch_cidr}"
vpc_id = "${alicloud_vpc.vpc.id}"
}

 resource "alicloud_security_group" "group" {
name = "${var.sg_name}"
vpc_id = "${alicloud_vpc.vpc.id}"
}

 resource "alicloud_container_cluster" "wp_cs" {
password = "${var.ecs_password}"
instance_type = "${data.alicloud_instance_types.default.instance_types.0.id}"
name = "${var.cluster_name}"
size = "${var.node_number}"
disk_category = "${var.disk_category}"
disk_size = "${var.disk_size}"
cidr_block = "${var.contaner_cidr}"
image_id = "${data.alicloud_images.main.images.0.id}"
vswitch_id = "${alicloud_vswitch.vswitch.id}"
}

 resource "alicloud_db_instance" "instance" {
engine = "${var.engine}"
engine_version = "${var.engine_version}"
instance_type = "${var.instance_class}"
instance_storage = "${var.storage}"
vswitch_id = "${alicloud_vswitch.vswitch.id}"
security_ips = ["${var.contaner_cidr}","${var.vswitch_cidr}"]
}

Container Service Best Practices

69

Database backup policy

Database

Database privilege (read/write)

Database connection string

outputs.tf

This file defines the output parameters. Resources created as part of the execution will generate these
output parameters. This is similar to the output parameters specified in a Resource Orchestration
Service (ROS) template. For example, the template will deploy an RDS instance. The following output
parameter provides the value of the connection string that will be required to connect to the
database.

 resource "alicloud_db_account" "account" {
instance_id = "${alicloud_db_instance.instance.id}"
name = "wp_admin"
password = "${var.password}"
}

 resource "alicloud_db_backup_policy" "backup" {
instance_id = "${alicloud_db_instance.instance.id}"
backup_period = ["Tuesday", "Wednesday"]
backup_time = "10:00Z-11:00Z"
}

 resource "alicloud_db_database" "db" {
instance_id = "${alicloud_db_instance.instance.id}"
name = "${var.database_name}"
}

 resource "alicloud_db_account_privilege" "privilege" {
instance_id = "${alicloud_db_instance.instance.id}"
account_name = "${alicloud_db_account.account.name}"
privilege = "${var.db_privilege}"
db_names = ["${alicloud_db_database.db.name}"]
}

 resource "alicloud_db_connection" "connection" {
instance_id = "${alicloud_db_instance.instance.id}"
}

Container Service Best Practices

70

variables.tf

This file contains the variables that can be passed to main.tf and helps you customize the
environment.

Step 3 Run Terraform scripts

To run scripts, you must first go to the directory where the acs_terraform.zip file is extracted, that is,
/usr/local/terraform. You can use the following Terraform commands to run scripts and create
Container Service clusters. For more information on the command usage, see Terraform Commands
(CLI).

Run terraform init to initialize the environment.

Run terraform providers to list the installed providers.

output "rds_conn" {
value = "${alicloud_db_instance.instance.connection_string}"
}

variable "vpc_name" {
description = "The vpc name used to launch a new vpc."
default = "WP-VPC"
}

variable "vpc_cidr" {
description = "The cidr block used to launch a new vpc."
default = "172.16.0.0/12"
}

variable "database_name" {
default = "wp_db"
}

 $ terraform init
Initializing provider plugins...
...
- Checking for available provider plugins on https://releases.hashicorp.com...
- Downloading plugin for provider "alicloud" (1.7.2)...
* provider.alicloud: version = "~> 1.7"
Terraform has been successfully initialized!
...

 $ terraform providers
.

Container Service Best Practices

71

Before running terraform plan, you must first pass the AccessKey ID and AccessKey Secret for
authorization.

Run terraform plan to create an execution plan and help you understand the resources that will be
created or changed.

After confirming the resources are created or updated as expected, run the terraform apply command
to start the execution of the Terraform module.

└── provider.alicloud

$ export ALICLOUD_ACCESS_KEY="AccessKey ID"
$ export ALICLOUD_SECRET_KEY="AccessKey Secret"

$ terraform plan
Refreshing Terraform state in-memory prior to plan...
The refreshed state will be used to calculate this plan, but will not be
persisted to local or remote state storage.

data.alicloud_images.main: Refreshing state...
data.alicloud_instance_types.default: Refreshing state...
data.alicloud_zones.default: Refreshing state...

--

An execution plan has been generated and is shown below.
Resource actions are indicated with the following symbols:
+ create

Terraform will perform the following actions:
...
Plan: 9 to add, 0 to change, 0 to destroy.

--

Note: You didn't specify an "-out" parameter to save this plan, so Terraform
can't guarantee that exactly these actions will be performed if
"terraform apply" is subsequently run.

$ terraform apply

data.alicloud_instance_types.default: Refreshing state...
data.alicloud_images.main: Refreshing state...
data.alicloud_zones.default: Refreshing state...

An execution plan has been generated and is shown below.
Resource actions are indicated with the following symbols:
+ create

Terraform will perform the following actions:
...

Container Service Best Practices

72

After running the terraform apply command, the output parameters requested in the outputs.tf are
displayed. In the following example, the output parameters are cs_cluster cluster name, connection
string, rds_conn_port, rds_db name, and rds_db_account_name.

The output values can be listed at any time by running the terraform output command to help you
configure the WordPress application.

You can view the cluster created by using Terraform in the Container Service console. View the cluster
information, node information, logs, and container information.

Step 4 Deploy a WordPress application in Container
Service

Log on to the Container Service console.

Plan: 9 to add, 0 to change, 0 to destroy.

Do you want to perform these actions?
Terraform will perform the actions described above.
Only 'yes' will be accepted to approve.

Enter a value: yes

alicloud_vpc.vpc: Creating...
...

Apply complete! Resources: 9 added, 0 changed, 0 destroyed.

Outputs: ##Note

cs_cluster = cf6e1c0cfba4248808dfcd80ab09ddb6a
rds_conn = rm-bp1grduxk9z36bq58.mysql.rds.aliyuncs.com
rds_conn_port = 3306
rds_db = wp_db
rds_db_account_name = wp_admin

$ terraform output
cs_cluster = cf6e1c0cfba4248808dfcd80ab09ddb6a
rds_conn = rm-bp1grduxk9z36bq58.mysql.rds.aliyuncs.com
rds_conn_port = 3306
rds_db = wp_db
rds_db_account_name = wp_admin

Container Service Best Practices

73

Click Applications in the left-side navigation pane under Swarm. Select the cluster (wp-
cluster in this example) created in the preceding step from the Cluster list. Then, click
Create Application in the upper-right corner.

Select wordpress, the Docker official image, as the Image Name. Then, configure the Web
Routing for this application and click Create. For more information, see Simple routing -
supports HTTP and HTTPS.

The WordPress application is displayed on the Application List page after being successfully
created.

Click the application name, and then click the Routes tab to obtain the route address.

Access the WordPress welcome page. Select the language and then click Continue.

Container Service Best Practices

74

Enter the following detailed information according to the Terraform output parameters and
then click Submit.

After the submission, if the entered values are correct, you can go to the next configuration
step to run the installation. When encountering an error, you must access the RDS database
by setting the whitelist.

Container Service Best Practices

75

Enter the Site Title, and the username and password of the administrator. Click Install
WordPress.

After the installation, click Log In. Enter the username and password of the administrator,
and then click Log In on the WordPress logon page to log on to the WordPress application.

Container Service Best Practices

76

Further reading

Currently, Alibaba Cloud is the official major cloud provider of Terraform. To use Terraform to flexibly
build Alibaba Cloud infrastructures, see Alibaba Cloud Provider for more information and customize
the resource description files to quickly build your cloud infrastructures.

Container Service Best Practices

77

	Best Practices
	Kubernetes
	Implement blue-green release by using an Ingress in a Kubernetes cluster
	Prerequisites
	Step 1 Create an application
	Step 2 Create new deployment and service
	Step 3 Modify Ingress to implement blue-green release

	Implement four-layer canary release by using Alibaba Cloud Server Load Balancer in Kubernetes clusters
	Prerequisites
	Step 1 Deploy old service version
	Step 2 Bring new deployment version online
	Step 3 Adjust traffic weight

	Deploy high-reliability Ingress Controller
	Prerequisites
	High-reliability deployment architecture
	Instructions on deploying high-reliability Ingress access layer
	Step 1 Add a label for Ingress nodes
	Step 2 Create an Ingress service
	Step 3 Update Ingress Server Load Balancer service

	Implement Istio distributed tracking in Kubernetes
	Background
	Architecture principle of Istio
	Install Istio
	Create Kubernetes clusters
	Deploy Istio release version

	Istio distributed service tracking case
	Deploy and test the application BookInfo

	Deploy Jaeger tracking system
	Implementation principle of Istio distributed tracking
	Conclusion

	Swarm
	Run TensorFlow-based AlexNet in Alibaba Cloud Container Service
	Prerequisite
	Procedure

	Best practices for restarting nodes
	Check the high availability configurations of business
	Best practices

	Use OSSFS data volumes to share WordPress attachments
	Scenarios
	Solutions
	Procedure

	Use Docker Compose to test cluster network connectivity
	Scenarios
	Solutions
	Procedure

	Log
	Use ELK in Container Service
	Background
	Overall structure
	Procedure
	Step 1. Create a Server Load Balancer instance
	Step 2. Deploy ELK
	Step 3. Collect logs

	A new Docker log collection scheme: log-pilot
	Quick start
	Use ElasticSearch + Kibana
	Use log-pilot in Alibaba Cloud Container Service
	Label description
	Log-pilot extension

	Health check of Docker containers
	Docker native health check capability

	One-click deployment of Docker Datacenter
	About DDC
	DDC deployment architecture
	One-click deployment of DDC
	DDC access

	Build Concourse CI in Container Service in an easy way
	Create a swarm cluster
	Configure security group rules
	Create keys in the ECS instance
	Deploy Concourse CI
	Run a CI task (Hello world)

	Deploy Container Service clusters by using Terraform
	Prerequisites
	Step 1 Install Terraform
	Download Terraform
	Install Alibaba Cloud Terraform package

	Step 2 Download Container Service Terraform scripts
	main.tf
	outputs.tf
	variables.tf

	Step 3 Run Terraform scripts
	Step 4 Deploy a WordPress application in Container Service
	Further reading

