
API Gateway

User Guide for Providers

User Guide for Providers

Overview

API Gateway provides high-performance and highly available API hosting service to help users to
publish or access to the APIs on Alibaba Cloud products such as ECS and Container Service. It
manages the entire API lifecycle from release and management to maintenance. You can quickly
open data or services at low costs and risks through simple operations.

API Gateway provides the following features:

API management

You can manage the lifecycle of an API, including creation, testing, release, deprecation, and
version switching.

Easy data conversion

You can configure a mapping rule to convert the calling request into the format required by
the backend.

Presetting of request verification

You can preset the verification of the parameter type and values (range, enumeration,
regular expression, and JSON Schema) for gateway to preclude the invalid requests, reduce
the utilization rate of your backend.

Flexible throttling

You can set throttling for APIs, users, and APPs by minute, hour, or day.

In addition, you can also specialize some users or APPs with the independent throttling.

Easy security protection

API Gateway supports AppKey authentication and HMAC (SHA-1,SHA-256) signature.

API Gateway User Guide for Providers

1

-

-

API Gateway supports SSL/TSL encryption and uses Alibaba Cloud Security to prevent
viruses and attacks.

Comprehensive monitoring and warning

API Gateway provides visualized API monitoring in real time, including the calling traffic,
calling method, response time, and error rate, and supports query of historical records for
comprehensive analysis. You can also configure and subscribe to the warning method (SMS
or email) to check the API running status in real time.

Lower cost of publication

API Gateway automatically generates API documentation and SDKs (service end and mobile
end), reducing the cost of publication of API.

Create an API

When you create an API, you must enter the basic information about the API, and define the API
request information, the API backend service, and response information. Then, debug the API and set
the security configuration. After testing the API, if it works properly, you can publish it to the Release
environment for your users.

Define an API

On the API List page in the API Gateway console, click Create API to enter the API creation and
definition process.

Basic Information of API

Basic API information includes the API group, API name, security certification method, visibility type,
and description.

Group: APIs are managed by group. Before creating an API, you must first create a group (for
more information about API groups, see Open an API).
API Name: It is the name of an API and also an unique identifier within its group.

Security Certification: This method is used to authenticate API requests. Currently, the four
methods available are Alibaba Cloud App, OpenID Connect,OpenID Connect & Alibaba
Cloud App, and No Certification.

API Gateway User Guide for Providers

2

●

●

●

●

●

●

-

-

-

-

-

●

●

●

Alibaba Cloud App: When the requestor calls this API, they must pass the identity
authentication of this app.
OpenID Connect: This is a lightweight standard based on OAuth 2.0, which provides
a framework for identity interaction through RESTful APIs. You can use OpenID
Connect to connect seamlessly to your own account system. For a detailed
introduction, see OpenID Connect.
OpenID Connect & Alibaba Cloud App: Both OpenID Connect and Alibaba Cloud
App authentication
No Certification: Any person who knows this API’s request definitions can initiate a
request. The gateway does not verify their identities, but directly forwards the
requests to your backend service. (We strongly recommend not to use this
method.)

Visibility: Public or Private.

Public APIs: All the users can view a certain sections of the API’s information on
the Published API page of the API Gateway console.
Private APIs: You must manually grant authorization to the user, if the user wants to
call your private API.

Description: A description of the functions of an API.

Define API request

This part defines how users can send requests to your API, including the relevant protocols, request
paths, HTTP methods, request modes, and input parameter definitions.

Protocol: Supports HTTP and HTTPS.
Request Path: The path refers to the API request path for the corresponding service host. The
request path can be different from the actual backend service path. You can write any valid
and semantically-clear path for users. You can configure dynamic parameters in the request
path that require users to input parameters in the Path field. At the same time, the backend
service receives parameter from the Path, which are mapped to Query, Header and other
locations. In Published API to API Gateway, you can find detailed examples and operation
screenshots.
HTTP Method: Supports standard HTTP methods. You can select PUT, GET, POST, DELETE,
PATCH, or HEAD.
Request Mode: API Gateway used this mode to process input parameters, Request Parameter
Mapping or Request Parameter Passthrough.

Request Parameter Mapping: When API Gateway receives a request for your API, it
uses mapping relationships to convert the request to the format required by your
backend service.Request Parameter Mapping mode features:

Definition method: When defining this API, you must add the frontend and
backend parameter mapping relationships.
Scenarios:

API Gateway User Guide for Providers

3

●

●

●

●

●

●

●

●

●

-

●

●

●

●

●

●

●

●

For the same interface, define different APIs in API Gateway to
provide differentiated services to users.
Use API Gateway to standardize legacy system interfaces.

Functions:
You can configure full frontend to backend mapping, that is,
parameter shuffling. For example, you can require API users enter
parameters in the Query field and set the backend to receive the
information in the Header field.Supports parameter name
conversion and parameter location conversion.
You can define parameter verification rules to pre-verify the
request parameters, and to reduce the volume of invalid
parameters that are processed in the backend.Supports length
verification, parameter value verification, parameter regular
expression verification, and parameter JSON schema verification.

Request Parameter Passthrough: After API Gateway receives an API request, it does
not process the request, but directly forwards it to the backend service. In this
mode:

You cannot implement parameter verification.
You cannot generate detailed API calling documentation.
Automatically-generated SDKs do not include request input parameters.

Input Parameter Definition: You can define API request input parameters in this section,
including parameter names, parameter locations, types, required or not, their default values,
examples, and descriptions. In Request Parameter Passthrough mode, users do not have to
enter parameters.

Parameter Name: The parameter name displayed to users.
Parameter Location: The location of the parameter mentioned in the request that
includes Head, Query, and Parameter Path.

Note: If you configure dynamic parameters in Path, the parameter location also
defined as Parameter Path.

Type: The field type; optional values: String, Int, Long, Float, Double, and Boolean.
Required: Indicates whether this parameter is required. When set to Yes, API
Gateway verifies that user requests contain this parameter. Requests without this
parameter are rejected.
Default Value: This option is applied when Required is set to No. If a user’s request
does not contain the corresponding parameter, API Gateway automatically adds the
default value before sending the request to the backend service.
Example: An example of defining parameters.
Description:Provides a brief description about the parameter and also mentions
points to consider while using it.
Parameter Verification Rules: Click More to configure verification rules for the
parameter value, including string length, the minimum and maximum values,

API Gateway User Guide for Providers

4

-

●

●

-

-

-

-

-

enumeration, regular expressions, JSON schema, and other attributes. API Gateway
uses the verification rules to perform preliminary inspections on requests. If an
input parameter is invalid, the request is not sent to the backend service. This is to
reduce the backend processing load.

Define API backend service

This part mainly defines parameter mapping between the frontend and backend. This is the API
backend service configuration, including the backend service address, backend path, backend time-
out, parameter mapping, constant parameters, and system parameters. After user requests reach API
Gateway, it maps the received requests according to your backend configuration, to the format
required by the backend service before the requests are forwarded to the backend service.

Backend Service Type: Currently supports HTTP/HTTPS and Function Compute.
HTTP/HTTPS: Select this option if your service is an HTTP/HTTPS service.

NOTE: If you have an HTTPS service, the backend service must have an SSL
certificate.

Function Compute: If you select Function Compute for the backend service, you
must first create a function in the Function Compute console, enter the function’s
service name and function name, and obtain Function Compute’s role Arn.

Backend VPC Access: When your backend service is in a VPC network, you must select Enable
. For the usage method, see Open an API in a VPC environment.
Backend Service Address: The host of the backend service. This can be a domain name and in
an ‘http(s)://host:port’ format. This value must begin with “http://“ or “https://“.
Backend Request Path: This path is the actual request path of your API service on the
backend server. If your backend path receives dynamic parameters, specify a particular
location and name of the parameter a caller must enter. This declares the corresponding
mapping relationship.
Backend Timeout: This is the maximum length of time during which an API must receive a
response from the backend service of the called API. This period starts when API Gateway
sends a request to the backend service and ends when API Gateway receives a response
result from the backend service. Units: milliseconds. This value cannot exceed 30 seconds. If
the response time exceeds this value, API Gateway abandons the request and returns the
corresponding error message to the user.
Constant Parameters: You can configure constant parameters. These parameters are invisible
to the users. However, when requests pass through API Gateway, it adds these parameters to
the specified locations in the requests before forwarding the requests to the backend
service. This is used to address certain business needs of the backend service. For example, if
you require that each request sent by API Gateway to the backend service carry the keyword
aligateway, you can configure aligateway as a constant parameter and specify the location
where it is received.

API Gateway User Guide for Providers

5

1.

2.

3.

System Parameters: These are API Gateway system parameters. By default, system
parameters are not transmitted to you. However, to obtain system parameters, configure
their locations and names in the API. The specific content is shown in the following table.

Note: You must make sure that the names of all parameters are globally unique, including
the dynamic parameters in Path, Headers parameters, Query parameters, Body parameters
(non-binary), constant parameters, and system parameters. If you have a parameter called
name in the Headers and Query fields at the same time, the system reports an error.

Part 4: Define response

Enter the returned ContentType, response example, failed response example, and error code
definitions.

Debug an API

After you define an API successfully, you can debug it on the API debugging page to verify its
correctness and usability.

After you create and define an API, you can test whether the created API is usable and the request
chain is correct.

Click the API name or the Manage button to go to the API Definition page.
Click Debug API from the left-side navigation pane.
Enter the request parameters and click Send Request.The returned results are displayed on
the right side of the page.If it returns a successful result, it indicates that the API can be
used.If a 4XX or 5XX error code is returned, it indicates that the request has encountered an
error. For more information, see How to obtain the error message and Error code table.

Parameter Description

CaClientIp IP address of the client sending the
request

CaDomain Domain name sending the request

CaRequestHandleTime Request time (GMT)

CaAppId The ID of the request app

CaRequestId RequestId

CaApiName API name

CaHttpSchema Protocol used by the user to call the API:
HTTP or HTTPS.

CaProxy Proxy (AliCloudApiGateway)

API Gateway User Guide for Providers

6

-

-

Subsequent steps

After completing the API definition and preliminary debugging, you have finished creating an API.
You can publish the API in the Test, Pre, or Release environments for ongoing debugging or for the
other users to use. You can also bind a Signature key to the API and set Throttling and other security
configurations.

Enable API services

Enable API services

This section provides information you must understand for the API group and domain name before
you enable API services.

API group

An API group is the management unit of APIs. You must create a group before creating an API. The
group consists of four attributes: name, description, region, and domain name. Note that:

The group region is fixed once selected.

Each account can have up to 50 API groups and each API group can have up to 200 APIs.

When you create a group, the system assigns the group a second-level domain name to test
your API. To enable the API service, you must bind the group to an independent domain
name filed on Alibaba Cloud and resolve the CNAME of the independent domain name to
the second-level domain name of the group. Up to five independent domain names can be
bound to a group.

Domain name and certificate

API Gateway locates the unique API group through the domain name, and the unique API through
the Path+HTTPMethod. Before enabling API services, you must know the second-level domain name
and independent domain name as follows:

The unique and fixed second-level domain name is assigned by the system during group
creation. By default, a second-level domain name is used to call the API only in the test

API Gateway User Guide for Providers

7

-

-

-

environment under a small amount of traffic.

An independent domain name is used for enabling API services. You can bind up to five
independent domain names to a group. When configuring independent domain names, pay
attention to the following points:

Resolve the CNAME of an independent domain name to the API second-level
domain name of the group before binding the API group and domain name.

Verify the domain name within one day. Otherwise, the unprocessed binding
request is automatically withdrawn by the system.

If a domain name is already bound to another group, resolve the domain name to
the second-level domain name of the to-be-bound group before binding.
Otherwise, the binding fails.

If your API supports the HTTPS protocol, you must upload the SSL certificate of the domain name by
entering the parameters on the Group Details page, including the name, content, and private key.

Test, production, and authorization

To test or enable the API, authorization is indispensable. Authorization means granting an app the
permission to call an API. Note that:

You can authorize the created app and access the second-level domain name to call the API.
You can authorize the apps of customers to access the independent domain name to call
your API service.
Only an authorized app can call the API.

Now you have successfully enabled your API service. From creating the API to enabling it, you can
create, modify, delete, view, test, release, remove, authorize, and revoke the authorization of an API.
You can also view the release history and switch the version.

Manage an API

API definitions refer to the definitions related to the API request structure when you create an API.

You can view, edit, delete, create, or copy an API definition on the console. Pay attention to the

following points when you are working with API definitions:

API Gateway User Guide for Providers

8

1.

2.

3.

1.

2.

3.

1.

2.

3.

4.

Editing the definition of a released API does not affect the definition in the production
environment unless you release and synchronize it to the production environment.
It is not allowed to directly delete the API definition. Deprecate the API definition before
deleting it.
You can copy the definition from the test/production environment to overwrite the latest
definition, and then, if needed, click Edit to modify the definition.

API release management

You can release or deprecate an API in a test or production environment with the following
attentions:

You can access the second-level domain name or independent domain name to call the API
that is released to the test or production environment.
The latest released version of an API overwrites the preceding version in the
test/production environment and takes effect in real time.
When you deprecate an API in the test/production environment, the binding policy, keys,
app, and authorization persists are automatically deprecated unless the API is released to
production again. To revoke this relationship, you must delete it.

API authorization management

You can establish or revoke the authorization relationship between an API and an app. API Gateway
verifies the permission relationship. During authorization, pay attention to the following points:

You can authorize one or more APIs to one or more apps. We recommend that you do not
operate APIs in multiple groups at the same time during batch operation.
During batch operation, select an API and related environment. For example, if an API has
been released to both the test and production environments, but only the test environment
is chosen, only the API in the test environment is authorized.
You can locate an app based on the AppID or Alibaba Mail account provided by the
customer.
When you need to revoke the authorization for an app under an API, you can view the API
authorization list and delete the app from the list.

Release history and version switching

You can view the release history of each of you APIs, including the version number, notes,
test/production, and time of each release.

When viewing the release history, you can select a version and switch to it. The new version directly
overwrites the previous one and takes effect in real time.

API Gateway User Guide for Providers

9

-

-

-

-

-

-

-

-

-

-

-

plugin

Plugin Overview

In the new API Gateway version released in 2019, the original throttling, IP address-based access
control, backend signature, and JWT (OpenId Connect) features are all integrated into the plug-
in system. Cross-origin resource access (CORS) and caching are two new features added in this
version. You can implement these new features by configuring plug-ins. In the future, more
plug-ins will be added to API Gateway, and the API editing interface will be cleaned up.

Plug-ins are available only in the following regions. They will become available in other regions soon.

UK (London)
UAE (Dubai)
US (Virginia)
US West 1 (Vilicon valley)

Plug-in limits

You can only bind plug-ins of the same type to an API.
Plug-ins are region-specific. You can bind a plug-in to an API in the same region as it. You
can create a maximum of 500 plug-ins.
Plug-ins and APIs are managed separately. A plug-in takes effect on an API only after the
plug-in is bound to that API in the specified environment.
You can bind plug-ins only to published APIs.
The binding, unbinding, or update operations on plug-ins take effect immediately on their
bound APIs. You do not need to republish these APIs. Some APIs may affect your business,
we recommend that you test the plug-ins on a test API first.
The operation of unpublishing an API does not affect its binding relationship with any plug-
ins. The bound plug-ins take effect on the API again when the API is republished.
Plug-ins that are bound to published or unpublished APIs cannot be deleted.

Supported plug-ins

API Gateway supports the following types of plug-ins. For more information about each type, follow
the link provided.

API Gateway User Guide for Providers

10

-

-

-

-

-

-

-

-

-

-

-

-

-

Throttling
IP address-based access control
Backend signature
JWT (OpenID Connect)
CORS
Caching

Quick start

Log on to the API Gateway console and create a plug-in on the Plugin List page.

On the Plugin List page, bind the plug-in you created to a published API.

The plug-in takes effect immediately after it is bound to the API.

Developer Guide

Thank you for choosing Alibaba Cloud API Gateway. You can use the APIs described in this document
to perform relevant operations on API Gateway.

Createplugin: creates a plug-in.
ModifyPlugin: modifies a plug-in.
DeletePlugin: deletes a plug-in.
DescribePlugins: queries details of plug-ins.

API Gateway User Guide for Providers

11

-

-

-

-

-

-

-

AttachPlugin: binds the specified plug-in to an API.
DetachPlugin: unbinds the specified plug-in from an API.
DescribePluginApis: checks the APIs to which a specified plug-in is bound.
DescirbePluginsByApi: checks the plug-ins bound to a specified API that is running in the
specified environment.

Throttling

Throttling is now integrated into the plug-in system. The original throttling interface and console are
still in use. Throttling policies and throttling plug-ins belong to the same plug-in type and are subject
to the binding restrictions of that type.

When you create or modify throttling policies in the original throttling interface or console, the data
changes are synchronized to the plug-in system. However, the changes you made in the plug-in
system cannot be synchronized to the throttling interface or console.

Notes

In a throttling policy, you can configure API-, user-, and application-level throttling thresholds and a
time unit, which can be second, minute, hour, or day. Before using throttling policies, you need to be
familiar with the following content:

A throttling policy can include the following throttling thresholds:

API-level throttling threshold: The maximum number of times that an API bound with the
throttling policy can be called within a time unit. This time unit can be second, minute, hour,
or day. For example, you can set this threshold to 5,000 times per minute.
Application-level throttling threshold: The maximum number of times that each application
can call an API bound with the throttling policy within a time unit. For example, you can set
this threshold to 50,000 times per hour.
User-level throttling threshold: The maximum number of times that each Alibaba Cloud
account can call an API bound with the throttling policy within a time unit. An Alibaba Cloud
account may have multiple applications. The throttling threshold of an Alibaba Cloud
account is the sum of throttling thresholds of all the applications under this account. For
example, you can set the user-level throttling threshold to 500,000 times per day.

These three thresholds can exist simultaneously in a throttling policy. Note: The user-level throttling
threshold cannot be greater than the API-level throttling threshold, and the application-level
throttling threshold cannot be greater than the user-level throttling threshold. That is, the
application-level throttling threshold must be less than or equal to the user-level throttling threshold,
and the user-level threshold must be less than or equal to the API-level throttling threshold.

API Gateway User Guide for Providers

12

You can also add special applications or users to a throttling policy. The basic API-level throttling
threshold in the throttling policy applies to the added special applications or users. You need to set a
special throttling threshold for each special application or user, and this special throttling threshold
must not be greater than the API-level throttling threshold. The application- and user-level throttling
thresholds in the throttling policy do not apply to the special applications or users.

For other operations and restrictions, see the “Overview” section of Plug-ins and the “API
reference” section of Developer Guide.

Plug-in configurations

You can configure throttling plug-ins in the JSON or YAML format as these two formats use the same
schema. You can use the yaml to json tool to convert the configuration format of a throttling plug-in.
The following table describes a plug-in configuration template in the YAML format.

IP address-based access control

IP address-based access control is one of the API security components available in API Gateway. This

unit: SECOND #The time unit. Valid values: SECOND, MINIUTE, HOUR, and DAY.
apiDefault: 1000 #The API-level throttling threshold.
userDefault: 30 # (Optional) The default user-level throttling threshold. Value 0 indicates that no user-level
throttling is implemented. The user-level threshold must not be greater than the API-level throttling threshold.
appDefault: 30 # (Optional) The application-level throttling threshold. Value 0 indicates that no application-level
throttling is implemented. The application-level throttling threshold must not be greater than the API-level
throttling threshold.
specials: # (Optional) The special throttling settings. You can set special throttling thresholds for special applications
or users in the throttling policy.
- type: "APP" # Special throttling is implemented for special applications.
policies:
- key: 10123123 # An application ID. You can log on to the API Gateway console, choose Consume APIs > APPs
from the left-side navigation pane, and click an application name to go to the application details page to obtain the
application ID.
value: 10 # The special throttling threshold to be implemented for the special application. This value cannot exceed
the API-level throttling threshold in the throttling policy.
- key: 10123123 # An application ID.
value: 10 # The special throttling threshold to be implemented for the special application. This value cannot exceed
the API-level throttling threshold in the throttling policy.
- type: "USER" # Special throttling is implemented for special Alibaba Cloud accounts.
policies:
- key: 123455 # An Alibaba Cloud account ID. You can click the user icon in the upper-right corner of the page in
Alibaba Cloud Management Console to obtain your Alibaba Cloud account ID.
value: 100 # The special throttling threshold to be implemented for the specified Alibaba Cloud account. This value
cannot exceed the API-level throttling threshold in the throttling policy.

API Gateway User Guide for Providers

13

-

●

●

-

feature is used to control the IP addresses or IP address segments from which APIs can be called. You
can add an IP address to the whitelist or blacklist of an API to permit or reject the requests for this
API from the specified IP address.

IP address-based access control is now integrated into the plug-in system. The original throttling
interface and console are still in use. IP address-based access control policies and IP address-based
access control plug-ins belong to the same plug-in type and are subject to the binding restrictions of
that type.

When you create or modify IP address-based access control policies in the original IP address-based
access control interface or console, the data changes are synchronized to the plug-in system.
However, the changes you made in the plug-in system cannot be synchronized to the original IP
address-based access control interface or console.

Usage instructions

You can configure a whitelist or blacklist in an IP address-based access control plug-in.

Whitelist: You can configure a whitelist that consists of IP addresses or combinations of
application IDs and IP addresses. API Gateway rejects requests from non-whitelisted IP
addresses for the bound APIs.

An IP address whitelist allows only the requests from the whitelisted IP addresses.
An application ID and IP address whitelist allows only the requests sent by the
whitelisted applications from the whitelisted IP addresses.

Blacklist: You can configure IP address blacklists to reject access from the blacklisted IP
addresses.

Plug-in configurations

You can configure IP address-based access control plug-ins in the JSON or YAML format as these two
formats use the same schema. You can use the yaml to json tool to convert the configuration format
of an IP address-based access control plug-in. The following table describes a plug-in configuration
template in the YAML format.

type: ALLOW # The control type. Valid values: ALLOW and REFUSE. ALLOW indicates whitelist and REFUSE indicates
blacklist.
items:
- blocks: # IP address segments.
- 78.11.12.2 # You can configure IP addresses.
- 61.3.9.0/24 # You can configure CIDR blocks.
appId: 219810 # (Optional) The ID of an application. If appId is specified, the configured IP address segments take
effect only on the specified application.
- blocks: # IP address segments.
- 79.11.12.2 # You can configure IP addresses.

API Gateway User Guide for Providers

14

Backend Signature

What is backend signature?

A backend signature (formerly signature key) is a key-secret pair that you create and issue to API
Gateway. This pair works similarly to the way an account and password work. Backend services verify
the requests received from API Gateway based on the key-secret pair.

The original signature key feature has been integrated into the plug-in system. The original signature
key interface and console are still in use. The original signature key feature and the backend signature
plug-ins belong to the same plug-in type and are subject to the binding restrictions of that type.

When you create or modify keys in the original signature key interface or console, the data changes
are synchronized to the plug-in system. However, the changes you made in the plug-in system
cannot be synchronized to the original signature key interface or console.

Usage instructions

After you bind a key to an API, the signature information is added to all the requests for the API that
API Gateway sends to your backend service. The backend service must parse the signature
information through symmetric calculation to authenticate API Gateway. For more information about
HTTP signature, see Backend signature demo.

If you want to replace the key bound to an API, modify key and secret in the backend signature plug-
in bound to the API. The new key takes effect immediately after it is bound to the API.

Plug-in configurations

You can configure backend signature plug-ins in the JSON or YAML format as these two formats use
the same schema. You can use the yaml to json tool to convert the configuration format of a backend
signature plug-in. The following table describes a plug-in configuration template in the YAML format.

JSON Web Token (JWT)

key: SampleKey
secret: SampleSecret

API Gateway User Guide for Providers

15

-

-

-

-

-

●

●

JSON Web Token (JWT) (RFC7519) is a simple authentication method. API Gateway can host the
public JSON Web Keys (JWK) of users and use these JWKs to verify and sign the JWTs in the users’
requests. This makes users’ development work easier.

Now, you can use JWT (OpenID Connect) plug-ins to implement the original OpenID Connect feature.
If you configure a JWT (OpenID Connect) plug-in and bind it to an API for which the OpenIdConnect
feature has been configured, the JWT (OpenID Connect) plug-in takes effect in place of the
originalOpenID Connect feature.

Usage instructions

To configure a JWT (OpenID Connect) plug-in, you need to generate a JWK manually or by
using an online JWK generator. The following example shows a sample JWK:

The preceding JWK is in the JSON format. To configure a JWT (OpenID Connect) plug-in in the YAML
format, you must use a JWK in the YAML format*

For a JWT (OpenID Connect) plug-in, you only need to configure a public key. Keep your
private key confidential. Only the RSA256 algorithm is currently supported.
If you want to configure multiple JWKs, the kid field is required. If you want to configure only
one JWK, the kid field is optional.
You can configure multiple JWKs and use them together with the jwk field.
JWT (OpenID Connect) plug-insretrieve JWTs based on the parameter and
parameterLocation settings.

For example, if parameter is set to X-Token and parameterLocation is set to header,
the JWT is read from the X-Token header.
If the corresponding parameter configured in an API has the same name as the
parameter configured in parameter, parameterLocation can be ignored to avoid
errors when the API is called.

Plug-in configurations

{
"kty": "RSA",
"e": "AQAB",
"kid": "O9fpdhrViq2zaaaBEWZITz",
"use": "sig",
"alg": "RS256",
"n": "qSVxcknOm0uCq5vGsOmaorPDzHUubBmZZ4UXj-9do7w9X1uKFXAnqfto4TepSNuYU2bA_-tzSLAGBsR-
BqvT6w9SjxakeiyQpVmexxnDw5WZwpWenUAcYrfSPEoNU-0hAQwFYgqZwJQMN8ptxkd0170PFauwACOx4Hfr-
9FPGy8NCoIO4MfLXzJ3mJ7xqgIZp3NIOGXz-
GIAbCf13ii7kSStpYqN3L_zzpvXUAos1FJ9IPXRV84tIZpFVh2lmRh0h8ImK-vI42dwlD_hOIzayL1Xno2R0T-
d5AwTSdnep7g-Fwu8-sj4cCRWq3bd61Zs2QOJ8iustH0vSRMYdP5oYQ"
}

API Gateway User Guide for Providers

16

You can configure JWT (OpenID Connect) plug-ins in the JSON or YAML format as these two formats
use the same schema. You can use the yaml to json tool to convert the configuration format of a JWT
(OpenID Connect) plug-in. The following table describes a plug-in configuration template in the
YAML format.

parameter: X-Token #The parameter from which the JWT is read. It corresponds to an API parameter.
parameterLocation: header #The location from which the JWT is read. Valid values: query and header. This
parameter is optional when Request Mode for the bound API is set to Request Parameter Mapping. It is required
when Request Mode for the bound API is set to Request Parameter Passthrough.
claimParameters: #The conversion of claims to parameters. API Gateway maps JWT claims to backend parameters.
- claimName: aud #The name of a JWT claim, which can be public or private.
parameterName: X-Aud # The name of the backend parameter that the JWT claim is mapped to.
location: header # The location of the backend parameter that the JWT claim is mapped to. Valid values: query,
header, path, and formData.
- claimName: userId #The name of a JWT claim, which can be public or private.
parameterName: userId # The name of the backend parameter that the JWT claim is mapped to.
location: query # The location of the backend parameter that the JWT claim is mapped to. Valid values: query,
header, path, and formData.
preventJtiReplay: false # Controls whether to enable the anti-replay check for jti (JWT ID). Default value: false.
#
Public key in the JWK
jwk:
kty: RSA
e: AQAB
use: sig
kid: O8fpdhrViq2zaaaBEWZITz # The kid field is optional when only one JWK is configured. If the JWT contains a kid
field, API Gateway checks whether the kid fields are consistent.
alg: RS256
n: qSVxcknOm0uCq5vGsOmaorPDzHUubBmZZ4UXj-9do7w9X1uKFXAnqfto4TepSNuYU2bA_-tzSLAGBsR-
BqvT6w9SjxakeiyQpVmexxnDw5WZwpWenUAcYrfSPEoNU-0hAQwFYgqZwJQMN8ptxkd0170PFauwACOx4Hfr-
9FPGy8NCoIO4MfLXzJ3mJ7xqgIZp3NIOGXz-
GIAbCf13ii7kSStpYqN3L_zzpvXUAos1FJ9IPXRV84tIZpFVh2lmRh0h8ImK-vI42dwlD_hOIzayL1Xno2R0T-
d5AwTSdnep7g-Fwu8-sj4cCRWq3bd61Zs2QOJ8iustH0vSRMYdP5oYQ
#
You can configure a maximum of five JWKs and use them together with the jwk field.
When multiple JWKs are configured, the kid field is required. If the JWT does not contain a kid field, the
consistency check on the kid field fails.
jwks:
- jwk:
kty: RSA
e: AQAB
use: sig
kid: O9fpdhrViq2zaaaBEWZITz # The kid field is optional when only one JWK is configured. If the JWT contains a kid
field, API Gateway checks whether the kid fields are consistent.
alg: RS256
n: qSVxcknOm0uCq5vGsOmaorPDzHUubBmZZ4UXj-9do7w9X1uKFXAnqfto4TepSNuYU2bA_-tzSLAGBsR-
BqvT6w9SjxakeiyQpVmexxnDw5WZwpWenUAcYrfSPEoNU-0hAQwFYgqZwJQMN8ptxkd0170PFauwACOx4Hfr-
9FPGy8NCoIO4MfLXzJ3mJ7xqgIZp3NIOGXz-
GIAbCf13ii7kSStpYqN3L_zzpvXUAos1FJ9IPXRV84tIZpFVh2lmRh0h8ImK-vI42dwlD_hOIzayL1Xno2R0T-
d5AwTSdnep7g-Fwu8-sj4cCRWq3bd61Zs2QOJ8iustH0vSRMYdP5oYQ
- jwk:
kty: RSA
e: AQAB

API Gateway User Guide for Providers

17

-

CORS

For more information about CORS, click here.

Plug-in configurations

You can configure CORS plug-ins in the JSON or YAML format as these two formats use the same
schema. You can use the yaml to json tool to convert the configuration format of a CORS plug-in. The
following table describes a plug-in configuration template in the YAML format.

API Gateway Caches

API Gateway locally caches backend responses of API requests. When subsequent API requests arrive,
API Gateway serves the matching backend responses from the cache to the API callers without
sending these requests to backend services. This greatly reduces the workload on backend services.

Usage instructions

API Gateway caches only GET responses.

use: sig
kid: 10fpdhrViq2zaaaBEWZITz # The kid field is optional when only one JWK is configured. If the JWT contains a kid
field, API Gateway checks whether the kid fields are consistent.
alg: RS256
n: qSVxcknOm0uCq5vGsOmaorPDzHUubBmZZ4UXj-9do7w9X1uKFXAnqfto4TepSNuYU2bA_-tzSLAGBsR-
BqvT6w9SjxakeiyQpVmexxnDw5WZwpWenUAcYrfSPEoNU-0hAQwFYgqZwJQMN8ptxkd0170PFauwACOx4Hfr-
9FPGy8NCoIO4MfLXzJ3mJ7xqgIZp3NIOGXz-
GIAbCf13ii7kSStpYqN3L_zzpvXUAos1FJ9IPXRV84tIZpFVh2lmRh0h8ImK-vI42dwlD_hOIzayL1Xno2R0T-
d5AwTSdnep7g-Fwu8-sj4cCRWq3bd61Zs2QOJ8iustH0vSRMYdP5oYQ

allowOrigins: api.foo.com,api2.foo.com # The allowed origins. Separate multiple origins by commas (,). Default
value: *.
AllowMethods: GET, POST, PUT#The allowed HTTP methods. Separate multiple methods by commas (,).
allowHeaders: X-Ca-RequestId # The allowed request headers. Separate multiple request headers by commas (,).
exposeHeaders: X-RC1,X-RC2 # The headers that can be exposed to XMLHttpRequest objects. Separate multiple
headers by commas (,).
allowCredentials: true # Constrols whether cookies are allowed.
maxAge: 172800

API Gateway User Guide for Providers

18

-

-

●

●

●

-

-

-

-

●

●

●

-

API Gateway does not cache backend responses to the requests that use the default second-
level domain names bound to API groups. The default second-level domain name of each
API group can be accessed for up to 1,000 times each day and is used for testing purposes
only.
You can configure the following parameters in the caching plug-ins to match and serve
cached responses based on different criteria:

varyByApp: Cached responses are matched and served based on the applications of
API callers.
varyByParameters: Cached responses are matched and served based on the values
of specified parameters. You can extract these parameters from the APIs to which
the plug-ins are bound.
varyByHeaders: Cached responses are matched and served based on request
headers such as Accept and Accept-Language.

Each user is allotted a cache space of 5 MB for each region. When the cache space is full, no
new responses can be cached. The cached data is automatically deleted upon expiration.
API Gateway caches backend responses for the amount of time retrieved from the Cache-
Control header in the responses. If a backend response does not contain the Cache-Control
header, API Gateway uses the time specified in the Duration field of the plug-in.
The maximum cache duration for a response is 48 hours (172,800 seconds). Cache durations
longer than 48 hours are considered as 48 hours.
API Gateway ignores the Cache-Control headers of all client requests by default. You can
configure API Gateway to process the Cache-Control headers by specifying mode in
clientCacheControl. The mode field can be set to any of the following values:

off: API Gateway ignores the Cache-Control headers of all client requests.
all: API Gateway processes the Cache-Control headers of all client requests.
app: API Gateway processes only the Cache-Control headers of client requests
whose application IDs (AppId) are included in the configured apps list.

API Gateway caches only the Content-Typeheaders of backend responses by default. You can
useCacheableHeaders to configure API Gateway to cache other response headers.

Plug-in configurations

You can configure caching plug-ins in the JSON or YAML format as these two formats use the same
schema. You can use the yaml to json tool to convert the configuration format of a caching plug-in.
The following table describes a plug-in configuration template in the YAML format.

varyByApp: false # Controls whether to match and serve cached responses based on the application IDs of API
callers. Default value: false.
varyByParameters: # Controls whether to match and serve cached responses based on the values of specified
parameters.
- userId # The name of a backend parameter. If the backend parameter is mapped to a parameter with a different
name, set userId to the mapped parameter name.
varyByHeaders: # Controls whether to match and serve cached responses based on different request headers.
- Accept #Cached responses are matched and served based on the Accept header.

API Gateway User Guide for Providers

19

1.

2.

3.

1.

2.

Backend Signature

What Is a Signature Key

A signature key is the Key-Secret pair you create, based on which the backend service verifies the
request received from the gateway. Pay attention to the following points:

An unchangable region must be selected during key creation. The key can only be bound to
APIs in the same region.
One API can be bound with only one key. The key can be replaced, modified, bound to, or
unbound from the API.
After binding a key to an API, the signature information is added to all the requests sent
from the gateway to the API at your service backend. You must resolve the signature
information through symmetric calculation at the backend to verify the gateway’s identity.
For more information about adding signature to the HTTP service, see Backend HTTP
Service Signature.

Modify or Replace the Leaked Key

To modify the Key-Secret pair once a key is leaked or to substitute a key bound to an API with
another key, proceed the following steps:

Configure the backend to support two keys: the original key and to-be-modified or
replaced key, so that the request during the switching process can pass signature
verification regardless the key modification or replacement.
After the backend is configured, modify the key. Verify that the new Key and Secret take
effect and delete the leaked or obsolete key.

clientCacheControl: # API Gateway determines how to process the Cache-Control headers of client requests based
on the clientCacheControl settings.
mode: app # Valid values: off, all, and app. Default value: off. off indicates that API Gateway ignores the Cache-
Control headers of all client requests. all indicates that API Gateway processes the Cache-Control headers of all
client requests. app indicates that API Gateway processes only the Cache-Control headers of client requests whose
application IDs are included in the configured apps list.
apps: # A list of application IDs. If mode is set to app, API Gateway processes only the Cache-Control headers of
client requests whose application IDs are in this list.
- 1992323 #A sample application ID. It is not an AppKey.
- 1239922 #A sample application ID. It is not an AppKey.
cacheableHeaders: # The cacheable response headers. API Gateway caches only the Content-Type and Content-
Length headers of backend responses by default.
- X-Customer-Token # The name of a cacheable response header.
duration: 3600 # The default response cache duration. Unit: seconds.

API Gateway User Guide for Providers

20

Throttling

What is throttling policy

You can set throttling for APIs, users, and apps by minute, hour, or day, or you can sort out the
specific users or apps with designated throttling policy. The throttling policy is described as follows:

Throttling policy contains the following dimensions:

The three values can be set in one throttling policy. Note that the user traffic limit
must not exceed the API traffic limit, and the app traffic limit must not exceed the
user traffic limit.

In addition, you can set an additional threshold value as the traffic limit value (not
allowed to exceed the value of API traffic limit) for special apps or users. However,
the basic app traffic limit and user traffic limit settings in the throttling policy are no
longer applicable to the special apps or users.

An unchangable region must be selected for the throttling policy, and the throttling policy
can only be applied to APIs in the same region.

API traffic limit

The call times within a unit time for the
API bound by the policy must not exceed
the set value. The time unit may be
minute, hour, or day, for example, 5,000
times per minute.

App traffic limit

The call times called by each app within a
unit time for an API bound to the policy
must not exceed the set value, for
example, 50,000 times per hour.

User traffic limit

The call times called by each Alibaba
Cloud account within a unit time must
not exceed the set value. An Alibaba
Cloud account may have multiple apps.
The traffic limit for an Alibaba Cloud
account is exactly the limit on the total
traffic of all apps in this account. For
example, the traffic may be 500,000 times
per day.

API Gateway User Guide for Providers

21

The traffic of a single IP address is restricted within 100 QPS regarding with the value of API
traffic limit.

A throttling policy can be bound to multiple APIs, with the limit value and special object
settings appliable to each API separately. The lattest policy bound to the API overwrites the
previous one and takes effect immediately.

To add a special app or user, you must obtain the app ID (AppID) or the Alibaba Mail
account of the user.

On the API Gateway console, you can create, modify, delete, view, bind, and unbind a
throttling policy.

Monitoring and warning

The API Gateway console provides visualized API monitoring and warning in real time. You can obtain
the calling status of an API, including the calling traffic, calling method, response time, and error rate.
API Gateway displays data statistics on the calling status from multiple dimensions in multiple time
units, and supports query of historical data for comprehensive analysis.

You can also configure the warning method (SMS or email) and subscribe to warning information to
know the API running status in real time.

Limits

Limits on API Gateway products and business.

Restrictions Description

User restrictions on activating the API
Gateway service.

To activate the service, you must complete
the real-name registration.

Restrictions on the number of API groups
created by a user.

Each account can have at most 100 API
groups.

Restrictions on the number of APIs created by
a user.

At most 1000 APIs can be created in each API
group. That is, at most 100,000 (100 * 1000)
APIs can be created in each account.

API Gateway User Guide for Providers

22

-

Backend Signature Demo

Overview

API Gateway provides the backend HTTP service signature verification function. To enable backend
signature, you must create a signature key and bind the key to the corresponding API. (keep this key
properly. API Gateway encrypts and stores the key to guarantee the security of the key.) After
backend signature is enabled, API Gateway adds signature information to the request destined to the
backend HTTP service. The backend HTTP service reads the signature string of API Gateway and
performs local signature calculation on the received request to check whether the gateway signature
and local signature result are consistent.

All the parameters you have defined are added to the signature, including the service parameters you
have entered, and constant system parameters and API Gateway system parameters (such as
CaClientIp) you have defined.

How to read the API Gateway signature

Save the signature calculated by the gateway in the header of the request. The Header name
is X-Ca-Signature.

Restrictions on the number of independent
domain names bound to an API group.

At most five independent domain names can
be bound to a group.

Restrictions on the traffic for calling an API.
The traffic of a single IP address of a single
user used for calling each API made available
by you must not exceed 100 QPS.

The limit of the official subdomain.

When the API group is created successfully,
the API gateway issues a secondary domain
name for that group. You can test the API in
the group by accessing the domain name, and
the gateway restricts the number of visits to
1000 times per day. Please do not use the
secondary domain name to provide API
service directly.

Restrictions on parameter size.

The parameters of the body location
(including Form and Form other forms)
cannot exceed 2 Mb, and other locations
(including Header and Query) cannot exceed
128 Kb.

API Gateway User Guide for Providers

23

How to add a signature at the backend HTTP
service

For more information about the demo (Java) of signature calculation, see
https://github.com/aliyun/api-gateway-demo-sign-backend-java.

The signature calculation procedure is as follows:

Organize data involved in signature adding

Calculate the signature

secret is the signature key bound to an API.

Description

Content-MD5

Content-MD5 indicates the MD5 value of the body. MD5 is calculated only when HTTPMethod is PUT
or POST and the body is not a form. The calculation method is as follows:

Headers

Headers indicates the keys and values of the headers involved in signature calculation. Read the keys
of all headers involved in signature calculation from the header of the request. The key is X-Ca-Proxy-

String stringToSign=
HTTPMethod + "\n" + // All letters in the HTTPMethod must be capitalized.
Content-MD5 + "\n" + // Check whether Content-MD5 is empty. If yes, add a linefeed "\n".
Headers + // If Headers is empty, "\n" is not required. The specified Headers includes "\n". For more information,
see the headers organization method described as follows.
Url

Mac hmacSha256 = Mac.getInstance("HmacSHA256");
byte[] keyBytes = secret.getBytes("UTF-8");
hmacSha256.init(new SecretKeySpec(keyBytes, 0, keyBytes.length, "HmacSHA256"));
String sign = new String(Base64.encodeBase64(Sha256.doFinal(stringToSign.getBytes("UTF-8")),"UTF-8"));

String content-MD5 = Base64.encodeBase64(MD5(bodyStream.getbytes("UTF-8")));

API Gateway User Guide for Providers

24

Signature-Headers. Multiple keys are separated by commas.

Headers organization method

Rank the keys of all headers involved in signature calculation in lexicographic order, and change all
uppercase letters in the key of the header to lowercase, and splice the keys in the following method:

URL

URL indicates the Form parameter in the Path + Query + Body. The organization method is as
follows:If Query or Form is not empty, add a ?, rank the keys of Query+Form in lexicographic order,
and then splice them in the following method. If Query or Form is empty, then URL is equal to Path.

Note that Query or Form may have multiple values. If multiple values exist, use the first value for
signature calculation.

Debugging mode

To access and debug the backend signature conveniently, you can enable the Debug mode. The
debugging procedure is as follows:

Add X-Ca-Request-Mode = debug to the header of the request destined to API Gateway.

The backend service can only read X-Ca-Proxy-Signature-String-To-Sign from the header
because the linefeed is not allowed in the HTTP Header and thereby is replaced with “|”.

NOTE: X-Ca-Proxy-Signature-String-To-Sign is not involved in backend signature calculation.

Verify the time stamp

When the backend verifies the time stamp of the request, the system parameter

String headers =
HeaderKey1.toLowerCase() + ":" + HeaderValue1 + "\n"\+
HeaderKey2.toLowerCase() + ":" + HeaderValue2 + "\n"\+
...
HeaderKeyN.toLowerCase() + ":" + HeaderValueN + "\n"

String url =
Path +
"?" +
Key1 + "=" + Value1 +
"&" + Key2 + "=" + Value2 +
...
"&" + KeyN + "=" + ValueN

API Gateway User Guide for Providers

25

-

-

-

CaRequestHandleTime is selectable in API definition and its value is the Greenwich mean time when
the gateway receives the request.

OpenID Connect authorization

OpenID Connect is a lightweight standard based on OAuth 2.0, which provides a framework for
identity interaction through APIs. Compared with OAuth, OpenID Connect not only authenticates a
request, but also specifies the identity of the requester.

Based on OpenID Connect, the API gateway provides two way to authenticate API request:

OpenID Connect

Comply with standard OpenID Connect, the API customer request a “Token” through
“userLoginName” and “password” first.And the API gateway performs Token verification
on the request when the customer call the API.

OpenID Connect & AlibabaCloudAPP

Based on OpenID Connect, the API gateway performs Appkey+Token verification on the
request and authenticates the Appkey and Token. The system of the API provider issues the
Token and the gateway issues the Appkey.

The difference between the OpenID Connect and OpenID Connect & AlibabaCloudApp: OpenID
Connect & Alibaba cloud App needs to authenticate APPkey, and OpenID Connect does not.

Functions that are not supported by OpenID Connect

Cannot use App authentication
Cannot use App level Throttling
Cannot use AlibabaCloud Account level Throttling

Implementation principle

By performing OpenID Connect authentication, APIs can be classified into authorization APIs and
service APIs.

API Gateway User Guide for Providers

26

-

-

Authorization APIs: Interfaces used to issue a Token to the client. When configuring such
APIs, you must inform the API gateway about the key corresponding to your Token and the
public key used to resolve the Token.
Service APIs: Interfaces used to obtain user information and perform an operation. When
configuring such APIs, you must inform the API gateway about the parameter that
represents the Token in your request. After the request arrives at the API gateway, the API
gateway automatically checks whether this request is valid.

Certification method

The client calls an authorization API

The client uses authentications to get the “Token”:

OpenID Connect

The client uses userLoginName/password to call an authorization API to
obtain authorization Token.

OpenID Connect & AlibabaCloudAPP

The client uses your Appkey signature+user name/password to call an
authorization API to obtain authorization Token.

After receiving the request, the API gateway authenticates your Appkey first(Be

API Gateway User Guide for Providers

27

a.

b.

effect on OpenID Connect & AlibabaCloudAPP, and OpenID Connect not). If the
authentication succeeds, the API gateway calls the account system of the backend
service to authenticate your user name/password.

After the authentication by the backend service succeeds, you can use the
returned Token to call a service API.

The client calls a service API

The client uses the Token obtained by the authorization API and the signed
Appkey to call the service API.

The API gateway authenticates and resolves the Token and sends the user
information contained in the Token to the backend.

During this phase, the API provider must follow these steps in advance:

Opens the account system, allows the API gateway to authenticate the
user name/password in the request, and issues the Token based on the
gateway-provided encryption mode. For more information, see How to
implement the AS module as follows.
Defines the API in the API gateway. For more information, see
Configure an API in the API gateway as follows.
NOTE: The user name/password is extremely sensitive information,
which is risky when being transmitted in plaintext. We recommend that
you encrypt the user name/password and use the HTTPS protocol for
transmission.

Solution

The solution includes two important parts:

1. Authorization server (AS): Used to generate the id_token and
manage the KeyPair.

You must perform this step by yourself. For more information about the method, see Configure an
API in the API gateway as follows.

API Gateway User Guide for Providers

28

1.

2.

3.

4.

5.

As shown in the preceding figure, the process is as follows:

The Consumer (caller) sends an id_token authentication request to the API gateway, for
example, in the user name+password (U+P) mode.
The API gateway transparently transmits the request to the AS.
The AS sends the user authentication request to the Provider (service provider).
The Provider returns the authentication results or an error message if the authentication
fails.
If the authentication succeeds, the AS generates an id_token, which includes the User
information (expandable, and can include other necessary information).

The API gateway sends the id_token returned by the AS to the Consumer.

Note: The AS is not required to be independently deployed. It can be integrated in the
Provider and used to generate the id_token in the entire system. The generated id_token
must meet the Specification in the OIDC protocol (version 1.0).

2. Resource server (RS): Used to verify the id_token and resolve

API Gateway User Guide for Providers

29

1.

2.

3.

4.

-

corresponding information.

This part is implemented by the gateway. Because the RS function has been integrated in the API
gateway, the Provider only needs to generate the id_token in compliance with the corresponding
encryption rules.

As shown in the preceding figure, the process is as follows:

The Consumer sends the parameter with the id_token to the API gateway.
The API gateway saves the publicKey used for verification, verifies and resolves the id_token
to obtain the User information, and sends the User information to the Provider. If the
authentication fails, the API gateway returns an error message.
The Provider processes the request and returns the results to the API gateway.
The API gateway transparently transmits the results from the Provider to the Consumer.

NOTE: The RS serves as the Consumer of the id_token. The request can be forwarded to the Provider
only when the id_token verification succeeds.

How to implement the AS module

Use the OIDC in the AS to generate the id_token

The id_token, also known as ID Token, is a type of tokens defined in the OIDC protocol. For

API Gateway User Guide for Providers

30

-

more information, see OpenID Connect Core 1.0.
The KeyPair, keyId, and Claims are required to generate the id_token (for more information
about the Claims, see ID_Token).

KeyId description

The KeyId must be unique. For example, the KeyId generated using the UUID is a string of at least 32
random characters, which can be all numbers or numbers and letters.
Example (Java)

Or

KeyPair description

The KeyPair is a PKI system-based public and private key pair using the asymmetric algorithm. Each
pair contains a publicKey and a privateKey. The publicKey is stored in the RS, which is used for
verification. The privateKey is stored in the AS, which serves as the digital signature when the
id_token is generated.
The KeyPair uses the RSA SHA256 encryption algorithm. To guarantee security, 2,048 bits are
encrypted.
All KeyPairs used in the AS are in the JSON format. The following is an example:
publicKey:

privateKey:

String keyId = UUID.randomUUID().toString().replaceAll("-", "");

String keyId = String.valueOf(UUID.randomUUID().getMostSignificantBits()) +
String.valueOf(UUID.randomUUID().getMostSignificantBits());

{"kty":"RSA","kid":"67174182967979709913950471789226181721","alg":"ES256","n":"oH5WunqaqIopfOFBz9RfBVVII
cmk0WDJagAcROKFiLJScQ8N_nrexgbCMlu-dSCUWq7XMnp1ZSqw-XBS2-XEy4W4l2Q7rx3qDWY0cP8pY83hqxTZ6-
8GErJm_0yOzR4WO4plIVVWt96-
mxn3ZgK8kmaeotkS0zS0pYMb4EEOxFFnGFqjCThuO2pimF0imxiEWw5WCdREz1v8RW72WdEfLpTLJEOpP1FsFyG3OI
DbTYOqowD1YQEf5Nk2TqN_7pYrGRKsK3BPpw4s9aXHbGrpwsCRwYbKYbmeJst8MQ4AgcorE3NPmp-
E6RxA5jLQ4axXrwC0T458LIVhypWhDqejUw","e":"AQAB"}

{"kty":"RSA","kid":"67174182967979709913950471789226181721","alg":"ES256","n":"oH5WunqaqIopfOFBz9RfBVVII
cmk0WDJagAcROKFiLJScQ8N_nrexgbCMlu-dSCUWq7XMnp1ZSqw-XBS2-XEy4W4l2Q7rx3qDWY0cP8pY83hqxTZ6-
8GErJm_0yOzR4WO4plIVVWt96-
mxn3ZgK8kmaeotkS0zS0pYMb4EEOxFFnGFqjCThuO2pimF0imxiEWw5WCdREz1v8RW72WdEfLpTLJEOpP1FsFyG3OI
DbTYOqowD1YQEf5Nk2TqN_7pYrGRKsK3BPpw4s9aXHbGrpwsCRwYbKYbmeJst8MQ4AgcorE3NPmp-
E6RxA5jLQ4axXrwC0T458LIVhypWhDqejUw","e":"AQAB","d":"aQsHnLnOK-1xxghw2KP5JTZyJZsiwt-
ENFqqJfPUzmlYSCNAV4T39chKpkch2utd7hRtSN6Zo4NTnY8EzGQQb9yvunaiEbWUkPyJ6kM3RdlkkGLvVtp0sRwPCZ2

API Gateway User Guide for Providers

31

Example of generating a KeyPair (Java)

Process for generating an id_token

Use the Claims attributes (aud, sub, exp, iat, and iss) defined in the OIDC protocol and the
attribute values to generate the Claims (the full name is JwtClaims).

Code example (Java)

EAYBlsMad9jkyrtmdC0rtf9jerzt3LMLC7XWbnpC3WAl8rsRDR1CGs_-
u4sfZfttsaUbJDD9hD0q4NfLDCVOZoQ_8wkZxyWDAQGCe6GcCbu6N81fTp2CSVbiBj7DST_4x2NYUA2KG8vyZYcwvi
NTxQzk4iPfdN2YQz_9aMTZmmhVUGlmTvAjE5ebBqcqKAS0NfhOQHg2uR46eBKBy_OyVOLohsQ","p":"8Tdo3DCs-
0t9JMtM0lYqPRP4wYJs37Rv6S-ygRui2MI_hadTY9I2A199JMYw7Fjke_wa3gqJLa98pbybdLWkrOxXbKEkwE4uc4-
fuNjLbUTC5tqdM5-
nXmpL887uREVYnk8FUzvWeXYTCNCb7OLw5l8yPJ1tR8aNcd0fJNDKh98","q":"qlRrGSTsZzBkDgDi1xlCoYvoM76cbmx
rCUK-
mc_kBRHfMjlHosxFUnAbxqIBE4eAJEKVfIJLQrHFvIDjQb3kM9ylmwMCu9f8u9DHrT8J7LSDlLqDaXuiM2oiKtW3bAaBP
uiR7sVMFcuB5baCebHU487YymJCBTfeCZtFdi6c4w0","dp":"gVCROKonsjiQCG-s6X4j-saAL016jJsw-
7QEYE6uiMHqR_6iJ_uD1V8Vuec-
RxaItyc6SBsh24oeqsNoG7Ndaw7w912UVDwVjwJKQFCJDjU0v4oniItosKcPvM8M0TDUB1qZojuMCWWRYsJjNSWcvA
QA7JoBAd-h6I8AqT39tcU","dq":"BckMQjRg2zhnjZo2Gjw_aSFJZ8iHo7CHCi98LdlD03BB9oC_kCYEDMLGDr8d7j3h-
llQnoQGbmN_ZeGy1l7Oy3wpG9TEWQEDEpYK0jWb7rBK79hN8l1CqyBlvLK5oi-
uYCaiHkwRQ4RACz9huyRxKLOz5VvlBixZnFXrzBHVPlk","qi":"M5NCVjSegf_KP8kQLAudXUZi_6X8T-
owtsG_gB9xYVGnCsbHW8gccRocOY1Xa0KMotTWJl1AskCu-
TZhOJmrdeGpvkdulwmbIcnjA_Fgflp4lAj4TCWmtRI6982hnC3XP2e-
nf_z2XsPNiuOactY7W042D_cajyyX_tBEJaGOXM"}

import java.security.PrivateKey;

import org.jose4j.json.JsonUtil;
import org.jose4j.jwk.RsaJsonWebKey;
import org.jose4j.jwk.RsaJwkGenerator;
import org.jose4j.jws.AlgorithmIdentifiers;
import org.jose4j.jws.JsonWebSignature;
import org.jose4j.jwt.JwtClaims;
import org.jose4j.jwt.NumericDate;
import org.jose4j.lang.JoseException;

String keyId = UUID.randomUUID().toString().replaceAll("-", "");
RsaJsonWebKey jwk = RsaJwkGenerator.generateJwk(2048);
jwk.setKeyId(keyId);
jwk.setAlgorithm(AlgorithmIdentifiers.ECDSA_USING_P256_CURVE_AND_SHA256);
String publicKey = jwk.toJson(RsaJsonWebKey.OutputControlLevel.PUBLIC_ONLY);
String privateKey = jwk.toJson(RsaJsonWebKey.OutputControlLevel.INCLUDE_PRIVATE);

JwtClaims claims = new JwtClaims();
claims.setGeneratedJwtId();
claims.setIssuedAtToNow();
//expire time

API Gateway User Guide for Providers

32

Use the keyId, Claims, privateKey, and the digital signature algorithm (RSA SHA256) to
generate a JSON Web Signature (JWS).

Code example (Java)

Use the JWS to obtain the value of the id_token.

Code example (Java)

Example of a generated id_token:

Configure an API in the API gateway

In the API edition function, the OpenID Connect option is added to Security certification of

NumericDate date = NumericDate.now();
date.addSeconds(120);
claims.setExpirationTime(date);
claims.setNotBeforeMinutesInThePast(1);
claims.setSubject("YOUR_SUBJECT");
claims.setAudience("YOUR_AUDIENCE");
//Add custom parameters

claims.setClaim(key, value);

JsonWebSignature jws = new JsonWebSignature();
jws.setAlgorithmHeaderValue(AlgorithmIdentifiers.RSA_USING_SHA256);
jws.setKeyIdHeaderValue(keyId);
jws.setPayload(claims.toJson());
PrivateKey privateKey = new RsaJsonWebKey(JsonUtil.parseJson(privateKeyText)).getPrivateKey();
jws.setKey(privateKey);

String idToken = jws.getCompactSerialization();

eyJhbGciOiJSUzI1NiIsImtpZCI6Ijg4NDgzNzI3NTU2OTI5MzI2NzAzMzA5OTA0MzUxMTg1ODE1NDg5In0.e
yJ1c2VySWQiOiIzMzcwMTU0NDA2ODI1OTY4NjI3IiwidGFnTmFtZSI6ImNvbmFuVGVzdCIsImV4cCI6MTQ4
MDU5Njg3OSwiYXVkIjoiQWxpX0FQSV9Vc2VyIiwianRpIjoiTm9DMFVVeW5xV0N0RUFEVjNoeEIydyIsImlh
dCI6MTQ4MDU5MzI3OSwibmJmIjoxNDgwNTkzMjE5LCJzdWIiOiJ7ZGF0YU1hcD0ne3VzZXJJZD0zMzcwM
TU0NDA2ODI1OTY4NjI3fScsIHN0YXR1c0NvZGU9JzAnLCBlcnJvcnM9J1tdJ30ifQ.V3rU2VCziSt6uTgdCktYR
sIwkMEMsO_jUHNCCIW_Sp4qQ5ExjtwNt9h9mTGKFRujk2z1E0k36smWf9PbNGTZTWmSYN8rvcQqdsupc
C6LU9r8jreA1Rw1CmmeWY4HsfBfeInr1wCFrEfZl6_QOtf3raKSK9AowhzEsnYRKAYuc297gmV8qlQdevAwU
75qtg8j8ii3hZpJqTX67EteNCHZfhXn8wJjckl5sHz2xPPyMqj8CGRQ1wrZEHjUmNPw-
unrUkt6neM0UrSqcjlrQ25L8PEL2TNs7nGVdl6iS7Nasbj8fsERMKcZbP2RFzOZfKJuaivD306cJIpQwxfS1u2be
w

API Gateway User Guide for Providers

33

i.

ii.

Basic Info. The Alibaba Cloud App certification method is also included, which means that
only authorized apps can call this API.

After selecting OpenID Connect for Security certification, set OpenID Connect mode. The
following two options are provided.

Authorization APIs: Used to obtain the Token, for example, obtaining the Token
using U+P.
Service APIs: Used by the Provider to provide services. The Consumer calls the
obtained Token as an input parameter.
The OpenID Connect certification method is used for the preceding two types of
APIs. The following section describes how to configure these two types of APIs,
respectively.

For the authorization APIs, you must configure the KeyId and publicKey, as shown in the
following figure.

KeyId: A unique ID corresponding to the KeyPair, which is generated by the AS. For
example:

88483727556929326703309904351185815489

API Gateway User Guide for Providers

34

iii.

publicKey: Used to verify and resolve the Token, which is generated by the AS. For example:

Configurations of other parameters are the same as those for common APIs, which are not
described.

No matter creating an API or modifying an API, the configured KeyId and publicKey take
effect only after the API is released.

For the service APIs, you must configure the parameter corresponding to the Token.

As shown in the preceding figure, the parameter corresponding to the Token is
that sent to the id_token when the Consumer calls the API. The API gateway
identifies, verifies, and resolves this parameter.

In the Input parameter definition area, a corresponding parameter must be
defined. Otherwise, an error message is prompted, as shown in the following

figure.

Configuring the custom system parameters: The service API enables configuration
of custom system parameters on the Define API backend server tab. One example
is shown in the following figure.

{"kty":"RSA","kid":"88483727556929326703309904351185815489","alg":"ES256","n":"ie0IKvKLd7Y3izHcZ
emdDsVVXg5QtWtGF7XEkILnn66R2_3a30DikqV409OVL7Hv0ElACgCaBLEgZeGHTcdLE1xxDTna8MMBnB
NuMVghvFERCKh8uzpxlQsfcnFd5IFdJWj1x5Tscetrow6lA3h5zYx0rF5TkZzC4DclxgDmITRam0dsHBxr3uk9
m9YYBz2mX0ehjY0px7vIo7hZH2J3gODEPorIZkk3x8GPdlaA4P9OFAO4au9-zcVQop9vLirxdwDedk2p-
F9GP6UiQC9V2LTWqkVw_oPBf9Rlh8Qdi19jA8SeCfzAxJZYlbOTK8dYAFAVEFsvXCFvdaxQefwWFw","e":"A
QAB"}

API Gateway User Guide for Providers

35

If the
id_token generated by the AS contains the userId of the Consumer, the userId
resolved from the id_token sent by the Consumer is transmitted to the Provider.
The configuration method for custom system parameters is similar to that for
system parameters.
Besides the preceding three aspects, the method for defining other
configurations of the API is the same as that in the preceding sections, which are
not described.

Use Log Service to view API call logs

The API Gateway and Log Service are seamlessly integrated. The Log Service enables you to view real-
time log information, download logs, and analyze logs from multiple dimensions. You can also send
logs to OSS or MaxCompute.

For details about more Log Service functions, see Log Service help.

You can use the Log Service free-of-charge for the first 500 MB of log data every month. For
the prices of other items, see Log Service pricing.

API Gateway User Guide for Providers

36

1 Function overview

1.1 Online log search

You can specify any keyword in logs to complete an exact or fuzzy log search quickly. The search
results can be used for fault location or log statistics collection.

1.2 Detailed API call logs

You can obtain detailed API call information based on the following log items:

Log item Description

apiGroupUid API group ID

apiGroupName API group name

apiUid API ID

apiName API name

apiStageUid API environment ID

apiStageName API environment name

httpMethod Called HTTP method

path Request path

domain Called domain name

statusCode HttpStatusCode

errorMessage Error message

appId Caller application ID

appName Caller application name

clientIp IP address of the caller client

exception Specific error message returned from the
backend

providerAliUid API provider account ID

region Region name, such as cn-hangzhou

requestHandleTime Request time (UTC)

requestId Request ID, globally unique

requestSize Request size, unit: byte

responseSize Returned data size, unit: byte

serviceLatency Backend latency, unit: millisecond

API Gateway User Guide for Providers

37

1.3 Custom analysis charts

You can define statistical charts of any log items to obtain statistical data required for business
operation.

1.4 Preset analysis reports

The API Gateway provides predefined statistical charts (global) for you to use directly. These statistical
charts show log items including the request size, success rate, error rate, latency, number of
applications that call an API, error statistics, top groups, top APIs, and top latencies.

2 Use the Log Service to view API logs

2.1 Configure the Log Service

Before using this function, make sure that you have subscribed to the log service and created a
project and a logstore. Click here to create a project and logstore.

You can configure the Log Service on the API Gateway console or Log Service console.

2.1.1 Configure the Log Service on the API Gateway console

1) Open API Gateway Console and choose “Publish APIs” > “Log Manage” and select the region
of your service. In the following figure, China East 1 is used as an example.

2) Click “Create Log Config” to display the log configuration page.

API Gateway User Guide for Providers

38

3) Select the project or logstore where the log service is required. If no options are available, click
“Authorize Log Service Log Write Operation”, and then grant the authority to access your cloud
resources.

4) After you confirm the authorization, the API Gateway is successfully associated with the log service.

5) Enable the indexing function to complete the configuration.

2.1.2 Configure the log service on the Log Service console

For details, see Access logs of API Gateway.

After the configuration is complete, your API calls can be recorded in the logstore for the log service.

2.2 View logs

Open API Gateway console and choose “Publish APIs” > “Log Manage” > “Access Log” to go
to the log console. Search for call logs online according to Query syntax, as shown in the following
figure.

API Gateway User Guide for Providers

39

You can also log on to the Log Service console to view logs. For details, see Query logs.

2.3 View predefined reports

Predefined reports are statistical reports preset on the API Gateway to facilitate log statistics
collection. Open API Gateway console and choose “Publish APIs” > “Log Manage” > “Access
Log” to view the predefined reports. You can also view these predefined logs on the Log Service
console.

2.4 Custom query reports

You can define query reports to meet your own business requirements. For details, see Dashboard.

3 Maintain logs
Open API Gateway Console and choose “Publish APIs” > “Log Manage” to modify or delete log

API Gateway User Guide for Providers

40

-

-

-

-

-

configuration.

Modify Config: Change the project or logstore for the log service. Then API call logs are
written in the new logstore, but historical logs are still saved in the original logstore and not
migrated to the new logstore.
Delete Config: Delete the mapping between the API Gateway and log service. The API call
logs are no longer synchronized to the log service, but the historical logs in the logstore are
not deleted.

ApiGateway_RAM

The API gateway and Alibaba Cloud Resource Access Management (RAM) are integrated to enable
multiple employees in an enterprise to perform permission-based API management. The API provider
can create sub-accounts for employees and allow different employees to manage different APIs.

By using the RAM, employees can use the sub-accounts to view, create, manage, and delete
API groups, APIs, authorizations, and throttling policies. However, the sub-accounts are not
the owner of resources, whose operation permissions may be revoked by the primary
account at any time.
Before reading this document, make sure that you have carefully read RAM help manual and
API gateway API manual.
Skip this section if you do not have such service scenarios.

You can use the RAM console or API to add operations.

Part 1: Policy management

The authorization policy (Policy) describes authorization content. This content contains several basic
elements, including Effect, Resource, Action, and Condition.

System authorization policy

Two system permissions, AliyunApiGatewayFullAccess, and AliyunApiGatewayReadOnlyAccess, have
been preset at the API gateway. You can see RAM console-policy management to check the

permissions.!

API Gateway User Guide for Providers

41

-

-

AliyunApiGatewayFullAccess: It is an administrator privilege which can be used to manage all
resources under the primary account, including API groups, APIs, throttling policies, and
applications.
AliyunApiGatewayReadOnlyAccess: It is used to view all resources under the primary
account, including API groups, APIs, throttling policies, and applications, but cannot operate
on them.

Custom authorization policy

You can customize management permissions precisely to an operation or resource as needed. For
example, you can customize the edition permission for API GetUsers. You can check the defined
custom authorization in RAM console-policy management-custom authorization policy.For more
information about how to view, create, modify, and delete a custom authorization, see Authorization
policy management.
For more information about how to enter the authorization policy content, see Policy basic elements,
Policy syntax structure, and authorization policy described as follows.

Part 2: Authorization policy

An authorization policy is a set of permissions described in the policy language. After an
authorization policy is attached to a user or a group, the user or all users in the group can acquire the
access permissions specified in the policy.
For more information about how to enter the authorization policy content, see Policy basic elements
and Policy syntax structure.
Example:

This example indicates that all the view operations are allowed.

Action (operation name list) format:

Among them:

{
"Version": "1",
"Statement": [
{
"Action": "apigateway:Describe*",
"Resource": "*",
"Effect": "Allow"
}
]
}

 "Action":"<service-name>:<action-name>"

API Gateway User Guide for Providers

42

-

-

-

-

-

-

-

service-name indicates the Alibaba Cloud product name. Set this parameter to apigateway.
action-name indicates the API name. See the following table. You can also enter the
wildcards *.

Part 3: Resource (operation object list)

A resource usually indicates an operation object, which can be API groups, throttling policies, and
applications in the API gateway. The format is as follows:

Among them:

acs is the abbreviation of Alibaba Cloud Service, indicating the Alibaba Cloud public cloud
platform.
service-name indicates the Alibaba Cloud product name. Set this parameter to apigateway.
region indicates the region. You can also enter the wildcards * which indicate all regions.
account-id indicates the account ID, such as 1234567890123456. You can also enter the
wildcards *.
relative-id indicates the resource description related to the API gateway. The format is similar
to a tree-like structure of a file path.

Example:

Writing:

Check the following table by referring to API manual of the API gateway.

 "Action": "apigateway:Describe*" indicates all the view operations.
" Action": "apigateway:*" indicates all operations of the API gateway.

acs:<service-name>:<region>:<account-id>:<relative-id>

acs:apigateway:$regionid:$accountid:apigroup/$groupId

acs:apigateway:*:$accountid:apigroup/

Action-Name Resource

AbolishApi acs:apigateway:$regionid:$accountid:apigroup
/$groupId

AddTrafficSpecialControl acs:apigateway:$regionid:$accountid:trafficco
ntrol/$trafficcontrolid

CreateApi acs:apigateway:$regionid:$accountid:apigroup
/$groupId

CreateApiGroup acs:apigateway:$regionid:$accountid:apigroup
/*

API Gateway User Guide for Providers

43

CreateTrafficControl acs:apigateway:$regionid:$accountid:trafficco
ntrol/*

DeleteAllTrafficSpecialControl acs:apigateway:$regionid:$accountid:trafficco
ntrol/$trafficcontrolid

DeleteApi acs:apigateway:$regionid:$accountid:apigroup
/$groupId

DeleteApiGroup acs:apigateway:$regionid:$accountid:apigroup
/$groupId

DeleteDomain acs:apigateway:$regionid:$accountid:apigroup
/$groupId

DeleteDomainCertificate acs:apigateway:$regionid:$accountid:apigroup
/$groupId

DeleteTrafficControl acs:apigateway:$regionid:$accountid:trafficco
ntrol/$trafficcontrolId

DeleteTrafficSpecialControl acs:apigateway:$regionid:$accountid:trafficco
ntrol/$trafficcontrolId

DeployApi acs:apigateway:$regionid:$accountid:apigroup
/$groupId

DescribeApi acs:apigateway:$regionid:$accountid:apigroup
/$groupId

DescribeApiError acs:apigateway:$regionid:$accountid:apigroup
/$groupId

DescribeApiGroupDetail acs:apigateway:$regionid:$accountid:apigroup
/$groupId

DescribeApiGroups acs:apigateway:$regionid:$accountid:apigroup
/*

DescribeApiLatency acs:apigateway:$regionid:$accountid:apigroup
/$groupId

DescribeApiQps acs:apigateway:$regionid:$accountid:apigroup
/$groupId

DescribeApiRules acs:apigateway:$regionid:$accountid:apigroup
/$groupId

DescribeApis acs:apigateway:$regionid:$accountid:apigroup
/$groupId

DescribeApisByRule

acs:apigateway:$regionid:$accountid:trafficco
ntrol/$trafficcontrolId
oracs:apigateway:$regionid:$accountid:secret
key/$secretKeyId

DescribeApiTraffic acs:apigateway:$regionid:$accountid:apigroup
/$groupid

DescribeAppsByApi acs:apigateway:$regionid:$accountid:apigroup
/$groupId

AddBlackList acs:apigateway:$regionid:$accountid:blacklist/

API Gateway User Guide for Providers

44

*

DescribeBlackLists acs:apigateway:$regionid:$accountid:blacklist/
*

DescribeDeployedApi acs:apigateway:$regionid:$accountid:apigroup
/$groupId

DescribeDeployedApis acs:apigateway:$regionid:$accountid:apigroup
/$groupId

DescribeDomain acs:apigateway:$regionid:$accountid:apigroup
/$groupId

DescribeDomainResolution acs:apigateway:$regionid:$accountid:apigroup
/$groupId

DescribeHistoryApi acs:apigateway:$regionid:$accountid:apigroup
/$groupId

DescribeHistoryApis acs:apigateway:$regionid:$accountid:apigroup
/*

DescribeRulesByApi acs:apigateway:$regionid:$accountid:group/$
groupId

DescribeSecretKeys acs:apigateway:$regionid:$accountid:secretke
y/*

DescribeTrafficControls acs:apigateway:$regionid:$accountid:trafficco
ntrol/*

ModifyApi acs:apigateway:$regionid:$accountid:apigroup
/$groupId

ModifyApiGroup acs:apigateway:$regionid:$accountid:apigroup
/$groupId

ModifySecretKey acs:apigateway:$regionid:$accountid:secretke
y/$secretKeyId

RecoverApiFromHistorical acs:apigateway:$regionid:$accountid:apigroup
/$groupId

RefreshDomain acs:apigateway:$regionid:$accountid:apigroup
/$groupId

RemoveAccessPermissionByApis acs:apigateway:$regionid:$accountid:apigroup
/$groupId

RemoveAccessPermissionByApps acs:apigateway:$regionid:$accountid:apigroup
/$groupId

RemoveAllBlackList acs:apigateway:$regionid:$accountid:blacklist/
*

RemoveApiRule

acs:apigateway:$regionid:$accountid:apigroup
/$groupId(acs:apigateway:$regionid:$accounti
d:secretkey/$secretKeyId
oracs:apigateway:$regionid:$accountid:trafficc
ontrol/$trafficcontrolId)

RemoveAppsFromApi acs:apigateway:$regionid:$accountid:apigroup

API Gateway User Guide for Providers

45

Apigateway_VPC

Alibaba Cloud Virtual Private Cloud (VPC) helps you establish an isolated network environment and
customize the IP address range, network segment, route table, and gateway. In addition, you can
implement interconnection between VPC and traditional IDC through a leased line, VPN, or GRE to
build hybrid cloud services.

The API gateway also supports open APIs for your service deployed in a VPC instance. Before reading
this document, make sure that you have understood how to use VPC.

If your backend service works in a VPC instance, you must authorize the API gateway to open
corresponding APIs. The process of creating an API is as follows:

/$groupId

RemoveBlackList acs:apigateway:$regionid:$accountid:blacklist/
$blacklistid

SetAccessPermissionByApis acs:apigateway:$regionid:$accountid:apigroup
/$groupId

SetAccessPermissions acs:apigateway:$regionid:$accountid:apigroup
/$groupId

SetApiRule

acs:apigateway:$regionid:$accountid:apigroup
/$groupId(acs:apigateway:$regionid:$accounti
d:secretkey/$secretKeyId
oracs:apigateway:$regionid:$accountid:trafficc
ontrol/$trafficcontrolId)

SetDomain acs:apigateway:$regionid:$accountid:apigroup
/$groupId

SetDomainCertificate acs:apigateway:$regionid:$accountid:apigroup
/$groupId

SwitchApi acs:apigateway:$regionid:$accountid:apigroup
/$groupId

CreateSecretKey acs:apigateway:$regionid:$accountid:secretke
y/*

DeleteSecretKey acs:apigateway:$regionid:$accountid:secretke
y/$secretKeyId

API Gateway User Guide for Providers

46

-

-

-

-

-

-

1 Authorize and bind a VPC instance

In a VPC environment, you must authorize the API gateway so that it can access the service in your
VPC. During authorization, you must specify the resource and port which the API gateway can access,
such as port 443 of Server Load Balancer and port 80 of ECS.

After the authorization succeeds, the API gateway accesses resources in the VPC instance
through the intranet.
This authorization is only used for the API gateway to access corresponding backend
resources.
The API gateway cannot access unauthorized resources or ports.

For example, if only port 80 of Server Load Balancer 1 in VPC 1 is authorized to the API gateway, the
API gateway can only access this port.

1.1 Prepare for a VPC environment

(1) Buy Server Load Balancer and ECS instances in the VPC environment and build the service. For
more information, see VPC user manual.

(2) Query the VPC information. Prepare the following VPC information:

VPC ID: Indicates the ID of the VPC where your backend service is located.
Instance ID: Indicates the ID of the instance of your backend service. The instance can be an
ECS instance or a Server Load Balancer instance. If a Server Load Balancer instance is used,
enter its instance ID.
Port number: Indicates the number of the port that calls your backend service.

1.2 Authorize the API gateway for access

Click API Gateway Console > Open API > Authorize VPC, and then click Create Authorization.

API Gateway User Guide for Providers

47

-

Go to the authorization page and enter corresponding information.

VPC name: Indicates the name of the authorization, which is used to select the backend
address when an API is created. Make sure that this name is unique to facilitate further
management.

Click OK to complete the authorization.

Repeat the preceding steps if you have multiple VPC instances or need to authorize multiple
instances and ports.

2 Create an API
The process for creating an API is the same as that for creating other APIs. For more information, see

API Gateway User Guide for Providers

48

-

-

Create an API.

When selecting the backend service address:

VPC channel: Set this parameter to Use VPC channel.
VPC authorization: Select the created authorization as required.

Configuration of other parameters for the API is consistent with that for other APIs.

Save the configuration. The API creation is complete.

3 Authorize a security group

Optional: You can skip this step if you use Server Load Balancer at the backend and have not
modified the ECS security group authorization policy.

If ECS serves as the backend service of your API and you have modified the intranet inbound access
policy of the security group, you must add an access policy to enable access of the following IP
segments (configure the IP segments based on the region where the service is located).

Region Direction IP address

China East 1(Hangzhou) Intranet inbound 100.104.13.0/24

China North 2(Beijing) Intranet inbound 100.104.106.0/24

China South 1(Shenzhen) Intranet inbound 100.104.8.0/24

China East 2(Shanghai) Intranet inbound 100.104.8.0/24

Hong Kong Intranet inbound 100.104.175.0/24

Asia Pacific SE 1 (Singapore) Intranet inbound 100.104.175.0/24

EU Central 1(Frankfurt) Intranet inbound 100.104.72.0/24

API Gateway User Guide for Providers

49

-

-

-

4 Test the API

You can test your API using the following methods:

Debug the API
Download the SDK
Use the API to call the Demo

5 Revoke authorization

If the authorized resource or port does not provide services, delete the corresponding authorization.

5 FAQ

Is there an extra cost for using this function?

No. This function is free of charge and no extra cost is required.

Can I bind multiple VPC instances?

Yes. You can add multiple authorizations if your backend service works in multiple VPC instances.

Why cannot I authorize my VPC?

Make sure that the VPC ID, instance ID, and port number are correct and that the authorization policy
and VPC are within the same region.

If I authorize the API gateway, is my VPC secure?

If you authorize the API gateway to access your VPC, the network between the gateway and VPC is
connected. Security restrictions are implemented, and VPC security issues will not occur.

Asia Pacific SE 3 (Kuala
Lumpur) Intranet inbound 100.104.112.0/24

Asia Pacific SOU 1 (Mumbai) Intranet inbound 100.104.233.0/24

Asia Pacific SE 5 (Jakarta) Intranet inbound 100.104.72.0/24

Asia Pacific NE 1 (Tokyo) Intranet inbound 100.104.188.0/24

Asia Pacific SE 2 (Sydney) Intranet inbound 100.104.143.192/26

API Gateway User Guide for Providers

50

1.

2.

3.

Security control authorization: Only the owner of the VPC can perform authorization.
Exclusive channel between the API gateway and VPC after authorization: Other persons
cannot use this channel.
Authorization for the port of a certain resource: The gateway does not have the permission
to access other ports or resources.

Configure Mock

A project is typically developed by multiple partners working together toward a specific target. The
interdependence among the various stakeholders often restricts individual members during the
process, and misunderstandings may adversely influence the development process or even impact
the project timing. Mock can be used early in the project development cycle to simulate activities and
project results. This can greatly reduce miscommunication and misunderstanding among team
members in the project development and greatly improve the development efficiency.

API Gateway supports simple configuration in Mock mode.

Configure a Mock

Click API Edition > Basic Backend Definitions to configure the Mock.

1.Enter the Mock response result

You can enter the actual response result in the Mock response result field. Currently, the system
supports Mock response results in JSON, XML, and text formats. For example:

API Gateway User Guide for Providers

51

Save the Mock configuration and release it to the testing or production environment for debugging
based on your needs. You can also debug on the API debugging page.

2. Enter response statusCode

The following table lists the valid values of statusCode. Format and status of HTTP 1.1 response status
codes are supported. If you specify a statusCode that is not listed in the following table, the system
reports an error indicating that the parameter is invalid.

"result"
:title":"Mock test for API Gateway

http code http message

200 OK

201 Created

202 Accepted

203 Non-Authoritative Information

204 No Content

205 Reset Content

206 Partial Content

300 Multiple Choices

301 Moved Permanently

302 Found

303 See Other

304 Not Modified

305 Use Proxy

306 (Unused)

307 Temporary Redirect

400 Bad Request

401 Unauthorized

402 Payment Required

403 Forbidden

404 Not Found

405 Method Not Allowed

406 Not Acceptable

407 Proxy Authentication Required

408 Request Timeout

API Gateway User Guide for Providers

52

3.Define a Mock header

API Gateway supports custom Mock headers and duplicate header names. The value of a header
name cannot be empty and may only contain numbers, letters, underscores (_), and hyphens (-). The
value of a header cannot be empty.

Remove a Mock

To remove a Mock, configure a different backend service. The value of the Mock response result is
not removed and you can use the value for the next Mock setting. You need to release the change. A
change takes effect only after being released.

Create APIs by Importing Swagger

Swagger is a specification used to describe API definitions, and is widely used to define and describe

409 Conflict

410 Gone

411 Length Required

412 Precondition Failed

413 Request Entity Too Large

414 Request-URI Too Long

415 Unsupported Media Type

416 Requested Range Not Satisfiable

417 Expectation Failed

450 Parameter Requried

451 Method Connect Exception

500 Internal Server Error

501 Not Implemented

502 Bad Gateway

503 Service Unavailable

504 Gateway Timeout

505 HTTP Version Not Supported

API Gateway User Guide for Providers

53

-

-

APIs for backend services. You can now create APIs by importing Swagger 2.0 files into API Gateway.
For more information, see ImportSwagger, or operate in the console, as in the following figure:

The API Gateway Swagger extension is based on Swagger 2.0. You can create the Swagger definition
for API entities, and import the Swagger file into API Gateway for bulk creations or updating API
entities. By default, API Gateway supports Swagger 2.0, which is compatible with most Swagger
specifications. However, these Swagger versions have some differences. For more information, see
Swagger Compatibility Reference.

This topic describes API Gateway extensions based on Swagger, and provides related examples to
describe implementation.

Note: All parameters and valid values in Swagger are case-sensitive.

1. Swagger extensions:

The Swagger extensions are used to extend native Swagger Operation Object, providing features
such as authentication, parameter mapping, and backend services. In addition, these extensions
include the support for processing the ANY method in order to respond to requests made through
any HTTP method.All extensions begin with x-aliyun-apigateway-, which are described as follows:

1.1 x-aliyun-apigateway-auth-type: authentication type

The authentication type is applied to Operation Object. The extension is used to specify the API
authentication type.

Value range :

APP (Default): the application authentication for Alibaba Cloud API Gateway.
ANONYMOUS: Anonymous

Example:

...
paths:
'path/':
get:
x-aliyun-apigateway-auth-type: ANONYMOUS
...

API Gateway User Guide for Providers

54

-

-

1.2 x-aliyun-apigateway-paramater-handling: API
mapping relationship

The API mapping relationship applied to the Operation Object, is used to specify the mapping
relationship between the request parameters and the backend service parameters. When you select
PASSTHROUGH as the mapping relationship, the Parameter Objectdoes not support x-aliyun-
apigateway-backend-location and x-aliyun-apigateway-backend-name properties.

Value range :

PASSTHROUGH (Default): the request parameter passthrough.
MAPPING: the request parameter mapping.

Example:

1.3 x-aliyun-apigateway-backend: backend type

The backend type applied to Operation Object. The parameter is used to specify backend service
information. According to the backend service type, the specific properties are as follows:

1.3.1 Backend service type: HTTP

The HTTP backend type is used to configure the service address to achieve direct backend service
access.

Property description:

...
paths:
'path/':
get:
x-aliyun-apigateway-paramater-handling: MAPPING
...

Property name Type Description

type string Required. The value is HTTP.

address string Required. The address of the
backend service.

path string
Required. The path of the
backend service. Support the
path variable.

method string Required. The backend
request method.

timeout int Optional. The default value is
10,000. The property value

API Gateway User Guide for Providers

55

Example:

1.3.2 Backend service type: HTTP-VPC

The HTTP-VPC backend type is deployed when the backend service is running in the VPC network.
You need to Create a VPC authorization, and then import through the VPC authorized name.

Property description:

Example:

range is[500,30000]

...
x-aliyun-apigateway-backend:
type: HTTP
address: http://10.10.100.2:8000
path: "/users/{userId}"
method: GET
timeout: 7,000
...

Property name Type Description

type string Required. The value is HTTP-
VPC.

vpcAccessName string
Required. The VPC network
name that is used by the
backend service.

path string
Required. Specify the
backend service path.
Support the path variable.

method string Required. The backend
request method.

timeout int
Optional. The default value is
10,000. The property value
range is[500,30000]

...
x-aliyun-apigateway-backend:
type: HTTP_VPC
vpcAccessName: vpcAccess1
path: "/users/{userId}"
method: GET
timeout: 10,000
...

API Gateway User Guide for Providers

56

1.3.3 Backend service type: FC

The FC backend type is used to configure the service address to Function Compute backend service
access.

Property description:

Example:

1.3.4 Backend service type: MOCK

The MOCK backend type is used to simulate the backend service call by returning the default
response.

Property description:

Property name Type

De
scr
ipt
io
n

type string Required；The value is FC

fcRegion string Required: The region that
FC belongs to

serviceName string Required: The service
name of current FC

functionName string Required：The function
name of current FC

arn string Required: Arn of the
current FC.

...
x-aliyun-apigateway-backend:
type: FC
fcRegion: cn-shanghai
serviceName: fcService
functionName: fcFunction
arn: acs:ram::111111111:role/aliyunapigatewayaccessingfcrole
...

Property name Type Description

type string Required. The value is
MOCK.

mockResult string Required. The response
result of MOCK.

API Gateway User Guide for Providers

57

Example:

1.4 x-aliyun-apigateway-Constant-parameters: constant
parameters

A constant parameter applied toOperation Object is used to specify the parameter applied to the
backend service.

Property description:

Example:

1.5 x-aliyun-apigateway-system-parameters: the backend
service parameters.

A backend service parameter applied to Operation Object is used to define the system parameters of
the API backend service.

Property description:

...
x-aliyun-apigateway-backend:
type: MOCK
mockResult: mock resul sample
...

Property name Type Description

backendName string Required. The backend
parameter name.

value string Required. The constant
value.

location String
Required. The location of the
constant parameter. You can
specify[query,header]

description string Optional. The description of
the constant parameter.

...
x-aliyun-apigateway-constant-parameters:
- backendName: swaggerConstant
value: swaggerConstant
location: header
description: description of swagger
...

API Gateway User Guide for Providers

58

-

-

-

-

Example:

1.6 x-aliyun-apigateway-backend-location: the backend
parameter location.

The backend parameter location is applied Parameter Object. The property applies only when the
setting is x-aliyun-apigateway-paramater-handling: MAPPING. After the parameter mapping is set,
the property is used to specify the parameter location when the backend service sends a request.

Value range :

path
header
query
formData

Example:

Property name Type Description

systemName string Required. The system
parameter name.

backendName string Required. The backend
parameter name.

location String
Required. The location of the
constant parameter. You can
specify[query,header]

...
x-aliyun-apigateway-system-parameters:
- systemName: CaAppId
backendName: appId
location: header
...

...
parameters:
- name: swaggerHeader
in: header
required: false
type: number
format: double
minimum: 0.1
maximum: 0.5
x-aliyun-apigateway-backend-location: query
x-aliyun-apigateway-backend-name: backendQuery
...

API Gateway User Guide for Providers

59

1.7 x-aliyun-apigateway-backend-name: the backend
parameter name.

The backend parameter name is applied to Parameter Object. This property applies only when the
setting is x-aliyun-apigateway-paramater-handling: MAPPING. After the parameter mapping is set,
the property is used to specify the parameter name when the backend service sends a request.

Example:

1.8 x-aliyun-apigateway-any-method: ANY method

The ANY method is applied to Path Item Object. The method sets an API to accept any type of HTTP
request.

Example:

2. Compatibility

The differences between API Gateway and the Swagger specification when defining APIs are as
follows:

2.1 Comparison between Swagger parameter types and
original API Gateway type

...
parameters:
- name: swaggerHeader
in: header
required: false
type: number
format: double
minimum: 0.1
maximum: 0.5
x-aliyun-apigateway-backend-location: query
x-aliyun-apigateway-backend-name: backendQuery
...

...
paths:
'path/':
x-aliyun-apigateway-any-method:
...
...

Swagger type API Gateway type Supported verification

API Gateway User Guide for Providers

60

3. Swagger example

This topic provides three examples of Swagger extensions that are based on API Gateway. The
examples cover practically all aspects of the Swagger extensions. You can refer to these examples
when you define API entities based on the Swagger extensions.

Note: The examples are only for your reference.

3.1 Swagger example with HTTP as the API Gateway
backend service

parameters and rules

type:integer-

format:int32- Int
mininum-

maxnum-

type:integer-

format:int64- Long
mininum-

maxnum-

type:number-

format:float- Float
mininum-

maxnum-

type:number-

format:double- Doulbe
mininum-

maxnum-

type:string- String

maxLength-

enumValues-

pattern-

type:boolean-

format:Boolean- Boolean -

swagger: '2.0'
basePath: /
info:
version: '0.9'
title: Aliyun Api Gateway Swagger Sample
schemes:
- http
- https
paths:
'/http/get/mapping/{userId}':

API Gateway User Guide for Providers

61

get:
operationId: case1
schemes:
- http
- https
x-aliyun-apigateway-paramater-handling: MAPPING
x-aliyun-apigateway-auth-type: ANONYMOUS
x-aliyun-apigateway-backend:
type: HTTP
address: 'http://www.aliyun.com'
path: '/builtin/echo/{userId}'
method: get
timeout: 10000
parameters:
- name: userId
in: path
required: true
type: string
- name: swaggerQuery
in: query
required: false
default: '123465'
type: integer
format: int32
minimum: 0
maximum: 100
- name: swaggerHeader
in: header
required: false
type: number
format: double
minimum: 0.1
maximum: 0.5
x-aliyun-apigateway-backend-location: query
x-aliyun-apigateway-backend-name: backendQuery
x-aliyun-apigateway-constant-parameters:
- backendName: swaggerConstant
value: swaggerConstant
location: header
description: description of swagger
x-aliyun-apigateway-system-parameters:
- systemName: CaAppId
backendName: appId
location: header
responses:
'200':
description: 200 description
'400':
description: 400 description
'/echo/test/post/{userId}':
post:
operationId: testpost
schemes:
- http
- https
x-aliyun-apigateway-paramater-handling: MAPPING

API Gateway User Guide for Providers

62

x-aliyun-apigateway-backend:
type: HTTP
address: 'http://www.aliyun.com'
path: '/builtin/echo/{backend}'
method: post
timeout: 10000
consumes:
- application/x-www-form-urlencoded
parameters:
- name: userId
required: true
in: path
type: string
x-aliyun-apigateway-backend-name: backend
- name: swaggerQuery1
in: query
required: false
default: '123465'
type: integer
format: int32
minimum: 0
maximum: 100
x-aliyun-apigateway-enum: 1,2,3
- name: swaggerQuery2
in: query
required: false
type: string
x-aliyun-apigateway-backend-location: header
x-aliyun-apigateway-backend-name: backendHeader
- name: swaggerHeader
in: header
required: false
type: number
format: double
minimum: 0.1
maximum: 0.5
x-aliyun-apigateway-backend-location: query
x-aliyun-apigateway-backend-name: backendQuery
- name: swaggerFormdata
in: formData
required: true
type: string
responses:
'200':
description: 200 description
'400':
description: 400 description
x-aliyun-apigateway-any-method:
operationId: case2
schemes:
- http
- https
x-aliyun-apigateway-paramater-handling: MAPPING
x-aliyun-apigateway-backend:
type: HTTP
address: 'http://www.aliyun.com'

API Gateway User Guide for Providers

63

3.2 Swagger example with HTTP-VPC as the API Gateway
backend service

path: '/builtin/echo/{abc}'
method: post
timeout: 10000
parameters:
- name: userId
in: path
required: false
default: '123465'
type: integer
format: int32
minimum: 0
maximum: 100
x-aliyun-apigateway-backend-name: abc
x-aliyun-apigateway-backend-location: path
responses:
'200':
description: 200 description
'400':
description: 400 description

swagger: '2.0'
basePath: /
info:
version: '0.9'
title: Aliyun Api Gateway Swagger Sample
schemes:
- http
- https
paths:
'/http/get/mapping/{userId}':
get:
operationId: case1
schemes:
- http
- https
x-aliyun-apigateway-paramater-handling: MAPPING
x-aliyun-apigateway-backend:
type: HTTP-VPC
vpcAccessName: vpcName1
path: '/builtin/echo/{userId}'
method: get
timeout: 10000
parameters:
- name: userId
in: path
required: true
type: string
- name: swaggerQuery
in: query
required: false

API Gateway User Guide for Providers

64

default: '123465'
type: integer
format: int32
minimum: 0
maximum: 100
- name: swaggerHeader
in: header
required: false
type: number
format: double
minimum: 0.1
maximum: 0.5
x-aliyun-apigateway-backend-location: query
x-aliyun-apigateway-backend-name: backendQuery
responses:
'200':
description: 200 description
'400':
description: 400 description
'/echo/test/post':
post:
operationId: testpost
schemes:
- http
- https
x-aliyun-apigateway-paramater-handling: MAPPING
x-aliyun-apigateway-backend:
type: HTTP-VPC
vpcAccessName: vpcName2
path: '/builtin/echo'
method: post
timeout: 10000
consumes:
- application/x-www-form-urlencoded
parameters:
- name: swaggerQuery1
in: query
required: false
default: '123465'
type: integer
format: int32
minimum: 0
maximum: 100
- name: swaggerQuery2
in: query
required: false
type: string
x-aliyun-apigateway-backend-location: header
x-aliyun-apigateway-backend-name: backendHeader
- name: swaggerHeader
in: header
required: false
type: number
format: double
minimum: 0.1
maximum: 0.5

API Gateway User Guide for Providers

65

3.3 Swagger example with Function Compute as the API
Gateway backend service

x-aliyun-apigateway-backend-location: query
x-aliyun-apigateway-backend-name: backendQuery
- name: swaggerFormdata
in: formData
required: true
type: string
responses:
'200':
description: 200 description
'400':
description: 400 description
x-aliyun-apigateway-any-method:
operationId: case2
schemes:
- http
- https
x-aliyun-apigateway-paramater-handling: PASSTHROUGH
x-aliyun-apigateway-backend:
type: HTTP-VPC
vpcAccessName: vpcName3
path: '/builtin/echo'
method: post
timeout: 10000
responses:
'200':
description: 200 description
'400':
description: 400 description

swagger: '2.0'
basePath: /
info:
version: '0.9'
title: Aliyun Api Gateway Swagger Sample
schemes:
- http
- https
paths:
'/http/get/mapping/{userId}':
get:
operationId: case1
schemes:
- http
- https
x-aliyun-apigateway-paramater-handling: MAPPING
x-aliyun-apigateway-backend:
type: FC
fcRegion: cn-shanghai
serviceName: fcService
functionName: fcFunction

API Gateway User Guide for Providers

66

3.4 Swagger example with MOCK as the API Gateway
backend service

arn: acs:ram::111111111:role/aliyunapigatewayaccessingfcrole
parameters:
- name: userId
in: path
required: true
type: string
responses:
'200':
description: 200 description
'400':
description: 400 description

swagger: '2.0'
basePath: /
info:
version: '0.9'
title: Aliyun Api Gateway Swagger Sample
schemes:
- http
paths:
'/mock/get/mapping/{userId}':
get:
operationId: case1
schemes:
- http
- https
x-aliyun-apigateway-paramater-handling: MAPPING
x-aliyun-apigateway-backend:
type: MOCK
mockResult: mock resul sample
mockStatusCode: 200
mockHeaders:
- name: server
value: mock
- name: proxy
value: GW
parameters:
- name: userId
in: path
required: true
type: string
responses:
'200':
description: 200 description
'400':
description: 400 description

API Gateway User Guide for Providers

67

1.

2.

3.

Environment stage management

What is environment management

Currently, all APIs are grouped into three environments: Test, Pre, and Release. The Test and Pre
environments are used by testers to test or debug APIs. Users use APIs in the Release Environment.

You can add variable parameters for API groups, defining different environment stages for APIs used

in the Test, Pre, and Release environments. An environment variable is a public constant that can be

customized in each environment. When calling APIs, you can place environment parameters in the

request. API Gateway distinguishes the request environment according to the environment parameter

information in your request.
How to configure environment variable parameters

Firstly, create variables for each environment. Then, configure the created environment variables
when defining APIs.

Create an environment variable

To distinguish request environments using environment variables, you must add a variable for Test,
Pre, and Release environment stages respectively.

Currently, each environment allows you to configure up to 50 environment variables.

Log on to the API Gateway console.
Click API Groups > View Stage.

Select an environment stage (Release, Pre, or Test) and click Add Variable.You must add a
variable for each environment stage one by one.

Enter the variable name and value, and click Add.

Name: The user-defined variable name. Make sure that the names of the variables

API Gateway User Guide for Providers

68

corresponding to the three environment stages are the same.

If you have multiple APIs, we recommend that the variable names indicate the
actual functions to facilitate future queries.

Value: Variable value.

If Function Compute is the backend service of the API Gateway, enter the name of
the service and function created in Function Compute as values of the variables.
You must enter the correct names of the service and function, or else you and the
other users cannot call the corresponding API.Here, we use Function Compute as
an example.Assuming that we have a function service and its names in the Test,
Pre, and Release environments are TestServiceD, PreServiceD, and ServiceD
respectively. When you define variables for the APIs of the Test, Pre, and Release
environments respectively, you can name the variable “Service” and enter the
corresponding service name as the value.

You can
also enter the function name as the value of the environment stage variable named
as “Function” and set the respective variables for the three environments.

Configure environment variables in API definitions

When you define the APIs, add the variable in the Request Path, Input Parameter Definitions, and
Define API Backend Service.

Expression method: #Variable Name#. For example: #Service# or #Function#.When you set Function

Compute as API Gateway’s backend service, you can enter the created variables as a service name

API Gateway User Guide for Providers

69

and function name.

Call a multi-environment API

After an API is published, you call the API in different environments.

Calls to the production environment

To call Release environment APIs, you are not required to add an environment variable.

Calls to the pre-release environment

To call Pre environment APIs, add the parameter X-Ca-Stage: PRE in the header when calling the API.

Calls to the test environment

To call Test environment APIs, add the parameter X-Ca-Stage: TEST in the header when calling the
API.

Using Function Compute as API Gateway's
backend service

Function Compute is an event-driven service. Function execution can be driven by events. In other
words, when a certain event occurs, it triggers a function. Currently, Function Compute supports
using API Gateway as an event source. When a request sets Function Compute as the backend service
API, API Gateway triggers the corresponding function and Function Compute returns the execution
result to API Gateway.

API Gateway interconnects with Function Compute. This allows you to open your function services as
APIs and resolves problems including certification, throttling, and data conversion (View API Gateway
functions).

API Gateway User Guide for Providers

70

-

-

Implementation principles

When API Gateway calls Function Compute, the data relevant to the API is converted to Map format
for transmission to Function Compute. After the data is processed by Function Compute, the
statusCode, other data, body and headers are returned as output as shown in the following figure.
Then, API Gateway maps the content returned by Function Compute to statusCode, header, body,
and other locations to return it to the client.

Format of parameters transmitted by API Gateway to Function
Compute

When Function Compute is used as a backend service of API Gateway, API Gateway uses a fixed
mapping structure to send the request parameter event to Function Compute. Function Compute
obtains and processes the expected parameters according to the following structure.

Note:

If "isBase64Encoded" is set to "true", it indicates that the API Gateway uses Base64 to
encode the body content transmitted to Function Compute. Before processing the body
content, Function Compute must perform Base64 decryption.
If "isBase64Encoded" is set to "false", it indicates that the API Gateway does not use
Base64 to encode the body content.

Format of parameters returned by Function Compute

{
"path":"api request path",
"httpMethod":"request method name",
"headers":{all headers,including system headers},
"queryParameters":{query parameters},
"pathParameters":{path parameters},
"body":"string of request payload",
"isBase64Encoded":"true|false, indicate if the body is Base64-encode"
}

API Gateway User Guide for Providers

71

-

-

●

●

●

-

1.

2.

3.

4.

Function Compute must output the content to return to API Gateway using the following JSON
format, to facilitate parsing by API Gateway.

Note:

When the body content is encoded in a binary format, you must use Base64 to encode
the body content in Function Compute and set "isBase64Encoded" to "true". If the body
content does not need to be encoded in Base64 format, set "isBase64Encoded" to
"false". When "isBase64Encoded" is "true", API Gateway performs Base64 decryption on
the body content before returning it to the client.
In a Node.js environment, Function Compute sets callback based on the specific
situation.

To return a successful message:
callback{null,{“statusCode”:200,”body”:”…”}}.
To return an exception: callback{new Error(‘internal server error’),null}.
To return a client error: callback{null,{“statusCode”:400,”body”:”param
error”}}.

If the format of the result returned by Function Compute does not conform to the
format requirements, API Gateway returns 503 Service Unavailable to the client.

Create an API with Function Compute as the backend
service

Follow these steps to create an API with Function Compute as a backend service.

Create a function in the Function Compute console
Create and define a Function Compute backend service API
Debug the API
Publish the API to the production environment

Create a function in the Function Compute console

Create a service. Log on to the Function Compute console, select the Region of the service
and function to create and click Create Service. In the dialog box,complete the service
creation process.

{
"isBase64Encoded":true|false,
"statusCode":httpStatusCode,
"headers":{response headers},
"body":"..."
}

API Gateway User Guide for Providers

72

2.

i.

ii.

iii.

iv.

v.

Note: After creating the service, you cannot change its region, therefore, make sure
you select the correct region.

Create a function in the created service. On the page of this newly created service, click
Create Function to enter the function creation process:

Select a function template.The Function Compute console provides an API
Gateway backend implementation template for the Node.js 6 environment: api-
gateway-nodejs6.If the api-gateway-nodejs6 template does not suit your business
needs, select Empty Function. After selecting the Blank Function template, you
must provide your own code in Basic Management Configuration. To finish the
upload, prepare your code package in advance.

Configure the trigger. Select No Trigger and click Next.
Configure function settings: Enter basic information, configure the code, set
environment variables, and configure the environments. Then, click Next.
Ignore Service Role Management step and click Next.As we have already
configured the corresponding role Arn permissions in the RAM console, you do
not have to configure service role here. When creating an API in the API Gateway
console, you click Get Authorization to automatically obtain the required role Arn.
Check that all the information is correct and then click Create.After creating the
function, you can review its basic information in the Function List.

API Gateway User Guide for Providers

73

1.

i.

ii.

iii.

Create and define a Function Compute backend service API

You must create an API in the API Gateway console and define its backend service as Function
Compute.

Log on to the API Gateway console.

Create a group.

Click API Groups from the left-side navigation pane, select a region for the group, and click
Create Group. (Skip this step if you have already created a group.)

Note: If Function Compute and the API are in different regions, your Function Compute
service is accessed over the Internet.

If you have high data security and network latency requirements, create the API in the same
region as the function.

After creating the API group, you can use Environment Management to set environment
variables for this group. APIs can be used in three environments: Test, Pre, and Release. To
avoid backend address changes because of environment conversations, you can add
environment variable parameters to implement automatic request routing. For the
environment variable configuration method, see Environment management.

Create and define an API.

After creating the group, click the View APIs button from the Operation column of
this group to go to its API List page.
Click Create API to enter the API creation and definition process.
Enter the basic information of the API and click Next.

API Gateway User Guide for Providers

74

i.

ii.

iii.

iv.

Define API requests and click Next.

Note: If the Request Mode is set to Request Parameter Passthrough, the
parameter body content sent to API Gateway is not processed, and is
forwarded directly to Function Compute.

Define the API backend service and click Next.

Note: On this page, you must:

Set the Backend Service Type to Function Compute.
Enter the name of the service you created in the Function Compute
console as the Service Name.
Enter the name of the function you created in the Function
Compute console as the Function Name.
Click Get Authorization to automatically obtain the role Arn.If this is
the first time you have obtained role authorization for Function

API Gateway User Guide for Providers

75

Compute as the API Gateway backend service, after you click Get
Authorization, the RAM console’s authorization page is displayed.
You must click the policy to grant permission on the RAM console,
and then return to the API creation page and click Get
Authorization again. The role Arn is then automatically displayed in
the selection box.

Define response and then click Create.

Note: a returned result sample is required and the format must follow the
Format of parameters returned by Function Compute.

API Gateway User Guide for Providers

76

1.

2.

3.

4.

1.

2.

3.

For more information, see Create an API.

Debug the API

After you create and define an API, the interface automatically displays the API List page. You can test
whether the created API is usable and the request chain is correct.

On the API List page, click the API name or the Manage button to go to the API Definition
page.
Click Debug API on the left-side navigation pane.
Input the request parameters and click Send Request.The returned results are displayed on
the right-side of the page.If it returns a successful result, it indicates that the API can be
used.If a 4XX or 5XX error code is returned, it indicates that the request has encountered an
error. For more information, see How to obtain the error message and Error code table.
Publish the API to the Pre environment for testing before it goes online.After testing proves
the API is usable, you can return to the API Definition page and publish the API to the Pre
environment. Then, use the subdomain name to simulate real user requests to test calling.

Note: If an environment variable is set in the API definition, enter the parameter X-Ca-
Stage: RELEASE in the header to call the pre-release environment API.

Publish the API to the production environment

After you debug the API to prove it can be used, you can publish it.

On the API List page, click the API name or the Manage button to go to the API Definition
page.
Click the Publish button in the upper-right corner of the page to bring up the Publish API
dialog box.
Select Release, enter remarks, and click Publish.After the API is published to the production

API Gateway User Guide for Providers

77

environment, your users can call it.
For more information about publishing, see the Publish an API document.

Samples

The three samples namely a function code sample, API request sample, and API Gateway return
sample are described as follows.

Function code sample

This is a sample of code configured in Function Compute.

module.exports.handler = function(event, context, callback) {
var responseCode = 200;
console.log("request: " + JSON.stringify(event.toString()));
//Converts the event to a JSON object.
event=JSON.parse(event.toString());
var isBase64Encoded=false;
//Returns the result for the statusCode you enter; used to test scenarios with different statusCode values
if (event.queryParameters !== null && event.queryParameters !== undefined) {
if (event.queryParameters.httpStatus !== undefined && event.queryParameters.httpStatus !== null &&
event.queryParameters.httpStatus !== "") {
console.log("Received http status: " + event.queryParameters.httpStatus);
responseCode = event.queryParameters.httpStatus;
}
}
//If the body is Base64 encoded, Function Compute must decode the body content
if(event.body!==null&&event.body!==undefined){
if(event.isBase64Encoded!==null&&event.isBase64Encoded!==undefined&&event.isBase64Encoded){
event.body=new Buffer(event.body,'base64').toString();
}
}
//input is the content that API Gateway inputs to Function Compute
var responseBody = {
message: "Hello World!",
input: event
};

//Base64 encodes the body content, can be set according to your actual needs
var base64EncodeStr=new Buffer(JSON.stringify(responseBody)).toString('base64');

//Format of the result that Function Compute returns to API Gateway; must conform to the following requirements:
Set isBase64Encoded according to whether the body must be Base64 encoded
var response = {
isBase64Encoded:true,
statusCode: responseCode,
headers: {
"x-custom-header" : "header value"
},
body: base64EncodeStr
};
console.log("response: " + JSON.stringify(response));

API Gateway User Guide for Providers

78

Sample request

A POST format request path for the following API:

API Gateway return sample

FAQ

callback(null, response);
};

/fc/test/invoke/[type]

POST http://test.alicloudapi.com/fc/test/invoke/test?param1=aaa¶m2=bbb

"X-Ca-Signature-Headers":"X-Ca-Timestamp,X-Ca-Version,X-Ca-Key,X-Ca-Stage",
"X-Ca-Signature":"TnoBldxxRHrFferGlzzkGcQsaezK+ZzySloKqCOsv2U=",
"X-Ca-Stage":"RELEASE",
"X-Ca-Timestamp":"1496652763510",
"Content-Type":"application/x-www-form-urlencoded; charset=utf-8",
"X-Ca-Version":"1",
"User-Agent":"Apache-HttpClient\/4.1.2 (java 1.6)",
"Host":"test.alicloudapi.com",
"X-Ca-Key":"testKey",
"Date":"Mon, 05 Jun 2017 08:52:43 GMT","Accept":"application/json",
"headerParam":"testHeader"

{"bodyParam":"testBody"}

200
Date: Mon, 05 Jun 2017 08:52:43 GMT
Content-Type: application/json; charset=UTF-8
Content-Length: 429
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET,POST,PUT,DELETE,HEAD,OPTIONS , PATCH
Access-Control-Allow-Headers: X-Requested-With, X-Sequence,X-Ca-Key,X-Ca-Secret,X-Ca-Version,X-Ca-
Timestamp,X-Ca-Nonce,X-Ca-API-Key,X-Ca-Stage,X-Ca-Client-DeviceId,X-Ca-Client-AppId,X-Ca-Signature,X-Ca-
Signature-Headers,X-Forwarded-For,X-Ca-Date,X-Ca-Request-Mode,Authorization,Content-Type,Accept,Accept-
Ranges,Cache-Control,Range,Content-MD5
Access-Control-Max-Age: 172800
X-Ca-Request-Id: 16E9D4B5-3A1C-445A-BEF1-4AD8E31434EC
x-custom-header: header value

{"message":"Hello World!","input":{"body":"{\"bodyParam\":\"testBody\"}","headers":{"X-Ca-Api-
Gateway":"16E9D4B5-3A1C-445A-BEF1-4AD8E31434EC","headerParam":"testHeader","X-Forwarded-
For":"100.81.146.152","Content-Type":"application/x-www-form-urlencoded; charset=UTF-
8"},"httpMethod":"POST","isBase64Encoded":false,"path":"/fc/test/invoke/test","pathParameters":{"type":"test"},"que
ryParameters":{"param1":"aaa","param2":"bbb"}}}

API Gateway User Guide for Providers

79

-

-

Why can’t I input an existing function?

You must make sure that the service and function names you enter are consistent with the names
used to create the service and function on the Function Compute console.

Can I set multiple functions as an API’s backend service?

No. Currently, one API can be mapped to one particular function only.

HTTP 2.0

API Gateway supports HTTP 2.0

API Gateway supports new features of HTTP 2.0, multiplexing, and request header compression.

MultiPlexing: Dependency on multiple connections during concurrent processing and
sending of requests and responses in HTTP 1.x is eliminated. The client and server can divide
an HTTP message into multiple frames independent of each other, send the frames in a
random order, and then recombine them at another end, which avoids unnecessary latency
and improves efficiency. In case of a large amount of requests, the client can use this method
to transmit the request data with only a few connections.

Header compression: As previously mentioned, the header in HTTP 1.X carries much
information and must be resent each time. In HTTP 2.0, the client and server use the
“header table” to trace and save the sent key-value pairs. Same data is not repeatedly sent
in each request and response. The “header table” exists during the connection duration of

API Gateway User Guide for Providers

80

HTTP 2.0 and is incrementally updated by both the client and the server. Each new header
key-value pair is either added to the end of the current table or replaces a value in the table,
so as to reduce the data volume of each request.

How to enable HTTP 2.0

New API groups (created after July 14, 2017)

All the HTTPS APIs support HTTP2 communication between the client and API Gateway.
(HTTP 2.0 runs only in an HTTPS environment, and thus you must Enable HTTPS before using
HTTP 2.0.)

Stock API groups

The manual enabling function will be available in the future.

To Support HTTPS

HTTPS is a protocol integrating HTTP and SSL. It encrypts information and data to guarantee data
transmission security. HTTPS is widely used today.

The API gateway also supports HTTPS to encrypt your API requests. The encryption can be API-level,
that is, you can configure your APIs to support only HTTP or HTTPS or support both of them.

API Gateway User Guide for Providers

81

-

-

-

If you require the APIs to support HTTPS, follow these steps:

Step 1. Prepare materials

Prepare the following materials:

A self-owned controllable domain name
An SSL certificate applied for this domain name
Only the PEM certificate format is supported. For more information, see About Certificate
Formats.

The SSL certificate contains XXXXX.key and XXXXX.pem, which can be opened using the text editor.

Example:

KEY

PEM

Step 2: Bind the SSL certificate

After preparing the preceding materials, log on to the API gateway console and click Open API >
Group Management. Click the group to which the SSL certificate is to be bound and check the group
details.

Before binding the SSL certificate, bind an Independent domain name to the API group.

-----BEGIN RSA PRIVATE KEY-----
MIIEpAIBAAKCAQEA8GjIleJ7rlo86mtbwcDnUfqzTQAm4b3zZEo1aKsfAuwcvCud
....
-----END RSA PRIVATE KEY-----

-----BEGIN CERTIFICATE-----
MIIFtDCCBJygAwIBAgIQRgWF1j00cozRl1pZ+ultKTANBgkqhkiG9w0BAQsFADBP
...
-----END CERTIFICATE-----

API Gateway User Guide for Providers

82

-

-

-

-

Independent domain name - Add an SSL certificate.

Certificate name: Indicates the custom name for further identification.
Certificate content: Indicates the complete content of the certificate. You must copy all
content in XXXXX.pem.
Private key: Indicates the private key of the certificate. You must copy the content in
XXXXX.key.

Click OK to complete binding of the SSL certificate.

Step 3: Adjust the API configuration

After binding the SSL certificate, you can enable access over HTTP, HTTPS, or HTTP and HTTPS for
APIs. For security considerations, we recommend that you configure all APIs to support access over
HTTPS.

You can select Open API > API list to locate the corresponding API and click API definition > Edit >
Basic request definition to modify the API.

The API supports the following protocols:

HTTP: The API only supports access over HTTP.

API Gateway User Guide for Providers

83

-

-

-

●

●

-

HTTPS: The API only supports access over HTTPS.
HTTP and HTTPS: The API supports access over both HTTP and HTTPS.

After the adjustment, the API configuration is complete. Your API supports access over HTTPS.

IP access control

IP access control is one of the API security components provided by the API Gateway and controls the
source IP addresses (or IP address segments) that can call APIs. You can add an IP address to the
whitelist or blacklist of an API to permit or reject the API requests from this IP address.

A whitelist can contain IP addresses or its combination with application IDs. Requests from IP
addressed not listed on whitelist will be rejected.

For IP addresses, only IP addresses from specified source are allowed to visit.
For IP address and application ID combinations, application IDs can only visit from
their combined IP addresses. Visits from other IP addresses will be rejected.

Requests from IP addresses on the blacklist will be rejected by API Gateway.

API Gateway User Guide for Providers

84

-

-

How to use this function

Add an IP access control policy

Create an IP access control policy and bind it to the API to which the access needs to be controlled.

Create an IP access control policy

Open API Gateway Console and choose “Publish APIs” > “IP Access Control”.

Click “Create IP Control Policy” to display the access control creation window.

Enter the required information and click “OK”.

If you set the access control type to Allow, you are configuring a whitelist.
If you set the access control type to Refuse, you are configuring a blacklist.

API Gateway User Guide for Providers

85

Add a policy

After you create a whitelist or blacklist, you must enter the control policies corresponding to the list
type. For a whitelist, you can enter the application ID, IP address, or combination of an application ID
and an IP address. For a blacklist, enter an IP address.

Click “OK” to complete the configuration.

API binding

Bind the IP control policy to an API for the policy to take effect.

On the IP control policy list:

Find the required policy and bind API.

API Gateway User Guide for Providers

86

Select the corresponding API to bind the policy to it.

NOTE: Each API can have only one access control policy bound to it, no matter whether the policy is a
blacklist or whitelist.

Delete an IP access control policy

Select a policy from the IP control policy list and delete it.

NOTE: If an IP control policy has been bound to an API, unbind it from the API before deleting it.

Check the bound API

You can find the API to which a policy is bound on the IP access control details page.

FAQ

When will the operation of binding or deleting an IP control policy take effect?

On the API Gateway, a policy binding operation takes effect immediately.

Can an API have different IP control policies bound in different environments?

Yes. You can bind different IP control policies to an API in different environments. We
recommend that you bind a specified IP address to the test environment and pre-release
environment to ensure security of the test environment.

API Gateway User Guide for Providers

87

Why is application blacklist not supported?

API calls require application authorization. To prohibit API calls for an application, you only
need to delete its authorization. Therefore, application blacklist is not needed.

API Gateway User Guide for Providers

88

	User Guide for Providers
	Overview
	Create an API
	Define an API
	Basic Information of API
	Define API request
	Define API backend service
	Part 4: Define response

	Debug an API
	Subsequent steps

	Enable API services
	Enable API services
	API group
	Domain name and certificate
	Test, production, and authorization

	Manage an API
	API release management
	API authorization management
	Release history and version switching

	plugin
	Plugin Overview
	Plug-in limits
	Supported plug-ins
	Quick start
	Developer Guide

	Throttling
	Notes
	Plug-in configurations

	IP address-based access control
	Usage instructions
	Plug-in configurations

	Backend Signature
	What is backend signature?
	Usage instructions
	Plug-in configurations

	JSON Web Token (JWT)
	Usage instructions
	Plug-in configurations

	CORS
	Plug-in configurations

	API Gateway Caches
	Usage instructions
	Plug-in configurations

	Backend Signature
	What Is a Signature Key
	Modify or Replace the Leaked Key

	Throttling
	What is throttling policy

	Monitoring and warning
	Limits
	Backend Signature Demo
	Overview
	How to read the API Gateway signature
	How to add a signature at the backend HTTP service
	Organize data involved in signature adding
	Calculate the signature
	Description
	Content-MD5
	Headers
	Headers organization method

	URL
	Debugging mode
	Verify the time stamp

	OpenID Connect authorization
	Implementation principle

	Certification method
	Solution
	1. Authorization server (AS): Used to generate the id_token and manage the KeyPair.

	2. Resource server (RS): Used to verify the id_token and resolve corresponding information.

	How to implement the AS module
	Use the OIDC in the AS to generate the id_token
	KeyId description
	KeyPair description

	Process for generating an id_token

	Configure an API in the API gateway
	Use Log Service to view API call logs
	1 Function overview
	1.1 Online log search
	1.2 Detailed API call logs
	1.3 Custom analysis charts
	1.4 Preset analysis reports

	2 Use the Log Service to view API logs
	2.1 Configure the Log Service
	2.1.1 Configure the Log Service on the API Gateway console
	2.1.2 Configure the log service on the Log Service console

	2.2 View logs
	2.3 View predefined reports
	2.4 Custom query reports

	3 Maintain logs
	ApiGateway_RAM
	Part 1: Policy management
	System authorization policy
	Custom authorization policy

	Part 2: Authorization policy
	Part 3: Resource (operation object list)

	Apigateway_VPC
	1 Authorize and bind a VPC instance
	1.1 Prepare for a VPC environment
	1.2 Authorize the API gateway for access

	2 Create an API
	3 Authorize a security group
	4 Test the API
	5 Revoke authorization
	5 FAQ
	Is there an extra cost for using this function?
	Can I bind multiple VPC instances?
	Why cannot I authorize my VPC?
	If I authorize the API gateway, is my VPC secure?

	Configure Mock
	Configure a Mock
	1.Enter the Mock response result
	2. Enter response statusCode
	3.Define a Mock header

	Remove a Mock

	Create APIs by Importing Swagger
	1. Swagger extensions:
	1.1 x-aliyun-apigateway-auth-type: authentication type
	1.2 x-aliyun-apigateway-paramater-handling: API mapping relationship
	1.3 x-aliyun-apigateway-backend: backend type
	1.3.1 Backend service type: HTTP
	1.3.2 Backend service type: HTTP-VPC
	1.3.3 Backend service type: FC
	1.3.4 Backend service type: MOCK

	1.4 x-aliyun-apigateway-Constant-parameters: constant parameters
	1.5 x-aliyun-apigateway-system-parameters: the backend service parameters.
	1.6 x-aliyun-apigateway-backend-location: the backend parameter location.
	1.7 x-aliyun-apigateway-backend-name: the backend parameter name.
	1.8 x-aliyun-apigateway-any-method: ANY method

	2. Compatibility
	2.1 Comparison between Swagger parameter types and original API Gateway type

	3. Swagger example
	3.1 Swagger example with HTTP as the API Gateway backend service
	3.2 Swagger example with HTTP-VPC as the API Gateway backend service
	3.3 Swagger example with Function Compute as the API Gateway backend service
	3.4 Swagger example with MOCK as the API Gateway backend service

	Environment stage management
	What is environment management
	How to configure environment variable parameters
	Create an environment variable
	Configure environment variables in API definitions

	Call a multi-environment API
	Calls to the production environment
	Calls to the pre-release environment
	Calls to the test environment

	Using Function Compute as API Gateway's backend service
	Implementation principles
	Format of parameters transmitted by API Gateway to Function Compute
	Format of parameters returned by Function Compute

	Create an API with Function Compute as the backend service
	Create a function in the Function Compute console
	Create and define a Function Compute backend service API
	Debug the API
	Publish the API to the production environment

	Samples
	Function code sample
	Sample request
	API Gateway return sample

	FAQ
	Why can’t I input an existing function?
	Can I set multiple functions as an API’s backend service?

	HTTP 2.0
	API Gateway supports HTTP 2.0
	How to enable HTTP 2.0

	To Support HTTPS
	If you require the APIs to support HTTPS, follow these steps:
	Step 1. Prepare materials
	Step 2: Bind the SSL certificate

	Step 3: Adjust the API configuration

	IP access control
	How to use this function
	Add an IP access control policy
	Create an IP access control policy
	Add a policy
	API binding

	Delete an IP access control policy
	Check the bound API

	FAQ

