
MaxCompute

Product Introduction

Product Introduction

What is MaxCompute

MaxCompute is a big data processing platform that processes and stores massive batch structural
data to provide effective data warehousing solutions and big data modeling. MaxCompute supports
a variety of classic distributed computing models that enable you to solve massive data calculation
problems while reducing business costs, and maintaining data security.

MaxCompute seamlessly integrates with DataWorks, which provides one-stop data synchronization,
task development, data workflow development, data operation and maintenance, and data
management for MaxCompute. For more information, see DataWorks.

Benefits of MaxCompute

Large-scale computing and storage

MaxCompute is suitable for storage and computing large volumes of data (up to PB-level).

Multiple computation models

MaxCompute supports data processing methods based on SQL, MapReduce, Graph, MPI iteration
algorithm, and other programming models.

Strong data security

MaxCompute supports all offline business analysis of Alibaba Group with robust multi-layer sandbox
protection and monitoring.

Low-cost

MaxCompute can help reduce procurement costs by 20%-30% compared with on-premises private
cloud models.

MaxCompute Product Introduction

1

Function

MaxCompute Tunnel

Supports large volumes of historical data channels

Tunnel provides high concurrency data upload and download services. You can use Tunnel
to import TB/PB level data from various heterogeneous data sources into MaxCompute, or
export data from MaxCompute. As the unified channel for MaxCompute data transmission,
Tunnel provides stable and high- throughput services. Tunnel provides RESTful APIs and a
Java SDK to facilitate programming.

Real-time and incremental data channels

For real-time data upload scenarios, MaxCompute provides DataHub services with low
latency and convenient usage. It is especially suitable for incremental data import. DataHub
also supports a variety of data transmission plug-ins, such as Logstash, Flume, Fluentd,
Sqoop.

Computing and analysis tasks

MaxCompute provides multiple computing models.

SQL: In MaxCompute, data is stored in tables. MaxCompute provides an SQL query function
for the external interface. You can operate MaxCompute similarly to a traditional database
software but with the ability to process PB-level data.

Notes:

MaxCompute SQL does not support transactions, index, or UPDATE/DELETE
operations.

MaxCompute SQL syntax differs from Oracle and MySQL, notably, you cannot
seamlessly migrate SQL statements of other databases into MaxCompute. For
more information, see SQL syntax.

After you submit MaxCompute jobs, the jobs can be queued and scheduled for
execution. MaxCompute SQL can complete queries at the second- to
millisecond-level.

MaxCompute Product Introduction

2

UDF: A user-defined function. MaxCompute provides numerous built-in functions to meet
your computing needs, while also supporting the creation of custom functions.

MapReduce: MapReduce is a Java MapReduce programming model provided by
MaxCompute and uses the Java programming interface. It simplifies the development
process, however, users are recommended to have a basic understanding of the concept of
distribution, and relevant programming experience, before using MapReduce.

Graph: Graph in MaxCompute is a processing framework designed for iterative graph
computing. Graph jobs use graphs to build models. Graphs are composed of vertices and
edges. Vertices and edges contain values. After performing iterative graph editing and
evolution, you can get the final result. Typical applications include PageRank, SSSP
algorithm, and K-Means algorithm.

SDK

A convenient toolkit provided for developers. For more information, see MaxCompute SDK.

Security

MaxCompute provides powerful security services that fully protects user data. For more information
about each function model, see MaxCompute Security Manual.

History

Date Description

2010
Named ODPS, the service is released as an
operational component of Alibaba Group’s
Ant Financial

2013 ODPS is released for beta testing

2013

ODPS v1.0 is released as a commercially
available service. A single cluster contains
5,000 servers, with support for multi-level
clusters available.

2016 Renamed to MaxCompute, v2.0 is released as
a commercially available service.

MaxCompute Product Introduction

3

Definition

Project

Project is the basic unit of operation in MaxCompute. It is similar to the concept of Database or
Schema in traditional databases, and sets the boundary for MaxCompute multi-user isolation and
access control. You can have multiple project permissions at the same time and, by granting relevant
authorization, users can access the objects of another project in their own project, such as Table,
Resource, Function and Instance.

To enter a project (in this example, ‘my project’), run the Use Project command, as follows:

After running the preceding command, you can enter a project named my project and all objects in
this project can be operated. Use Project is a command provided by the MaxCompute client. For
more commands, see Common Commands.

Table

A table is the data storage unit in MaxCompute. A table is a two-dimensional data structure
composed of rows and columns. Each row represents a record, and each column represents a field
with the same data type. One record can contain one or more columns. The column name and data
type comprise the schema of a table.

The operating objects (input, output) of various computing tasks in MaxCompute are tables. You can
create a table, delete a table, and import data into a table.

MaxCompute v2.0 supports two types of tables: internal tables and external tables.

For internal tables, all data is stored in MaxCompute tables, and the columns in the table can
be any of the data types supported by MaxCompute.

 use my_project -- Enter a project named 'my_project'.

MaxCompute Product Introduction

4

For external tables, data is not stored in MaxCompute. Instead, table data can be stored in
OSS or Table Store. MaxCompute only records meta information of the table. You can use
MaxCompute’s external table to process unstructured data on OSS or Table Store, such as
video, audio, genetics, meteorological, and geographic information.

Partition

To improve MaxCompute’s processing efficiency, you can specify a partition when creating a table.
Specifically, several fields in the table can be specified as partition columns. A partition is comparable
in terms of functionality to a directory under a file system.

In MaxCompute each value of a partition column is used as a partition. You can specify multiple fields
of the table as a partition whereby they then function similarly to multi-level directories. If the
partitions to be accessed are specified when you use data, then only corresponding partitions are
read and a full table scan is avoided, improving processing efficiency while reducing costs.

Partition types

Currently, MaxCompute supports the following partition types: TINYINT, SMALLINT, INT, BIGINT,
VARCHAR, and STRING.

Note:

In MaxCompute versions earlier than 2.0, only STRING partition type is supported. Although the
partition type can be specified as BIGINT, it is still handled as STRING, and only the schema of
the table is indicated as a BIGINT type.

MaxCompute Product Introduction

5

An example is as follows:

After the execution, the returned result is only one line, because 10 was treated as a STRING and
compared with 2, meaning no result can be returned.

Restrictions

When using a partition, the following restrictions apply:

The maximum number of partition levels for a single table is 6 levels.

The maximum number of single table partitions is 60,000.

The maximum number of query partitions for a query is 10,000.

For example, to create a two-level partition table with the date as the level one partition and the
region as the level two partition:

When querying, use the partition column as a filter condition in the WHERE condition filter:

Some SQL operations on the partitions are less efficient and may cause higher billing, for example,
using dynamic partition.

For some MaxCompute commands, when performing operations on partitioned and non-partitioned
tables, the syntax is different. For more information, see DDL SQL and DML SQL.

create table parttest (a bigint) partitioned by (pt bigint);
insert into parttest partition(pt) select 1, 2 from dual;
insert into parttest partition(pt) select 1, 10 from dual;
select * from parttest where pt >= 2;

create table src (key string, value bigint) partitioned by (pt string,region string);

select * from src where pt='20170601' and region='hangzhou'; -- This example is the correct method of using
WHERE conditional filter. When MaxCompute generates a query plan, only data of the region 'hangzhou' under the
'20170601' partition is accessed.
select * from src where pt = 20170601; -- This example is an incorrect method of using the WHERE conditional filter.
In this example, the effectiveness of the partition filter cannot be guaranteed. Pt is a STRING type. When the
STRING type is compared with BIGINT type (20170601), MaxCompute converts both to DOUBLE type, and loss of
precision occurs.

MaxCompute Product Introduction

6

Data type

Basic data types supported by MaxCompute2.0 are listed in the following table. Columns in a
MaxCompute table must be any of the listed types. New types include TINYINT, SMALLINT, INT,
FLOAT, VARCHAR, TIMESTAMP, and BINARY data type.

Notes:

If data type such as TINYINT, SMALLINT, INT, FLOAT, VARCHAR, TIMESTAMP, or BINARY are
involved when running an SQL command, the set command set
odps.sql.type.system.odps2=true; must be added before the SQL command. The set command
and SQL command are then submitted simultaneously. If INT type is involved, and the set
command is not added, the INT type is converted to BIGINT, which is 64 bits.

Type New Constant Description

BIGINT No 100000000000L, -1L
64-bit signed
integer, range -263
+ 1 to 263 - 1

STRING No
“abc”,’bcd’,”al
ibaba” ‘inc’
(Note3)

A single string
length can be up to
8M

BOOLEAN No TRUE,FALSE True/False, Boolean
type

DOUBLE No 3.1415926 1E+7 64-bit binary
floating point

DATETIME No DATETIME ‘2017-
11-11 00:00:00’

0001-01-01 00:00:00
~ 9999-12-31
23:59:59, Date type,
use UTC+8 as the
standard time
system

TINYINT Yes Y,-127Y 8-bit signed integer,
range -128 to 127

SMALLINT Yes 32767S, -100S
16-bit signed
integer, range -
32768 to 32767

INT Yes 1000,-15645787
(Note1)

32-bit signed
integer-231 to 231 -
1

FLOAT Yes None 32-bit binary
floating point

VARCHAR Yes None (Note2) Variable-length
character type, n is

MaxCompute Product Introduction

7

All data types in the preceding table can be NULL.

Notes:

For INT constant, if the range of INT is exceeded, INT is converted into BIGINT; if the
range of BIGINT is exceeded, it is converted into DOUBLE. In MaxCompute versions
earlier than 2.0, all INT types in SQL script are converted to BIGINT , for example:

To be compatible with earlier MaxCompute versions, MaxCompute 2.0 retains this
conversion without setting odps.sql.type.system.odps2 as true, however, a warning is
triggered when INT is treated as BIGINT. In this case, we recommend that you change
an Int to a Bigint to avoid confusion.

VARCHAR constants can be expressed by STRING constants of implicit transformation.

STRING constants support connections, for example, ‘abc’’xyz’ is parsed as
‘abcxyz’, and different parts can be written on different lines.

Complex Data Types

Complex data types that MaxCompute supports are listed in the following table.

Note:

If a complex data type is involved when you run a SQL command, the set command set
odps.sql.type.system.odps2=true; must be added before the SQL command. The set command

the length, and the
range is 1 to 65535.

BINARY Yes None
Binary data type, a
single string length
can be up to 8M

TIMESTAMP Yes

TIMESTAMP ‘2017-
11-11
00:00:00.123456789
’

It is independent of
the time zone and
ranges from January
1st 0000 to
December 31, 9999
23.59:59.999999999,
and is accurate to
nanosecond-level.

create table a_bigint_table(a int);
select cast(id as int) from mytable;

MaxCompute Product Introduction

8

and SQL command are then submitted simultaneously.

Lifecycle

The lifecycle of a MaxCompute table or partition is measured from the last update time. If the table or
partition remains unchanged after a specified time, MaxCompute automatically recycles it. The
specified time indicates the lifecycle.

Lifecycle units: days, positive integers only.

When a lifecycle is specified for a non-partition table, the lifecycle is counted from the last
time the table data was modified (LastDataModifiedTime). If table data has not been
changed, MaxCompute recycles the table automatically without manual operation (similar to
the drop table operation).

Note:

Lifecycle scanning is started at a scheduled time every day, and entire partitions are
scanned. If the partition remains unchanged after its lifecycle, MaxCompute
automatically recycles it.

When a lifecycle is specified for a non-partition table, the lifecycle is counted from the last
time the table data was modified (LastDataModifiedTime). If table data has not been
changed, MaxCompute recycles the table automatically without manual operation (similar to

Type Definition method Construction method

ARRAY
array< int >;
array< struct< a:int,
b:string >>

array(1, 2, 3);
array(array(1, 2);
array(3, 4))

MAP
map< string, string >;
map< smallint, array<
string>>

map(“k1”, “v1”, “k2”,
“v2”);
map(1S, array(‘a’, ‘b’),
2S, array(‘x’, ‘y))

STRUCT

struct< x:int, y:int>;
struct< field1:bigint,
field2:array< int>,
field3:map< int, int>>

named_struct(‘x’, 1,
‘y’, 2);
named_struct(‘field1’,
100L, ‘field2’, array(1, 2),
‘field3’,
map(1, 100, 2, 200)

MaxCompute Product Introduction

9

the drop table operation).

Note:

Lifecycle scanning is started at a scheduled time every day, and entire partitions are
scanned. If the partition remains unchanged after its lifecycle, MaxCompute
automatically recycles it.

When a lifecycle is specified for a partition table, MaxCompute determines whether to
recycle the partition based on its LastDataModifiedTime. Unlike non-partition tables, a
partition table cannot be deleted even when all its partitions have been recycled.

You can set the lifecycle of tables, but not of partitions. The lifecycle of a table can be
specified during table creation.

If no lifecycle is specified, according to lifecycle rules the table, or partition, cannot be
automatically recycled by MaxCompute.

For more information on specifying or modifying lifecycle during table creation, and modifying a
table’s LastDataModifiedTime, see DDL documentation.

Resources

Resources is a unique concept of MaxCompute. To use user-defined functions (for more information,
see UDF), or MapReduce, you must use resources to accomplish tasks.

SQL UDF: After writing a UDF, you must compile it as a Jar package and upload the package
to MaxCompute as a resource. Then, when you run this UDF, MaxCompute automatically
downloads its corresponding JAR package to obtain the written code. The JAR package is
one type of MaxCompute resource.

MapReduce: After writing a MapReduce program, you must compile it as a Jar package and
upload the package to MaxCompute as a resource. Then, when running a MapReduce job,
the MapReduce framework automatically downloads the corresponding JAR package and
obtain the written code. You can upload text files and MaxCompute tables to MaxCompute
as different types of resources. Then, you can read or use these resources when running UDF
or MapReduce.

MaxCompute Product Introduction

10

MaxCompute provides interfaces for you to read and use resources. For more information, see Use
Resourse Example and UDTF Usage .

Note:

For more information about the limitations of resource reading by MaxCompute’s user-defined
function (UDF) or MapReduce function, see Application Restriction.

Types of MaxCompute resources include:

File type

Table type, which are tables in MaxCompute

Note:

Currently, only BIGINT, DOUBLE, STRING, DATETIME, and BOOLEAN fields are supported
in tables referenced by MapReduce.

Jar type, which is compiled Java JAR packages

Archive type, which is the compression type, and is determined by the resource name suffix.
Supported compression types include: .zip/.tgz/.tar.gz/.tar/jar

For more information about resources, see Add Resource, Drop Resource, List Resources and
Describe Resource.

Function

MaxCompute provides SQL computing capabilities. In MaxCompute SQL, you can use the system’s
built-in functions to perform certain computing and counting tasks. However, if such SQL functions
do not meet your requirements, you can use the Java programming interface provided by
MaxCompute to develop user-defined functions (for more information, see UDFs). UDFs can be
divided into scalar valued functions, user-defined aggregate functions (UDAFs), and user-defined
tables functions (UDTFs). UDFs are used in the same way as the built-in function, that is, you specify
the UDF name, and input relevant parameters in SQL.

After writing the code for a UDF, you must compile the code into a JAR package and upload this
package to MaxCompute. Then, you can register the UDF in MaxCompute.

MaxCompute Product Introduction

11

For more information, see Function introduction.

Task

A task is a basic computing unit of MaxCompute. Computing tasks such as SQL DML and MapReduce
 functions are completed by task.

For most user-submitted tasks, MaxCompute first analyzes them and then generates a task execution
plan. The execution plan is composed of multiple execution stages that are dependent on each other.

Currently, the execution plan is displayed as a directed acyclic graph. The vertex in the graph
designates the execution phase, while edges of the graph indicate the dependence of each execution
phase. MaxCompute follows the dependency of execution plan to run each phase.

In an execution stage, multiple processes, known as Workers, complete the computing work.
Different Workers handle different data, but the execution logic is the same. Computational tasks are
executed directly in MaxCompute instances, for example, Status Instance and Kill Instance.

For MaxCompute tasks that are not computational tasks, such as DDL statement in SQL, these tasks
can only read and modify the metadata information in MaxCompute. This means that no execution
plan can be analyzed and generated from the task.

Note:

Not all the requests are converted into tasks in MaxCompute, for example, the operations of
Project, Resource, UDF and Instance can be completed without MaxCompute tasks.

Instance

In MaxCompute, most tasks are initiated in MaxCompute instances. MaxCompute instances can be in
one of two phases: Running and Terminated. The status of the running phase is ‘Running’, while
the status of the Terminated phase can be ‘Success’, ‘Failed’ or ‘Canceled’. You can query or
change the status using the instance ID assigned by MaxCompute. For example:

status <instance_id>; --View the status of a certain instance.
kill <instance_id>; --Stop an instance and set its status as ‘Canceled’.
wait <instance_id>; --View the running logs of a certain instance.

MaxCompute Product Introduction

12

-

Reading guidance

The following sections detail recommended readings for first time users, data analysts, project
owner/administrators, and developers.

For first time users

MaxCompute Summary — Introduces MaxCompute, including its main function modules.

Quick Start — Provides a step-by-step guide including how to apply for an account, how to
install the client, how to create a table, how to authorize a user, how to export/import data,
how to run SQL tasks, how to run UDF, and how to run Mapreduce programs.

Basic Introduction — Details key terms and frequently used commands of MaxCompute.

Tools — Lists all key tools used in MaxCompute (also, see MaxCompute Client).

For data analysts

MaxCompute SQL: Query and analyze massive data that stored on MaxCompute.

For developers

MapReduce: Explains the MapReduce programming interface. You can use the Java API,
which is provided by MapReduce, to write MapReduce program for processing data in
MaxCompute.

Graph: Provides a set of frameworks for iterative graph computing.

Eclipse Plugin: Facilitates users to use the Java SDK of MapReduce, UDF, and Graph.

Tunnel: Facilitates users to use the Tunnel service to upload batch offline data to
MaxCompute, or download batch offline data from MaxCompute.

MaxCompute Product Introduction

13

●

●

SDK:

Java SDK: Provides developers with Java interfaces.
Python SDK: Provides developers with Python interfaces.

For project owners/administrators

Security: Explains how to grant privileges to a user, how to share resource span projects, how
to set project protection, and how to grant privilege by policy, and more.

Billing: Details the pricing of MaxCompute.

Commands that only the project owner can use. For example, the SetProject operation in
Others of Common Commands.

MaxCompute Product Introduction

14

	Product Introduction
	What is MaxCompute
	Benefits of MaxCompute
	Large-scale computing and storage
	Multiple computation models
	Strong data security
	Low-cost

	Function
	MaxCompute Tunnel
	Computing and analysis tasks
	SDK
	Security

	History
	Definition
	Project
	Table
	Partition
	Partition types
	Restrictions

	Data type
	Complex Data Types

	Lifecycle
	Resources
	Function
	Task
	Instance
	Reading guidance
	For first time users
	For data analysts
	For developers
	For project owners/administrators

