
Function Compute

User Guide

-

-

User Guide

Programming language

Execution environment

When a function is called, the function codes are run in a restricted environment:

You can use this Web Shell tool to experience the function execution environment.

Environments in different programming languages contain different commonly-used libraries. For
more information, see the programming documentation in each language:

Python
Node.js

Use a code directory

If you pack some configuration files or data files with codes and then upload them together, and
need to access these files using codes, the FC_FUNC_CODE_PATH environment variable must be used
to obtain the absolute file path. The following illustrates how to obtain the path in Python, Node.js
and Java respectively:

Environment configuration Description

Execution user A common user (without the root permission)

Code directory env["FC_FUNC_CODE_PATH"]

Writable directory /tmp (Other directories are read-only.)

Operating system Linux 4.4.24-2.al7.x86_64

Network
It is allowed to access the Internet and the
intranets of Alibaba Cloud services (such as
OSS and Table Store) in the same regions.

Function Compute User Guide

1

Python:

Node.js:

Java:

Use an intranet domain name

When a function needs to access other cloud services, you are recommended to use an intranet
domain name. On one hand, an intranet domain name can produce better performance. On the other
hand, no Internet traffic fee is charged in this way. The following illustrates how to use an intranet
domain name to access OSS in Python and Node.js respectively:

Python:

import os

def handler(event, context):
cfg_file = os.environ['FC_FUNC_CODE_PATH'] + '/config.json'
print cfg_file

exports.handler = function(event, context, callback) {
cfgFile = process.env['FC_FUNC_CODE_PATH'] + '/config.json';
console.log(cfgFile);
callback(null, 'done');
}

import com.aliyun.fc.runtime.Context;
import com.aliyun.fc.runtime.StreamRequestHandler;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;

public class HelloFC implements StreamRequestHandler {
@Override
public void handleRequest(InputStream inputStream, OutputStream outputStream, Context context) throws
IOException {
String cfgFile = System.getenv("FC_FUNC_CODE_PATH") + "/config.json";
outputStream.write(cfgFile.getBytes());
}
}

import oss2

def my_handler(event, context):
creds = context.credentials
auth = oss2.StsAuth(creds.accessKeyId, creds.accessKeySecret, creds.securityToken)
bucket = oss2.Bucket(auth, 'oss-cn-shanghai-internal.aliyuncs.com', 'my-bucket')

Function Compute User Guide

2

-

Node.js:

Java

Java

Function Compute currently supports the following Java running environment:

OpenJDK 1.8.0 (runtime = java8)

When using Function Compute in Java, a class must be defined and a pre-defined Function Compute
interface must be implemented. A simplest function is defined as follows:

bucket.put_object('my-object', 'hello world')

var OSSClient = require('ali-oss').Wrapper;

exports.handler = function(event, context, callback) {
console.log(event.toString());

var ossClient = new OSSClient({
accessKeyId: context.credentials.accessKeyId,
accessKeySecret: context.credentials.accessKeySecret,
stsToken: context.credentials.securityToken,
region: 'oss-cn-shanghai',
internal: true,
bucket: 'my-bucket',
});

ossClient.put('my-object', new Buffer('hello world'))
.then(function(res) {
callback(null, res);
}).catch(function(err) {
callback(err);
});
};

package example;

import com.aliyun.fc.runtime.Context;
import com.aliyun.fc.runtime.StreamRequestHandler;

Function Compute User Guide

3

Package name/Class name

A package and a class can have random names, but their names must correspond to the
“handler” field of the created function. In the previous example, the package name is
“example” and the class name is “HelloFC”. Therefore, the handler specified during
function creation is example.HelloFC::handleRequest. The format of “handler” is
{package}.{class}::{method}.

Implement interface

The pre-defined Function Compute interface must be implemented in your code. In the
previous example, StreamRequestHandler is implemented, inputStream is the data imported
when the function is called, and outputStream is used to return the function execution result.
For more information about the function interfaces, see Function interfaces.

context parameter

The context parameter contains the operation information of the function (such as the
request ID and temporary AccessKey). The parameter type is com.aliyun.fc.runtime.Context.
The Use context section introduces the function structure and usage.

Return value

The function that implements the StreamRequestHandler interface returns execution results
by using the outputStream parameter.

The dependency of the com.aliyun.fc.runtime package can be referenced in the following pom.xml:

import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;

public class HelloFC implements StreamRequestHandler {

@Override
public void handleRequest(
InputStream inputStream, OutputStream outputStream, Context context) throws IOException {

outputStream.write(new String("hello world").getBytes());
}
}

<dependency>
<groupId>com.aliyun.fc.runtime</groupId>
<artifactId>fc-java-core</artifactId>
<version>1.0.0</version>
</dependency>

Function Compute User Guide

4

-

-

-

-

-

-

-

Before a function is created, you must package project with its dependency fc-java-core into a JAR
file. You can learn how to package a JAR file in Use a custom module. After the JAR package is
created, use the fcli or console to upload the package. The following uses fcli as an example:

Advanced usage

Use context
Use logging
Function interface
Use a custom module
Handle exception

Use context

context is an object generated during the Function Compute operation, and it contains the operation
information. You can use the information in code. The type of context is object, and its definition is as
follows. You can click here to learn about its detailed:

In this definition, context contains four elements:

RequestId: The unique ID of this execution request. It can be recorded for reference in case
any exception occurs in future.
FunctionParam: Some basic information about the function, such as function name, function
entry, function memory, and time-out period.

rockuw-MBP:hello-java (master) $ ls -lrt
total 16
-rw-r--r-- 1 rockuw staff 7690 Aug 31 19:45 hellofc.jar

>>> mkf hello-java -t java8 -h example.HelloFC::handleRequest -d ./functions/hello-java
>>> invk hello-java
hello world
>>>

package com.aliyun.fc.runtime;

public interface Context {

public String getRequestId();

public Credentials getExecutionCredentials();

public FunctionParam getFunctionParam();

public FunctionComputeLogger getLogger();
}

Function Compute User Guide

5

-

-

ExecutionCredentials: A group of temporary keys acquired when Function Compute plays a
service role you provide. Its valid interval is 5 minutes. You can use it in code to access
related service (such as OSS). This prevents you from permanently adding your own
AccessKey information in function code.
Logger: A logger encapsulated by Function Compute. For details, see Use logging below.

For example, the following code uses a temporary key to upload a file to OSS:

Use logging

The information about your function that has been printed by context.getLogger() is collected into
the logstore that was assigned by you when creating a service:

package example;

import com.aliyun.fc.runtime.Context;
import com.aliyun.fc.runtime.Credentials;
import com.aliyun.fc.runtime.StreamRequestHandler;
import com.aliyun.oss.OSSClient;

import java.io.ByteArrayInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;

public class HelloFC implements StreamRequestHandler {

@Override
public void handleRequest(
InputStream inputStream, OutputStream outputStream, Context context) throws IOException {

String endpoint = "oss-cn-shanghai.aliyuncs.com";
String bucketName = "my-bucket";

Credentials creds = context.getExecutionCredentials();
OSSClient client = new OSSClient(
endpoint, creds.getAccessKeyId(), creds.getAccessKeySecret(), creds.getSecurityToken());
client.putObject(bucketName, "my-object", new ByteArrayInputStream(new String("hello").getBytes()));
outputStream.write(new String("done").getBytes());
}
}

package example;

import com.aliyun.fc.runtime.Context;
import com.aliyun.fc.runtime.StreamRequestHandler;

import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;

Function Compute User Guide

6

-

-

The logs output by the previous code are:

context.getLogger().warn and context.getLogger().error can be respectively used to pack logs at
WARN and ERROR levels.

Function interfaces

When you use the Java programming, a class must be implemented, which must implement a pre-
defined Function Compute interface. Currently, two pre-defined interfaces can be implemented:

StreamRequestHandler

This interface uses the stream request handler to receive the information (events) input when calling
a function and return execution results. You need to read the input information from inputStream
and to write the function execution result into outputStream after the read operation is completed.
The first example in this document uses this interface.

PojoRequestHandler<I, O>

This interface uses the generic method to allow you to customize the input and output types, but
note that the types must be POJO. The following gives an example on how to use this interface.

public class HelloFC implements StreamRequestHandler {

@Override
public void handleRequest(
InputStream inputStream, OutputStream outputStream, Context context) throws IOException {

context.getLogger().info("hello world");
outputStream.write(new String("hello world").getBytes());
}
}

message:2017-07-05T05:13:35.920Z a72df088-f738-cee3-e0fe-323ad89118e5 [INFO] hello world

// HelloFC.java
package example;

import com.aliyun.fc.runtime.Context;
import com.aliyun.fc.runtime.PojoRequestHandler;

public class HelloFC implements PojoRequestHandler<SimpleRequest, SimpleResponse> {

@Override
public SimpleResponse handleRequest(SimpleRequest request, Context context) {
String message = "Hello, " + request.getFirstName() + " " + request.getLastName();
return new SimpleResponse(message);
}

Function Compute User Guide

7

Prepare an input file for calling:

}

// SimpleRequest.java
package example;

public class SimpleRequest {
String firstName;
String lastName;

public String getFirstName() {
return firstName;
}

public void setFirstName(String firstName) {
this.firstName = firstName;
}

public String getLastName() {
return lastName;
}

public void setLastName(String lastName) {
this.lastName = lastName;
}

public SimpleRequest() {}
public SimpleRequest(String firstName, String lastName) {
this.firstName = firstName;
this.lastName = lastName;
}
}

// SimpleResponse.java
package example;

public class SimpleResponse {
String message;

public String getMessage() {
return message;
}

public void setMessage(String message) {
this.message = message;
}

public SimpleResponse() {}
public SimpleResponse(String message) {
this.message = message;
}
}

Function Compute User Guide

8

Use fcli to call the result:

Use a custom module

If you want to use custom modules, you must pack the modules with code when packaging a JAR file.
Maven and IDEA are used here to demonstrate how to package the OSS Java SDK into a jar.

Use maven to package the jar file

Add OSS Java SDK dependency to pom.xml:

Add maven-assembly-plugin to pom.xml

{
"firstName": "FC",
"lastName": "aliyun"
}

>>> invk hello-java -f /tmp/a.json
{"message":"Hello, FC aliyun"}
>>>

 <dependencies>
<dependency>
<groupId>com.aliyun.fc.runtime</groupId>
<artifactId>fc-java-core</artifactId>
<version>1.0.0</version>
</dependency>

<dependency>
<groupId>com.aliyun.oss</groupId>
<artifactId>aliyun-sdk-oss</artifactId>
<version>2.6.1</version>
</dependency>
</dependencies>

 <build>
<plugins>
<plugin>
<artifactId>maven-assembly-plugin</artifactId>
<version>3.1.0</version>
<configuration>
<descriptorRefs>
<descriptorRef>jar-with-dependencies</descriptorRef>
</descriptorRefs>
<appendAssemblyId>false</appendAssemblyId> <!-- this is used for not append id to the jar name -->

Function Compute User Guide

9

Package the java file

After completing the above steps, the dependent third-party jars are also packaged together into the
jar. The generated jar will be stored in the target directory.

Use IDEA to package the jar file

Add OSS Java SDK dependency to pom.xml:

Configure JAR package export options:

</configuration>
<executions>
<execution>
<id>make-assembly</id> <!-- this is used for inheritance merges -->
<phase>package</phase> <!-- bind to the packaging phase -->
<goals>
<goal>single</goal>
</goals>
</execution>
</executions>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<configuration>
<source>1.8</source>
<target>1.8</target>
</configuration>
</plugin>
</plugins>
</build>

 mvn package

 <dependencies>
<dependency>
<groupId>com.aliyun.fc.runtime</groupId>
<artifactId>fc-java-core</artifactId>
<version>1.0.0</version>
</dependency>

<dependency>
<groupId>com.aliyun.oss</groupId>
<artifactId>aliyun-sdk-oss</artifactId>
<version>2.6.1</version>
</dependency>
</dependencies>

Function Compute User Guide

10

Function Compute User Guide

11

Verify the jar file

Use maven to package the jar file and put dependency .jar files in a separate /lib
directory

As project dependencies increase, the size of the jar becomes larger. The user-uploaded jar or zip
code will be decompressed before execution. Therefore, in the two previous implementations, there is
a problem that our packaged jar contains a large number of class files, which will undoubtedly
increase the decompression time and thus increase the first startup time of the function.

A better practice is to put your dependency .jar files in a separate /lib directory.

Here is an example using maven-dependency-plugin：

 rockuw-MBP:hello-java (master) $ ls -lrth
total 6520
-rw-r--r-- 1 rockuw staff 3.2M Aug 31 21:03 hellofc.jar
rockuw-MBP:hello-java (master) $ jar -tf hellofc.jar | head
Picked up _JAVA_OPTIONS: -Duser.language=en
META-INF/MANIFEST.MF
example/
example/HelloFC.class
example/SimpleRequest.class
example/SimpleResponse.class
META-INF/
META-INF//
org/
org//
org/apache/

<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-dependency-plugin</artifactId>
<executions>
<execution>
<id>copy-dependencies</id>
<phase>prepare-package</phase>

Function Compute User Guide

12

After mvn package, the packaged jar’s directory structure is:

Handle exception

If an exception occurs when your function is executed, Function Compute captures the exception and
returns its information. The following codes are used as an example:

The response returned upon calling is:

<goals>
<goal>copy-dependencies</goal>
</goals>
<configuration>
<outputDirectory>${project.build.directory}/classes/lib</outputDirectory>
<includeScope>runtime</includeScope>
</configuration>
</execution>
</executions>
</plugin>

/.class
lib/*.jar

package example;

import com.aliyun.fc.runtime.Context;
import com.aliyun.fc.runtime.StreamRequestHandler;

import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;

public class HelloFC implements StreamRequestHandler {

@Override
public void handleRequest(InputStream inputStream, OutputStream outputStream, Context context) throws
IOException {
throw new IOException("oops");
}
}

>>> invk hello-java -f /tmp/a.json
{
"errorMessage" : "oops",
"errorType" : "java.io.IOException",
"errorCause" : "oops",
"stackTrace" : ["example.HelloFC.handleRequest(HelloFC.java:15)"]
}
Error: Request id: 45dd8d90-6b78-cce3-087c-8bf4ebc6c9af. Error type: UnhandledInvocationError

Function Compute User Guide

13

-

-

-

-

-

●

-

●

-

●

When an exception occurs, the HTTP header in the function calling response includes X-Fc-Error-
Type: UnhandledInvocationError.

Node.js

Node.js

Function Compute (FC) currently supports the following Node.js runtime environements:

Nodejs6.14 (runtime = nodejs6)
Nodejs8.9.0 (runtime = nodejs8)

When a function has runtime set to be nodejs*, a Node.js function must be exported as an entry
point module for FC to call. A simple function can be written as follows:

Function name
exports.handler the “handler” part must be the same with the second half of the
“Handler” value given upon function creation. For example, if the “Handler” is set to be
index.handler, FC automatically calls the handler function exported in index.js.
event parameter

The event parameter is the data payload passed to your function upon invocation.
The parameter type is Buffer.

context parameter
The context parameter contains the operation information of the function (such as
the request ID and temporary credentials). The parameter type is object. The Use
context section describes object structure and usage.

callback parameter
The callback parameter returns the result of a invocation. Its function signature is
function(err, data). Similar to how callback is normally used in Node.js, its first
parameter is error and second parameter is data. If err is not blank when the
function is called, the function returns HandledInvocationError; otherwise, the
function returns the data. If the data type is Buffer, the data is returned directly. If
the data type is object, the data is converted into a JSON string and then returned.

exports.handler = function(event, context, callback) {
callback(null, 'hello world');
};

Function Compute User Guide

14

-

-

-

-

-

-

-

-

If the data is of other types, it is converted into a string and then returned.

Advanced usage

Event Usage
Context Usage
Logging
Built-in Module Usage
Custom Module Usage
Calling an External Command
Understanding Callback
Exception Handling

Event usage

Parameter event is the data payload passed to your function upon invocation. FC does not do any
transformation nor understand its content. The event passed to an invocation is of Buffer type. You
can interpret the event parameter in your function. For example, if the event data is a JSON string,
you can convert it into an object:

Context usage

Parameter context is an object generated during the FC invocation, and it contains information at run
time that can be retrived from the context, which is of type object. The object has the following
structure:

exports.handler = function(event, context, callback) {
var eventObj = JSON.parse(event.toString());
callback(null, eventObj['key']);
};

{
'requestId': 'b1c5100f-819d-c421-3a5e-7782a27d8a33',
'credentials': {
'accessKeyId': 'STS.access_key_id',
'accessKeySecret': 'access_key_secret',
'securityToken': 'security_token',
},
'function': {
'name': 'my-func',
'handler': 'index.handler',
'memory': 128,
'timeout': 10,
},

Function Compute User Guide

15

1.

2.

3.

4.

5.

6.

In this definition, context contains six elements:

requestId: an unique ID of an invocation request. It can be refered in case an exception
occurs during an invocation.
function: structure that contains function information such as function name, handler,
memory, and timeout.
credentials: a group of temporary keys acquired when FC assumes the service role
associated with the service that is valid for 5 minutes. The temporary credentials can be
used to access other cloud services (such as OSS) inside your function. Having credentials in
the context object prevents users from hardcoding their crendentials into function codes.
service: structure that contains service information that the called function belongs to, such
as service name, Log Service logProject and logstore.
region: region that the called function belongs to, such as cn.shanghai.
accountId: ID of the Alibaba Cloud account that the called function belongs to.

For example, the following code uses temporary credentials to upload a file to OSS:

Logging

The logs printed through console.log in the code is stored into the logstore that was given upon

'service': {
'name': 'my-service',
'logProject': 'my-log-project',
'logStore': 'my-log-store',
},
'region': 'cn-shanghai',
'accountId': '123456'
}

var OSSClient = require('ali-oss').Wrapper;

exports.handler = function(event, context, callback) {
console.log(event.toString());

var ossClient = new OSSClient({
accessKeyId: context.credentials.accessKeyId,
accessKeySecret: context.credentials.accessKeySecret,
stsToken: context.credentials.securityToken,
region: 'oss-cn-shanghai',
bucket: 'my-bucket',
});

ossClient.put('my-object', new Buffer('hello, fc')).then(function(res) {
callback(null, 'put object');
}).catch(function(err) {
callback(err);
});
};

Function Compute User Guide

16

-

Service creation/update.

The log printed by the previous code is:

console.warn and console.error can be used to log at WARN and ERROR levels, respectively.

Log level can be changed by using console.setLogLevel. Log levels rank from highest to lowest:

error, warn, info, verbose, debug ; The corresponding interfaces of these log levels are console.error,
console.warn, console.info, console.log, and console.debug.

The logs printed by the previous code are:

Built-in modules usage

In addition to standard Node.js modules, FC Node.js runtimes also include some frequently used
modules for easier imports. The following modules are currently included in FC Node.js runtime:

co: control flow

exports.handler = function(event, context, callback) {
console.info(null, 'hello world');
callback(null, 'hello world');
};

message:2017-07-05T05:13:35.920Z a72df088-f738-cee3-e0fe-323ad89118e5 [INFO] hello world

'use strict';
exports.handler = function(evt, ctx, cb) {
console.setLogLevel("error");
console.error("console error 1");
console.info("console info 1");
console.warn("console warn 1");
console.log("console log 1");

console.setLogLevel("warn");
console.error("console error 2");
console.info("console info 2");
console.warn("console warn 2");
console.log("console log 2");

console.setLogLevel("info");
cb(null, evt);
};

message:2017-07-05T05:13:35.920Z a72df088-f738-cee3-e0fe-323ad89118e5 [ERROR] console error 1
message:2017-07-05T05:13:35.920Z a72df088-f738-cee3-e0fe-323ad89118e5 [ERROR] console error 2
message:2017-07-05T05:13:35.920Z a72df088-f738-cee3-e0fe-323ad89118e5 [WARN] console warn 2

Function Compute User Guide

17

-

-

-

-

-

gm: image processing library
ali-oss: Alibaba Cloud OSS SDK
aliyun-sdk: Alibaba Cloud SDK
@alicloud/fc: Function Compute SDK
opencv: computer vision library

For example, the following function uses gm to flip an image:

Module Version Info Link

co 4.6.0 Control flow library https://github.com/t
j/co

gm 1.23.0 Image processing
library

https://github.com/a
heckmann/gm

ali-oss 4.10.1 OSS SDK https://github.com/a
li-sdk/ali-oss

ali-mns 2.6.5 MNS SDK https://github.com/I
nCar/ali-mns

tablestore 4.0.11 OTS SDK

https://github.com/a
liyun/aliyun-
tablestore-nodejs-
sdk

aliyun-sdk 1.10.12 Aliyun SDK
https://github.com/a
liyun-UED/aliyun-
sdk-js

@alicloud/fc2 2.0.3 Function Compute
SDK

https://github.com/a
liyun/fc-nodejs-sdk

opencv 6.0.0 Computer vision
library

https://github.com/
peterbraden/node-
opencv

body 5.1.0 Http body parsing
library

https://github.com/
Raynos/body

raw-body 2.3.2 Http body parsing
library

https://github.com/s
tream-utils/raw-
body

var gm = require('gm').subClass({imageMagick: true});

exports.handler = function(event, context, callback) {
gm(event)
.flip()
.toBuffer('PNG',function (err, buffer) {
if (err) return callback(err);
callback(null, buffer);
});
};

Function Compute User Guide

18

NOTE: The above function uses event directly as binary representation of an image, and returns
flipped image in binary.

Custom modules usage

Custom modules can be packaged along with code. The following instruction details how to use fcli
to add a module MySQL module to access a MySQL database:

Create a directory to save function code and modules:

Create a new code file, such as /tmp/code/index.js, and use mysql module in code:

Install mysql module in the /tmp/code directory:

After installation, the /tmp/code directory must look like:

 mkdir /tmp/code

 var mysql = require('mysql');

exports.handler = function(event, context, callback) {
var connection = mysql.createConnection({
host : 'localhost',
user : 'me',
password : 'secret',
database : 'my_db'
});

connection.connect();

connection.query('SELECT 1 + 1 AS solution', function (error, results, fields) {
if (error) return callback(error);
console.log('The solution is: ', results[0].solution);
callback(null, results[0].solution);
});

connection.end();
};

 cd /tmp/code
npm install mysql

 ls -l /tmp/code
-rw-r--r-- 1 rockuw wheel 511 Aug 15 17:58 index.js
drwxr-xr-x 13 rockuw wheel 442 Aug 15 18:01 node_modules

Function Compute User Guide

19

-

-

Use fcli to create and call the function:

Call an external command

In case your function needs to run some binary files that are not compiled by Node.js (such as
executable files complied by shell scripts, C++, or Golang). You can still package and run those
commands in functions. The following example describes how to run a shell script:

Note that the executable files complied by C, C++, or Golang must be compatible with the runtime
environment of FC:

Linux kernel version: Linux 4.4.24-2.al7.x86_64
docker base image: docker pull node:6.10

Understand callback

Node.js uses an asynchronous programming model, therefore your function must call callback to
return data or error.

1. Make sure that the callback is called.

If a function does not call callback, the system assumes that the function invocation is still in progress
and thus waits for the function result until the operation times out. For example, when the following
function is called, a timeout error is returned:

 ./fcli shell
mkf my-func -h index.handler --runtime nodejs6 -d /tmp/code
invk my-func

var exec = require('child_process');

exports.handler = function(event, context, callback) {
var scriptPath = process.env['FC_FUNC_CODE_PATH'] + '/script.sh';
exec.exec('bash '+scriptPath, {}, function(err, stdout, stderr) {
if (err) return callback(err);
console.log(stdout, stderr);
callback(null, stdout);
});
};

exports.handler = function(event, context, callback) {
console.log('hello world');
};

Function Compute User Guide

20

1.

2.

Calling result:

2. The function is completed after callback is called.

After callback is called, the function invocation ends. If callback is called multiple times, only the first
result is effective. Make sure that all tasks are completed before the calling callback; otherwise, the
remaining tasks are not executed. For example, the following function returns “hello world” but
does not print “message”:

Handle exception

Two types of errors can be returned by functions in Node.js runtime. The error types are returned in
HTTP response Header field (X-Fc-Error-Type):

HandledInvocationError: error returned by the first callback parameter
UnhandledInvocationError: Other errors, such as a reception anomaly, a time-out error, or
an OOM

Example 1, returning a HandledInvocationError:

The response returned upon invocation is:

Example 2, returning an UnhandledInvocationError:

{"errorMessage":"Function timed out after 3 seconds"}

exports.handler = function(event, context, callback) {
callback(null, 'hello world');
callback(null, 'done');
setTimeout(function() {
console.log('message');
}, 1000);
};

exports.handler = function(event, context, callback) {
callback(new Error('oops'));
};

{
"errorMessage": "oops",
"errorType": "Error",
"stackTrace": [
"at exports.handler (/code/index.js:2:12)"
]
}

Function Compute User Guide

21

-

-

The response returned upon invocation is:

Python

Python

Function Compute currently supports the following Python runtimes:

Python 2.7 (runtime = python2.7)
Python 3.6 (runtime = python3)

A simple Python function is defined as follows:

Function name

my_handler must correspond to the “Handler” field of the created function. For example, if
the Handler is set to main.my_handler upon the function creation, Function Compute
automatically loads the my_handler function defined in main.py.

event parameter

The event parameter is the request payload when you invoke a function. event is str type in
Python2.7 and bytes type in Python3.

context parameter

The context parameter contains function invocation metadata (such as the request ID and

exports.handler = function(event, context, callback) {
throw new Error('oops');
};

{"errorMessage":"Process exited unexpectedly before completing request"}

def my_handler(event, context):
return 'hello world'

Function Compute User Guide

22

-

-

-

-

-

-

-

temporary AccessKey). The parameter type is FCContext. The Use context section introduces
the function structure and usage.

Return value

The return value of a function is returned to you as the result of function invocation. It can
be of any type. For primitive type, Function Compute converts the result to a string before
returning it. For a complex type, Function Compute serializes the result into JSON string
before returning it.

Advanced usage

Use event
Use context
Use logging
Use a built-in module
Use a custom module
Call an external command
Handle exception

Use event

event is the request payload when you invoke a function. It can be a simple string, a JSON string, or
an image (binary data). The event parameter in a function is a byte stream. Its type in Python2.7 is str
and in Python3 is bytes. You can convert the event parameter in a function based on the actual
situation. For example, if the imported data is a JSON string, you can convert it into a dict:

Use context

context is an object generated during the Function Compute operation, and it contains useful
function metadata. You can use the metadata in codes. The type of context is FCContext, and it is
defined as follows:

-*- coding: utf-8 -*-
import json
def my_handler(event, context):
evt = json.loads(event)
return evt['key']

class Credentials:
def __init__(self, access_key_id, access_key_secret, security_token):
self.access_key_id = access_key_id

Function Compute User Guide

23

-

-

-

-

-

-

In this definition, context contains six attributes:

request_id: The unique ID of function invocation. It can be recorded for debugging purpose
in case an exception occurs in the future.
function: Function invocation metadata, such as the function name, function entry, function
memory, and time-out period.
credentials: Temporary credentials that assumed by Function Compute from the service role.
A new temporary credential is generated every few minutes when the previous one expires.
You can use it in codes to access related service (such as OSS). This prevents you from
permanently adding your own AccessKey information in function codes.
service: Service metadata. It includes the service name, as well as the logProject and logstore
of the accessed Log Service.
region: The region of the function is being invoked, such as cn.shanghai.
account_id: The caller’s Alibaba Cloud account ID.

For example, the following code uses a temporary credentials to upload a file to OSS:

self.access_key_secret = access_key_secret
self.security_token = security_token

class ServiceMeta:
def __init__(self, service_name, log_project, log_store):
self.name = service_name
self.log_project = log_project
self.log_store = log_store

class FunctionMeta:
def __init__(self, name, handler, memory, timeout):
self.name = name
self.handler = handler
self.memory = memory
self.timeout = timeout

class FCContext:
def __init__(self, account_id, request_id, credentials, function_meta, service_meta, region):
self.requestId = request_id
self.credentials = credentials
self.function = function_meta
self.request_id = request_id
self.service = service_meta
self.region = region
self.account_id = account_id

import json
import oss2

def my_handler(event, context):
evt = json.loads(event)
creds = context.credentials
auth = oss2.StsAuth(creds.access_key_id, creds.access_key_secret, creds.security_token)
bucket = oss2.Bucket(auth, evt['endpoint'], evt['bucket'])

Function Compute User Guide

24

-

-

Use logging

You can log information in your function through either printing to stdout or using logging
framework.

Use print to output logs in stdout. This outputs the original information to logs.

Output:

Use logging module to output logs in pretty format. The log output includes timestamp,
request ID, and log level.

Output:

You are recommended to use the logging module to print logs, for the logs output by this method
automatically contain information such as request ID, which can be used for trouble shooting.

Use a built-in module

Beside the standard Python modules, the Python runtime includes some frequently used modules for
your direct reference. Currently, the following modules are supported:

oss2: OSS SDK
tablestore: Table Store SDK

bucket.put_object(evt['objectName'], evt['message'])
return 'success'

 def my_handler(event, context):
print 'hello world'
return 'done'

 message:hello world

 import logging

def my_handler(event, context):
logger = logging.getLogger()
logger.info('hello world')
return 'done'

 message:2017-07-05T05:13:35.920Z a72df088-f738-cee3-e0fe-323ad89118e5 [INFO] hello world

Function Compute User Guide

25

-

-

-

-

-

-

wand: image processing database
opencv
numpy
scipy
matplotlib
scrapy

For example, the function that uses wand to flip an image is as follows:

Note: The preceding function directly uses event as the binary data of the image, and directly returns
the generated image as the binary data.

TIPS: Click fc-python-demo to view the small demos used by other third-party databases.

Use a custom module

If you need to use a custom module, the module must be packed with its codes. The following
describes how to use fcli to add a module PyMySQL that can access MySQL:

Create a directory to save codes and references:

Create a new code file, such as /tmp/code/main.py, and use pymysql in codes:

from wand.image import Image

def my_handler(event, context):
with Image(blob=event) as img:
print img.size
with img.clone() as i:
i.rotate(180)
return i.make_blob()

 mkdir /tmp/code

 import pymysql.cursors

Connect to the database
connection = pymysql.connect(host='localhost',
user='user',
password='passwd',
db='db',
charset='utf8mb4',
cursorclass=pymysql.cursors.DictCursor)

def my_handler(event, context):

Function Compute User Guide

26

Install references in the /tmp/code directory:

After installation, the /tmp/code directory is displayed as follows:

Use fcli to create and call a function:

Note that if the executable files or database files of the referenced module are compiled by C,
C++, or go, see sbox.

Call an external command

Your function may need to use some tools that are unavailable in Python (such as executable files
complied by shell scripts, C++, or go). You can pack them with codes and then use them by running
external commands in functions. The following example describes how to run a shell script:

with connection.cursor() as cursor:
Read a single record
sql = "SELECT count(*) FROM `users`"
cursor.execute(sql)
result = cursor.fetchone()
print(result)
return result

 cd /tmp/code
pip install -t . PyMySQL

 ls -l /tmp/code
drwxr-xr-x 9 rockuw staff 306 Jul 5 16:48 PyMySQL-0.7.11.dist-info
-rw-r--r-- 1 rockuw staff 74 Jul 5 16:02 main.py
drwxr-xr-x 26 rockuw staff 884 Jul 5 16:48 pymysql

 ./fcli shell
mkf my-func -h main.my_handler --runtime python2.7 -d /tmp/code
invk my-func

import os
import subprocess

def my_handler(event, context):
script_path = os.environ.get('FC_FUNC_CODE_PATH') + '/script.sh'
ret = subprocess.check_output(['bash', script_path])
return ret

Function Compute User Guide

27

-

-

Note that the executable files complied by C, C++, or go must be compatible with the running
environment of Function Compute. The Python running environment of Function Compute is:

Linux kernel version: Linux 4.4.24-2.al7.x86_64
docker basic image: docker pull python:2.7; docker pull python:3.6

The sbox command of the fcli tool is recommended. The following describes how to install mysql-
python (including .so files) when runtime is python2.7:

Run sbox -d code -t python2.7, wherein -d specifies the directory of the codes, and it is
attached to the “/code” location in the sandbox environment’, and -t specifies the
language type. (Note: When this command is executed for the first time, the image must be
pulled. This operation may take a longer time. Please be patient.)

When the sandbox environment starts, run pip install -t . mysql-python to install a reference
database.

After the installation is completed, run exit to exit the sandbox environment. Now, the
mysql-python database (including _mysql.so) has been installed in the code directory.

Note:

To run the sbox command, you must first have docker installed on your host. For
more information about how to install docker, see the relevant documentation.

The image used by sbox is available on the official docker image database, but the
access to this database by users in China may be slow. We recommend that you
use the Alibaba Cloud image acceleration service.

You must have the root permission when using docker in Linux. Therefore, you
must use sudo fcli shell to start the command line tool, or you can refer to the
relevant documentation to change the settings for managing docker as a non-root
user.

We recommend that you pack third-party databases, test functions, and investigate
issues in the local sandbox environment. This can help to mitigate errors occur due
to environment difference. In particular, when your functions depend on binary
files, compile relevant dependencies in the local sandbox environment.

songluo@demo $ fcli shell
Welcome to the function compute world. Have fun!
>>> sbox -d code -t python2.7

Function Compute User Guide

28

Handle exceptions

If an exception occurs when your function is executed, Function Compute captures the exception and
returns its information. The following codes are used as an example:

The response returned upon calling is:

When an error occurs, the HTTP header in the function calling response includes X-Fc-Error-Type:
UnhandledInvocationError.

Service management

Create a service

Entering the container. Your code is in the /code direcotry.
root@c5adc6ffd861:/code# pip install -t . mysql-python
Collecting mysql-python
Downloading MySQL-python-1.2.5.zip (108kB)
100% |████████████████████████████████| 112kB 440kB/s
Building wheels for collected packages: mysql-python
Running setup.py bdist_wheel for mysql-python ... done
Stored in directory: /root/.cache/pip/wheels/38/a3/89/ec87e092cfb38450fc91a62562055231deb0049a029054dc62
Successfully built mysql-python
Installing collected packages: mysql-python
Successfully installed mysql-python-1.2.5
root@c5adc6ffd861:/code# exit

def my_handler(event, context):
raise Exception('something is wrong')

{
"errorMessage": "something is wrong",
"errorType": "Exception",
"stackTrace": [
[
"File \"/code/main.py\"",
"line 2",
"in my_handler",
"raise Exception('something is wrong')"
]
]
}

Function Compute User Guide

29

●

Service is the unit for managing Function Compute resources. All functions belonging to a service
share some common settings, such as authorization and log configuration. You can use the console
or command line tool to create services.

Service attributes

When creating a service, specify the following attributes:

serviceName (required): Name of the service. It must be unique in one Alibaba Cloud
account and meets the following restrictions:

The name must consist of English letters (a–z) (A–Z), numbers (0–9), underscores (_),
and hyphens (-).

The first character must be an English letter (a–z) (A–Z) or underscore (_).

The name is case-sensitive.

The name must contain 1–128 characters.

description (optional): Description of the service.

role (optional): The role grants Function Compute permissions to access user’s cloud
resources or run functions which may access cloud resources. For example:

Use your Log Service resource to store function execution logs.

Run the functions that need to access other cloud resources.

For more information about the role, see Function Compute role management.

logConfig (optional): Sets the Log Service project and LogStore which are used to store
function execution logs.

If you have not configured this attribute, you cannot view the function execution
logs. We recommend that you enable Log Service and set this attribute.

Note: The log configuration uses Alibaba Cloud Log Service. Log Service charges certain
resource reservation fees, which means that even if you do not write any logs, you still

Function Compute User Guide

30

pay fees. For more information, see Log Service charging description.

vpcConfig (optional): Sets the VPC config to enable VPC access for your functions.

internetAccess (optional): Sets it true to enable internet access for your functions.

Except for the service name, other attributes can be updated later.

Create and update service using the command line tool

In shell mode of the command line tool, you can run mks/ups to create or update service, and run
info to view the service attributes.

In the following example, the service “my-service” is created, and the description and logConfig
attributes are updated. Then, Function Compute is authorized to access the log resources.

Create the service.

Note: You can provide the service description and configuration together when
creating the service. This service is created with name only to demonstrate the
subsequent update operation.

Create a Log Service project and LogStore.

Update the service.

View the service.

mks my-service

mkl -p fc-log-project -s fc-log-store

ups my-service -d "this is my service" -p fc-log-project -l fc-log-store

info my-service

Function Compute User Guide

31

View a service

You can use the console or command line tool to list all services or view an individual service.

View a service using the command line tool

Enter the shell mode.

Run ls to list all services.

Run info to view the details of the specified service.

Animation example

Function Compute User Guide

32

Delete a service

You can use the console or command line tool to delete a service. The service can be deleted only
when it does not contain any function.

Delete a service using the command line tool

Run fcli shell to enter the interactive mode.

Run rm to delete the specified service.

Example

Function management

Create a function

Function is the scheduling and operation unit. All functions belong to the same service share some
common attributes, such as authorization and logging configuration.

Function attributes

When creating a function, specify the following attributes:

Function Compute User Guide

33

-

●

●

●

●

-

-

-

-

-

-

1.

2.

3.

functionName (required): Name of the function. It must be unique within the service with the
following restrictions:

It must consist of English letters (a–z) (A–Z), numbers (0–9), underscores (_), and
hyphens (-).
It must start with an English letter (a–z) (A–Z) or underscore (_).
It is case-sensitive.
It must contain 1–128 characters.

runtime (required): Type of the function runtime.
code (required): Code package. It must be a ZIP file, which can be stored in OSS or directly
uploaded.
handler (required): The entry point for Function Compute to run your functions.
description (optional): Description of the function.
timeout (optional): Maximum execution time, in second.
MemorySize (optional): Memory resource required for function running, in MB. The memory
size ranges from 128 to 3072 MB with 64 MB increments.

All attributes except for the function name can be modified later.

Supported function runtimes

Create and update a function using the CLI

In shell mode, you can run mkf/upf to create or update a function, and run info to view the function
attributes. Follow these steps to create and update the world function in the hello service:

Create the hello service: mks hello.
Create a simple local function file index.js and store it in the code folder.

Create the world function.

Runtime Description

nodejs6 Node.js 6.10.3

nodejs8 Node.js 8.9.0

python2.7 Python 2.7

python3 Python 3.6

java8 Java 8

'use strict';
console.log('loading function');
module.exports.handler = function(event, context, callback) {
console.log('Receive event:', event.toString());
callback(null, event);
};

Function Compute User Guide

34

4.

5.

-

-

-

Update the description of the world function: upf hello/world --description "this is world
function".
View the attributes of the world function: info hello/world.

Invoking a function

Invocation types

Function Compute supports synchronous and asynchronous invocation of a function.

Synchronous invocation: The event is processed by the function, and then the result is
returned.
Asynchronous invocation: The event is queued in Message Queue, and then no result is
returned. Function Compute will process event based on Message Queue At-Least-Once
delivery guarantee.
Different limits apply for synchronous and asynchronous invocation. For more information,
see Limits.

You can manually invoke your functions using the console or command line tool. For more
information, see Relevant examples. You can also invoke your function calling the REST API. For more
information, see API specification. SDKs of different languages are provided to further simplify your
operations. The following is an example of calling the Java SDK:

mkf hello/world -t nodejs6 -h index.handler -d code

public class FcSample {
private static final String CODE_DIR = "/tmp/fc_code";
private static final String REGION = "cn-shanghai";
private static final String SERVICE_NAME = "test_service";
private static final String FUNCTION_NAME = "test_function";

public static void main(final String[] args) throws IOException {
String accessKey = System.getenv("ACCESS_KEY");
String accessSecretKey = System.getenv("SECRET_KEY");
String accountId = System.getenv("ACCOUNT_ID");
String role = System.getenv("ROLE");

// Initialize FC client
FunctionComputeClient fcClient = new FunctionComputeClient(REGION, accountId, accessKey, accessSecretKey);

// Create a service
CreateServiceRequest csReq = new CreateServiceRequest();

Function Compute User Guide

35

Concurrent Execution

Concurrent Executions is the total concurrent function executions within a given time period. You can
use the following formula to estimate the concurrent function execution number.

Request rate x Function execution time

csReq.setServiceName(SERVICE_NAME);
csReq.setDescription("FC test service");
csReq.setRole(role);
CreateServiceResponse csResp = fcClient.createService(csReq);
System.out.println("Created service, request ID " + csResp.getRequestId());

// Create a function
CreateFunctionRequest cfReq = new CreateFunctionRequest(SERVICE_NAME);
cfReq.setFunctionName(FUNCTION_NAME);
cfReq.setDescription("Function for test");
cfReq.setMemorySize(128);
cfReq.setHandler("hello_world.handler");
cfReq.setRuntime("nodejs6");
Code code = new Code().setDir(CODE_DIR);
cfReq.setCode(code);
cfReq.setTimeout(10);
CreateFunctionResponse cfResp = fcClient.createFunction(cfReq);
System.out.println("Created function, request ID " + cfResp.getRequestId());

// Invoke the function with a string as function event parameter, Sync mode
InvokeFunctionRequest invkReq = new InvokeFunctionRequest(SERVICE_NAME, FUNCTION_NAME);
String payload = "Hello FunctionCompute!"
invkReq.setPayload(payload.getBytes())
InvokeFunctionResponse invkResp = fcClient.invokeFunction(invkReq);
System.out.println(new String(invkResp.getContent()));

// Invoke the function, Async mode
invkReq.setInvocationType(Const.INVOCATION_TYPE_ASYNC);
invkResp = fcClient.invokeFunction(invkReq);
if (HttpURLConnection.HTTP_ACCEPTED == invkResp.getStatus()) {
System.out.println("Async invocation has been queued for execution, request ID: " + invkResp.getRequestId());
} else {
System.out.println("Async invocation was not accepted");
}

// Delete the function
DeleteFunctionRequest dfReq = new DeleteFunctionRequest(SERVICE_NAME, FUNCTION_NAME);
DeleteFunctionResponse dfResp = fcClient.deleteFunction(dfReq);
System.out.println("Deleted function, request ID " + dfResp.getRequestId());

// Delete the service
DeleteServiceRequest dsReq = new DeleteServiceRequest(SERVICE_NAME);
DeleteServiceResponse dsResp = fcClient.deleteService(dsReq);
System.out.println("Deleted service, request ID " + dsResp.getRequestId());
}
}

Function Compute User Guide

36

-

-

The request rate is the function execution rate, with the unit of “Requests per second” or “Events
per second”. The unit of Function execution time is “Second”. For example, given an OSS events
processing function, assuming that the function execution time is 3s, and OSS generates 10 events
per second. Therefore, your function has 30 concurrent executions.

Concurrent Execution Limits

In some cases, function execution may be out of control due to incorrect settings. For example, you
have set an OSS trigger. When image files are uploaded to the foo bucket of OSS, the relevant
function is called. This function adjusts the source image to three images with different resolutions
and incorrectly writes the result back to the foo bucket. As a result, a new function is called, resulting
in an infinite loop. To prevent financial loss caused by infinite function calls, Function Compute sets
the maximum number of concurrent function executions (100 by default) for each account. You can
check the throttles metrics of a function in CloudMonitor. To adjust the limit, open a ticket.

Throttling errors handling

Throttling errors are handled differently based on the different invocation type.

Synchronous invocation: It the function is invoked synchronously and is throttled, Function
Compute retuens a 429 error and the invoking service is responsible for retries. For example,
if you use API Gateway to invoke a function, please make sure that the response error of
Function Compute is mapped to the error code of API Gateway. If you directly invoke the
function through the SDK or CLI, you can decide whether to retry based on your
requirement.

Asynchronous invocation: If your function is invoded asynchronously and is throttled,
Function Compute automatically retries the throttled event for up to 5 hours, with
exponential backoff. Asynchronous events are queued before they are used to invoke the
function.

Function entry definition

This section describes the runtime envrionments currently supported by Function Compute and how
to write basic functions. Function Compute supports the following languages:

Nodejs
python

Function Compute User Guide

37

-

-

-

1.

-

2.

-

3.

-

4.

-

java

Nodejs

Function Compute currently supports the following Node.js runtime environments:

Nodejs6 (runtime = nodejs6)
Nodejs8 (runtime = nodejs8)

Function handler: index.handler

The format of handler is “[File name].[Function name]”. For example, if handler specified during
function creation is index.handler, Function Compute automatically loads the handler function
defined in index.js.

When Nodejs runtime is used, a Node.js function must be defined. A simple function is defined as
follows:

Function name
exports.handler must correspond to the “Handler” of the created function. For
example, if the Handler is set to index.handler upon the function creation, Function
Compute automatically loads the handler function defined in index.js.

event parameter
The event parameter is the data passed to function invocation call. Function
Compute doesn’t do any transformation but just passes through the value to user
function. The parameter type is Buffer.

context parameter
The context parameter contains the operation information of the function (such as
the request ID and temporary Accesskeys). The parameter is of the object type. The
 Node.js guide section describes the context structure and usage.

callback parameter
The callback parameter returns the result of a called function. Its signature is
function(err, data). Same as callback that is frequently used in Node.js, its first
parameter is error and second parameter is data. If err is not blank when the
function is called, the function returns HandledInvocationError; otherwise, the
function returns the data information. If the data type is Buffer, the data is directly
returned. If the data type is object, the data is converted into a JSON string and
then returned. If the data is of another type, it is converted into a string and then
returned.

Python

exports.handler = function(event, context, callback) {
callback(null, 'hello world');
};

Function Compute User Guide

38

-

-

1.

-

2.

-

3.

-

4.

-

-

Function Compute currently supports the following Python running environments:

Python 2.7 (runtime = python2.7)
Python 3.6 (runtime = python3)

Function handler: main.my_handler

The format of handler is “[File name].[Function name]”. For example, if handler specified during
function creation is main.my_handler, Function Compute automatically loads the my_handler function
defined in main.py.

When Python runtime is used, a Python function must be defined. A simple function is defined as
follows:

Function name
my_handler must correspond to the “Handler” field of the created function. For
example, if the Handler is set to main.my_handler upon the function creation,
Function Compute automatically loads the my_handler function defined in main.py.

event parameter
The event parameter is the data passed to function invocation call. Function
Compute doesn’t do any transformation but just passes through the value to user
function. The parameter type in Python2.7 is str and in Python3 is bytes.

context parameter
The context parameter contains the operation information of the function (such as
the request ID and temporary Accesskeys). The parameter is of the FCContext type.
The Python guide section describes the context structure and usage.

Return value
The return value of a function is returned to you as the result of invoking the
function. It can be of any type. For a simple type, Function Compute converts the
result to a string before returning it. For a complicated type, Function Compute
converts the result to a JSON string before returning it.

Java

Function Compute currently supports the following Java runtime environment:

OpenJDK 1.8.0 (runtime = java8)

Function handler: example.HelloFC::handleRequest

The format of handler is {package}.{class}::{method}. For example, if the package name is example and
the class name is HelloFC, the handler specified during function creation is
example.HelloFC::handleRequest.

def my_handler(event, context):
return 'hello world'

Function Compute User Guide

39

1.

-

2.

-

3.

-

4.

-

When Java runtime is used, a class must be defined and a pre-defined interface must be
implemented. A simple function is defined as follows:

Package name/Class name
A package and a class can have custom names, but their names must correspond
to the “handler” field of the created function. In the previous example, the
package name is “example” and the class name is “HelloFC”. Therefore, the
handler specified during function creation is example.HelloFC::handleRequest. The
format of “handler” is {package}.{class}::{method}. For now, the method name
has to be handleRequest.

Implemented interface
Your code must implement the pre-defined interface. In the previous example,
StreamRequestHandler is implemented, wherein inputStream is the data imported
when the function is called, and outputStream is used to return the function
execution result. For more information about the function interfaces, see Function
interfaces.

context parameter
The context parameter contains the operation information of the function (such as
the request ID and temporary Accesskeys). The parameter is of the
com.aliyun.fc.runtime.Context type. The Java guide section describes the context
structure and usage.

Return value
The function that implements the StreamRequestHandler interface returns
execution results by using the outputStream parameter.

The dependency of the com.aliyun.fc.runtime package can be referenced in the following pom.xml:

package example;

import com.aliyun.fc.runtime.Context;
import com.aliyun.fc.runtime.StreamRequestHandler;

import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;

public class HelloFC implements StreamRequestHandler {

@Override
public void handleRequest(
InputStream inputStream, OutputStream outputStream, Context context) throws IOException {

outputStream.write(new String("hello world").getBytes());
}
}

<dependency>

Function Compute User Guide

40

-

●

Before a function is created, the fc-java-core and other dependencies must be compiled into a JAR
package. After the JAR package is created, use the fcli or console to create function with the package.
The following uses fcli as an example:

Trigger management

Create a trigger

In the event-driven computing model, the event sources produce events, the functions process
events, and triggers manage different event sources in a centralized and unified manner. On the
event source side, when an event matches the rules defined by a trigger occurs, the event source
invokes the corresponding function. Currently, Function Compute supports OSS, API Gateway, Log
Service and Time trigger. More event sources will be available in the future.

Note that as different triggers can be associated with the same source, such as the OSS bucket, the
event source may restrict the number of triggers that can be associated. An OSS bucket can be
associated with a maximum of 10 triggers.

Trigger attributes

When creating a trigger, specify the following attributes:

triggerName (required): Name of the trigger. It must be unique in the current function and
meets the following requirements:

It must consist of English letters (a–z) (A–Z), numbers (0–9), underscores (_), and

<groupId>com.aliyun.fc.runtime</groupId>
<artifactId>fc-java-core</artifactId>
<version>1.0.0</version>
</dependency>

rockuw-MBP:hello-java (master) $ ls -lrt
total 16
-rw-r--r-- 1 rockuw staff 7690 Aug 31 19:45 hellofc.jar

>>> mkf hello-java -t java8 -h example.HelloFC::handleRequest -d ./functions/hello-java
>>> invk hello-java
hello world
>>>

Function Compute User Guide

41

●

●

●

-

-

-

-

-

●

●

●

●

●

●

●

●

●

●

●

●

●

-

●

●

●

hyphens (-).
It must start with an English letter (a–z) (A–Z) or underscore (_).
It is case-sensitive.
It must contain 1–128 characters.

triggerType (required): Type of the trigger.
sourceArn (optional): Event source resource address, for example, OSS bucket (acs:oss:cn-
shanghai:12345:mybucket). Note that this resource must be in the same region as Function
Compute. The value format is acs:oss:$region:$account-id:$bucket-name.
invocationRole (optional): Role used by the event source to call the function, for example,
acs:ram::12345:role/myrole. The role grants event source the permission to invoke functions.
The value format is acs:ram::$account-id:role/$role-name.
triggerConfig (required): Configuration of the trigger. The configuration varies with the
trigger type. For example, the OSS trigger configuration defines that when some events such
as object upload or deletion occur, OSS calls the function to which the trigger belongs.

Only invocationRole and triggerConfig can be modified after the trigger is created.

Supported trigger type and configuration

OSS trigger configuration

Specify the following information:

events: Events that trigger the execution of a function on OSS, which can be one or more of
the following options:

oss:ObjectCreated:*
oss:ObjectCreated:PutObject
oss:ObjectCreated:PutSymlink
oss:ObjectCreated:PostObject
oss:ObjectCreated:CopyObject
oss:ObjectCreated:InitiateMultipartUpload
oss:ObjectCreated:UploadPart
oss:ObjectCreated:UploadPartCopy
oss:ObjectCreated:CompleteMultipartUpload
oss:ObjectCreated:AppendObject
oss:ObjectRemoved:DeleteObject
oss:ObjectRemoved:DeleteObjects
oss:ObjectRemoved:AbortMultipartUpload

filter: OSS object filter. Only objects that meet the filter criteria can trigger function
execution.

key: Currently, the filter only supports filtering based on the object key.
prefix: Prefix match.
suffix: Suffix match.

Create and update a trigger using the command line tool

Function Compute User Guide

42

1.

2.

3.

In shell mode, you can run mkt/upt to create or update a trigger, and run info to view the trigger
attributes. For example, assuming that the world function is created in the hello service. Follow these
steps:

Note: Due to the diversity of the trigger configuration, the trigger configuration is specified in a
file.

sample_oss_trigger_config.yaml

Run fcli shell to enter the interactive mode.
Create a trigger.

NOTE: The invocationRole and sourceArn must be valid. If you do not have any
available role, you can use the command line to create and call a role.

Update the trigger.

Configure triggers and events

Different types of triggers have different configurations. This topic provides trigger configuration

triggerConfig:
events:
- oss:ObjectCreated:PostObject
- oss:ObjectCreated:PutObject
filter:
key:
prefix: source/
suffix: .png

mkt hello/world/mytrigger -t oss -r acs:ram::12345:role/myrole -s acs:oss:cn-shanghai:12345:mybucket -
c sample_oss_trigger_config.yaml

mkir fc-invoke-function
mkrp fc-invoke-all -a '"fc:InvokeFunction"' -r '"*"'
attach -p /ram/policies/fc-invoke-all -r /ram/roles/fc-invoke-function

upt hello/world/mytrigger -r acs:ram::12345:role/myrole2 -c sample_oss_trigger_config2.yaml

Function Compute User Guide

43

-

●

●

-

●

●

definitions and samples. Because the event that passed to a function from event sources differs by
trigger type, this topic also describes the formats of event objects.

Currently, the following two types of triggers are supported:

Triggers created in event source services: Table Store, API Gateway, Datahub, and IoT

Triggers created in Function Compute: HTTP, OSS, Log Store, Timer and CDN Events

For triggers created in Function Compute, you can use the FCLI tool to enter Shell mode and run the
mkt command to create a trigger. The parameters of this command are as follows:

Note: The --trigger-config parameter configuration files for different triggers have different
formats.

HTTP triggers

HTTP triggers differ from other triggers in that function signatures are request and response objects,
rather than event objects. Therefore, HTTP triggers do not use the event format.

Configure a trigger

Trigger example: httpTrigger.yml

Trigger parameter descriptions:

authType is the authorization mode. Optional values:
anonymous: No authorization required, allows access request from any user.
function: HTTP request headers must include a signature and time stamp.

methods is the request method. Optional values:
GET: HTTP GET method
POST: HTTP POST method

>>> mkt --help
--etag string trigger etag for update
--help
-r, --invocation-role string invocation role
-s, --source-arn string event source arn
-c, --trigger-config string trigger config file
-t, --type string trigger type, support oss now (default "oss")

triggerConfig:
authType: anonymous
methods: ["GET", "POST"]

Function Compute User Guide

44

●

●

●

-

●

●

●

●

●

●

●

●

●

●

●

●

●

-

●

●

●

HEAD: HTTP HEAD method
PUT: HTTP PUT method
DELETE: HTTP DELETE method

OSS triggers

Configure a trigger

Trigger example: ossTrigger.yml

Trigger parameter descriptions:

events is the function execution event triggered for OSS. Optional values:
oss:ObjectCreated:*
oss:ObjectCreated:PutObject
oss:ObjectCreated:PutSymlink
oss:ObjectCreated:PostObject
oss:ObjectCreated:CopyObject
oss:ObjectCreated:InitiateMultipartUpload
oss:ObjectCreated:UploadPart
oss:ObjectCreated:UploadPartCopy
oss:ObjectCreated:CompleteMultipartUpload
oss:ObjectCreated:AppendObject
oss:ObjectRemoved:DeleteObject
oss:ObjectRemoved:DeleteObjects
oss:ObjectRemoved:AbortMultipartUpload

filter is the OSS object filter parameter. Only OSS objects that meet the filter conditions can
trigger the function execution. The conditions include the following attributes:

key: The filter can filter objects by key, which includes the following attributes:
prefix: Must match the prefix
suffix: Must match the suffix

Event format

triggerConfig:
events:
- oss:ObjectCreated:PostObject
- oss:ObjectCreated:PutObject
filter:
key:
prefix: source/
suffix: .png

{

Function Compute User Guide

45

Log Service triggers

Configure a trigger

Trigger example: slsTrigger.yml

"events": [
{
"eventName": "ObjectCreated:PutObject",
"eventSource": "acs:oss",
"eventTime": "2017-04-21T12:46:37.000Z",
"eventVersion": "1.0",
"oss": {
"bucket": {
"arn": "acs:oss:cn-shanghai:1237050315505689:bucketname",
"name": "bucketname",
"ownerIdentity": "1237050315505689",
"virtualBucket": ""
},
"object": {
"deltaSize": 122539,
"eTag": "688A7BF4F233DC9C88A80BF985AB7329",
"key": "image/a.jpg",
"size": 122539
},
"ossSchemaVersion": "1.0",
"ruleId": "9adac8e253828f4f7c0466d941fa3db81161e853"
},
"region": "cn-shanghai",
"requestParameters": {
"sourceIPAddress": "140.205.128.221"
},
"responseElements": {
"requestId": "58F9FF2D3DF792092E12044C"
},
"userIdentity": {
"principalId": "262561392693583141"
}
}
]
}

triggerConfig:
sourceConfig:
logstore: "etl-log"
jobConfig:
maxRetryTime: 3
triggerInterval: 60
functionParameter:
a: "b"
c: "d"
logConfig:
project: "ali-fc-test"

Function Compute User Guide

46

-

●

●

-

●

●

-

-

●

●

-

Trigger parameter descriptions:

sourceConfig is the data source configuration parameter, which includes the following
attributes:

{project}: The name of the Log Service project. For more information, see Manage a
project.
logstore: The name of the Log Service Logstore that is used as the data source. The
Log Service regularly checks the configured Logstore and sends the data to
Function Compute for custom processing. After this parameter is created, it cannot
be modified. For more information, see Manage a Logstore.

jobConfig is the task configuration parameter, which includes the following attributes:
triggerInterval: The interval that Log Service triggers function execution. Value
range: [3, 600]. This parameter defines the interval for Log Service to trigger the
function invocation. For example, every 60 seconds, Log Service reads the locations
of unprocessed data and uses them to invoke the function which then reads the
data based on locations and does further processing. For shard with large traffic (1
MB/s or higher), we recommend that you reduce the interval so Log Service can
trigger functions more frequently. For more information, see Manage a shard.
maxRetryTime: Value range: [0, 100]. This defines the number of times Log Service
will retry if it fails to invoke function due to errors such as insufficient permissions,
network failure, or invocation exceptions. If Log Service still fails after all the retries,
it will wait for the next schedule and invoke function again.

functionParameter: Log Service passes this value to function as part of the function event. A
function can customize its logic based on this configuration. The configuration must be a
string in JSON Object format. The default value is null ({}).
logConfig specifies the log configuration, which includes the following attributes. Note that
Log Service stores trigger related logs to the specified logstore.

{project}: The name of the Log Service project. For more information, see Manage a
project.
logstore: The name of the Logstore in which logs are stored.

enable indicates whether the trigger is enabled or not. Optional values: true | false.

Event format

logstore: "test-store"
enable: true

{
"parameter":{
"a":"b",
"c":"d"
},
"source":{
"endpoint":"http://cn-shanghai-intranet.log.aliyuncs.com",
"projectName":"vangie-fc-test",

Function Compute User Guide

47

-

-

-

Timer triggers

Configure a trigger

Trigger example: timerTrigger.yml

Trigger parameter descriptions:

payload is the trigger message. This parameter supports any text format. Each time a
function is triggered, the payload is passed to the function as part of the event.
cronExpression is a Cron expression. For more information, see Cron expressions.
enable indicates whether the trigger is enabled or not. Optional values: true | false.

Event format

CDN events trigger

Configure a trigger

Trigger example：cdn_events_trigger.yml

"logstoreName":"fc-test",
"shardId":0,
"beginCursor":"MTUyMzI2NzI5NDY1NjI4MzgzNg==",
"endCursor":"MTUyMzI2NzI5NDY1NjI4MzgzNw=="
},
"jobName":"05c79f637c6b46eaa85911cae032cf47551af7bb",
"taskId":"d22697c0-2a41-4d35-b27c-dccec8856768",
"cursorTime":1523323454
}

triggerConfig:
payload: "aaaaa"
cronExpression: "0 1/1000 * * * *"
enable: true

{
"triggerTime":"2018-04-10T01:31:00Z",
"triggerName":"t1",
"payload":"abcde"
}

triggerConfig:
eventName: “LogFileCreated”
eventVersion: “1.0.0”

Function Compute User Guide

48

-

-

-

-

Trigger parameter descriptions：

eventName is CDN event which invoke the function execution
eventVersionis CDN event version which invoke the function execution
notesDescriptions
filter Filters

eventName, eventVersion and filter key supported：

Filter need to contain at least one < key, values > pair, see schema below：

Event format

CachedObjectsRefreshed, CachedObjectsPushed and CachedObjectsBlocked events schema：

notes: “cdn events trigger test”
filter:
domain: {“www.taobao.com”,”www.tmall.com”}

Event Name Event Version Filter Key Description

CachedObjectsRefre
shed 1.0.0 domain

See
RefreshObjectCache
s API for details.

CachedObjectsBlock
ed 1.0.0 domain CDN resource

blocked

CachedObjectsPush
ed 1.0.0 domain

See
PushObjectCache
API for details.

LogFileCreated 1.0.0 domain
See
DescribeCdnDomain
Logs API for details.

 filter:
key1: {value a，value b}
key2: {value c，value d}

{
"events": [
{
"eventName": "CachedObjectsRefreshed",
"eventVersion": "1.0.0",
"eventSource": "cdn",
"region": "cn-hangzhou",
"eventTime": "2018-03-16T14:19:55+08:00",
"traceId": "cf89e5a8-7d59-4bb5-a33e-4c3d08e25acf",
"resource": {
"domain": "example.com"
},

Function Compute User Guide

49

LogFileCreated event schema：

More details about CDN events trigger.

Table Store triggers

"eventParameter": {
"objectPath": [
"/2018/03/16/13/33b430c57e7.mp4",
"/2018/03/16/14/4ff6b9bd54d.mp4"
],
"createTime": 1521180769,
"domain": "example.com",
"completeTime": 1521180777,
"objectType": "File",
"taskId": 2089687230
},
"userIdentity": {
"aliUid": "1xxxxxxxxxx"
}
}
]
}

{
"events": [
{
"eventName": "LogFileCreated",
"eventSource": "cdn",
"region": "cn-hangzhou",
"eventVersion": "1.0.0",
"eventTime": "2018-06-14T15:31:49+08:00",
"userIdentity": {
"aliUid": "1xxxxxxxxxxxx"
},
"resource": {
"domain": "example.com"
},
"eventParameter": {
"domain": "example.com",
"endTime": 1528959900,
"fileSize": 1788115,
"filePath": "http://cdnlog.cn-hangzhou.oss.aliyun-
inc.com/www.aliyun.com/2017_12_27/www.aliyun.com_2017_12_27_0800_0900.gz?OSSAccessKeyId=xxxx&Expires=
xxxx&Signature=xxxx",
"startTime": 1528959600
},
"traceId": "c6459282-6a4d-4413-894c-e4ea39686738"
}
]
}

Function Compute User Guide

50

-

-

●

●

●

●

●

●

●

●

●

●

Event format

Table Store triggers use CBOR format to encode incremental data and construct a Function Compute
event. The incremental data event format is as follows:

Parameter description:

Version is the payload version number. Value: Sync-v1.
Records indicates the set of incremental data rows in the table, which includes the following
attributes:

Type: The data row type, including PutRow, UpdateRow, and DeleteRow.
Info: The basic information of the data row, which includes the following attributes:

Timestamp: The last time this row was modified, in UTC time.
PrimaryKey: The primary key array, which includes the following attributes:

ColumnName: The name of the primary key column.
Value: The content of the primary key column, supports integer,
string, and blob.

Columns: The column attribute array, which includes the following
attributes:

Type: The column attribute, includes Put, DeleteOneVersion, and
DeleteAllVersions.
ColumnName: The name of the column.
Value: The column value, supports data types of integer, Boolean,

{
"Version": "string",
"Records": [
{
"Type": "string",
"Info": {
"Timestamp": int64
},
"PrimaryKey": [
{
"ColumnName": "string",
"Value": formated_value
}
],
"Columns": [
{
"Type": "string",
"ColumnName": "string",
"Value": formated_value,
"Timestamp": int64
}
]
}
]
}

Function Compute User Guide

51

●

double, string, and blob.
Timestamp: The last time this column was modified, in UTC time.

Event example:

API Gateway triggers

Event format

Input format
When Function Compute is used as an API Gateway backend, API Gateway passes HTTP request to

{
"Version": "Sync-v1",
"Records": [
{
"Type": "PutRow",
"Info": {
"Timestamp": 1506416585740836
},
"PrimaryKey": [
{
"ColumnName": "pk_0",
"Value": 1506416585881590900
},
{
"ColumnName": "pk_1",
"Value": "2017-09-26 17:03:05.8815909 +0800 CST"
},
{
"ColumnName": "pk_2",
"Value": 1506416585741000
}
],
"Columns": [
{
"Type": "Put",
"ColumnName": "attr_0",
"Value": "hello_table_store",
"Timestamp": 1506416585741
},
{
"Type": "Put",
"ColumnName": "attr_1",
"Value": 1506416585881590900,
"Timestamp": 1506416585741
}
]
}
]
}

Function Compute User Guide

52

-

-

Function Compute as an event which is in JSON format. Functions can obtain and process the request
according to the following structure:

Parameter description:

isBase64Encoded=true indicates that API Gateway uses Base64 to encode the body content
transmitted to Function Compute. Then, Function Compute uses Base64 to decode the body
content.
isBase64Encoded=false indicates that API Gateway does not use Base64 to encode the body
content transmitted to Function Compute.

Event example:

Output format

To respond to an API Gateway request, a function should return the result in the following JSON
format.

{
"path":"api request path",
"httpMethod":"request method name",
"headers":{all headers,including system headers},
"queryParameters":{query parameters},
"pathParameters":{path parameters},
"body":"string of request payload",
"isBase64Encoded":"true|false, indicate if the body is Base64-encode"
}

{
"body":"",
"headers":{
"X-Ca-Api-Gateway":"BDB46B3A-71A7-447B-B20B-28C594426407",
"X-Forwarded-For":"106.11.231.99"
},
"httpMethod":"GET",
"isBase64Encoded":false,
"path":"/fc",
"pathParameters":{

},
"queryParameters":{

}
}

{
"isBase64Encoded":true|false,
"statusCode":httpStatusCode,
"headers":{response headers},
"body":"..."

Function Compute User Guide

53

-

-

-

●

●

●

-

-

-

Parameter description:

When the body content is binary data, you must use Base64 to encode the body content in
Function Compute and set isBase64Encoded=true. API Gateway uses Base64 to decode body
content with the attribute isBase64Encoded=true and then transmits it to the client.
If the body does not need to be encoded by using Base64 format, you can set
isBase64Encoded to false.
In the Node.js version of Function Compute, you must set callback based on the specific
situation.

To return a request successful message:
callback{null,{“statusCode”:200,”body”:”…”}}
To return a request exception message: callback{new Error(‘internal server
error’),null}
To return a client error: callback{null,{“statusCode”:400,”body”:”param
error”}}

If the format of the result returned by Function Compute does not conform to these
requirements, API Gateway returns 503 Service Unavailable to the client.

DataHub triggers

Event format

Parameter description:

eventSource is the event source. Value: acs:datahub.
eventName is the event name. Value: acs:datahub:putRecord.

}

{
"eventSource": "acs:datahub",
"eventName": "acs:datahub:putRecord",
"eventSourceARN": "/projects/test_project_name/topics/test_topic_name",
"region": "cn-hangzhou",
"records": [
{
"eventId": "0:12345",
"systemTime": 1463000123000,
"data": "[\"col1's value\",\"col2's value\"]"
},
{
"eventId": "0:12346",
"systemTime": 1463000156000,
"data": "[\"col1's value\",\"col2's value\"]"
}
]
}

Function Compute User Guide

54

-

-

-

●

●

●

-

-

-

-

-

-

eventSourceARN is the event source ID, which includes the DataHub project and topic
names. For example, /projects/test_project_name/topics/test_topic_name.
region is the region of the event source’s DataHub, such as cn-hangzhou. For more
information, see Regions and zones.
records is a list of records included in the event, which includes the following key values:

eventId: The record ID, with the format: shardId:SequenceNumber.
systemTime: The time stamp from when this event was stored in DataHub.
data: The data content of the event. For tuple-type topics, the data type of this field
is list. Here, each list-type element corresponds to each field value of each topic for
the string-type data. For blob-type topics, the data type of this field is string.

IoT triggers

Event format

The event content IoT Hub sends to Function Compute is non-encapsulated IoT message content. For
example, you can use the following Java example to push messages to IoT topics:

The event received in Function Compute is:

References

What is OSS?
What is Log Service?
What is Table Store?
What is API Gateway?
What is DataHub?
What is Alibaba Cloud IoT?

PubRequest request = new PubRequest();
request.setProductKey("VHo5FRjudkZ");
request.setMessageContent(Base64.getEncoder().encodeToString("{\"hello\":\"world\"}".getBytes()));
request.setTopicFullName("/VHo5FRjudkZ/deviceName/update");
request.setQos(0);
PubResponse response = client.getAcsResponse(request);
System.out.println(response.getSuccess());
System.out.println(response.getErrorMessage());

{
"hello": "world"
}

Function Compute User Guide

55

-

-

-

-

-

-

Trigger

HTTP trigger

HTTP triggers are a common type of trigger used in Function Compute to call functions when an
HTTP request is sent. With HTTP triggers, you can construct web alike services. HTTP triggers support
HEAD, POST, PUT, GET, and DELETE method triggers.

Compared to API Gateway triggers, which are a bit difficult for new users, HTTP triggers offer the
following advantages:

The easier learning and debugging processes help you to implement web services and APIs
by using Function Compute.

You can use the HTTP testing tools you are familiar with to verify the functionality and
performance of Function Compute.

Requests are processed in less stages. HTTP triggers support more efficient request and
response formats and are not encoded or decoded into JSON strings. The performance is
improved.

You can connect to other services that support WebHook callbacks, such as CDN back-to-
source and MNS.

This topic discusses the following aspects of HTTP triggers:

HTTP trigger configuration
HTTP trigger interface format
HTTP trigger examples
Problem diagnosis

Limits

Once an HTTP trigger is set for a function, the trigger type cannot be changed for the
function.
A function must have only one HTTP trigger.

Function Compute User Guide

56

-

●

●

-

●

●

●

●

Configure an HTTP trigger

Assemble the HTTP trigger URL

You can send an HTTP request to the following address to call the function:

The action, queries, request header, body, and other information in the URL is all contained in the
request parameter of Function Compute handler.

HTTP trigger Config

HTTP trigger Config format:

The HTTP trigger Config has two main fields:

authType: The authentication type. Optional values:
anonymous: The server does not require identity authentication and supports
anonymous access. The system is of low security level.
Example:

function: The server requires identity authentication and does not support
anonymous access. The system is of high security level. Requests must pass
signature authentication and HTTP request headers must contain Authorization and
Date. The Date is in UTC format and used to calculate the signature. The server uses
the Date value to calculate the signature and compares it with the transmitted
Authorization value. The request passes the authentication only if the signatures
match and the difference between the current time and the Date value is within 15
minutes.

methods: The access methods supported by the HTTP trigger:
HEAD: HTTP HEAD method
GET: HTTP GET method
POST: HTTP POST method
PUT: HTTP PUT method

<account_id>.<region>.fc.aliyuncs.com/<version>/proxy/<serviceName>/<functionName>/[action?queries]

{
"authType" : "anonymous",
"methods" : ["GET", "POST"]
}

curl "<account-id>.<region>.fc.aliyuncs.com/2016-08-
15/proxy/serviceName/functionName/action?hello=world"

Function Compute User Guide

57

●

-

-

-

-

-

-

-

-

-

-

-

-

-

-

DELETE: HTTP DELETE method

HTTP trigger functions

The interfaces for invoking functions with HTTP triggers are different from those for invoking the
original functions in Function Compute. Currently, only Node.js runtime is supported. Python runtime
and Java runtime are supported later.

HTTP trigger interface format

Nodejs runtime:

Request structure

headers: Map type, stores the key-value pairs from the HTTP client.
path: String type, the HTTP URL.
queries: Map type, stores the key-value pairs from the HTTP URL’s query section. The
values can be strings or arrays.
method: String type, the HTTP method.
clientIP: String type, the IP address of the client.
url: String type, the URL of the request.

Get HTTP body: Requests in HTTP triggers are compatible with HTTP requests. HTTP triggers use the
bodies in HTTP requests directly. No additional field is provided for bodies.

Note: The following fields in the Headers key are ignored. Function Compute contains these
fields and does not support user-defined settings. Keys that start with x-fc- are also ignored.

accept-encoding
connection
keep-alive
proxy-authorization
te
trailer
transfer-encoding

function(request, response, context)

 // Example
var getRawBody = require('raw-body')
getRawBody(request, function(err, data){
var body = data
})

Function Compute User Guide

58

-

●

-

●

●

-

●

-

●

-

-

-

-

-

-

-

-

-

-

Response methods

response.setStatusCode(statusCode): Sets the status code.
param statusCode : (required, type integer)

response.setHeader(headerKey, headerValue): Sets the header.
param headerKey : (required, type string)
param headerValue : (required, type string)

response.deleteHeader(headerKey): Deletes the header.
param headerKey: (required, type string)

response.send(body): Sends the body.
param body: (required, typeBuffer or a string or a stream.Readable)

Note: The following fields in the Headers key are ignored. Function Compute contains these
fields and does not support user-defined settings. Keys that start with x-fc- are also ignored.

connection
content-length
content-encoding
date
keep-alive
proxy-authenticate
server
trailer
transfer-encoding
upgrade

Limits for requests

If the following limits are exceeded, the system throws a 400 status code and InvalidArgument error
code.

Headers size: The total size of all keys and values in the headers cannot exceed 4 KB.

Path size: In each query parameter, the path size cannot exceed 4 KB.

Body size: The HTTP body size cannot exceed 6 MB.

Limits for responses

If the following limits are exceeded, the system throws a 502 status code and BadResponse error
code.

Function Compute User Guide

59

Headers size: The total size of all keys and values in the headers cannot exceed 4 KB.

Body size: The HTTP body size cannot exceed 6 MB.

Example 1. Console operations

This example describes how to use the Function Compute console to set HTTP triggers. For more
information about triggers and how to create them, see Use event source service and Create a trigger
.

Step 1. Select and set an HTTP trigger

You can select and set a trigger while or after creating a function.

Select and set a trigger while creating a function

Log on to the Function Compute console.

Select a region, such as China East 2 (Shanghai).

Select a service in the left-side navigation pane.

Click Create Function to go to the function creation page:

Click Select All, and select “nodejs8” from the drop-down menu.

Click Select in Empty Function.

Select HTTP Trigger and configure the parameters as follows. You may also select
No Trigger. Then, click Next.

Function Compute User Guide

60

Configure the Service Name, Function Name, Function Description, and Runtime
parameters.

In the Code Configuration section, select In-line Edit and paste the following
sample code of the HTTP function for the Node.js runtime.

var getRawBody = require('raw-body')
module.exports.handler = function(request, response, context) {
// get requset header
var reqHeader = request.headers
var headerStr = ' '
for (var key in reqHeader) {
headerStr += key + ':' + reqHeader[key] + ' '
};

// get request info
var url = request.url
var path = request.path
var queries = request.queries
var queryStr = ''
for (var param in queries) {
queryStr += param + "=" + queries[param]+ ' '
};
var method = request.method
var clientIP = request.clientIP

// get request body
getRawBody(request, function(err, data){
var body = data
// you can deal with your own logic here

// set response
// var respBody = new Buffer('requestURI' + requestURI + ' path' + path + ' method' + method
+ ' clientIP' + clientIP)
var respBody = new Buffer('requestHeader:' + headerStr + '\n' + 'url: ' + url + '\n' + 'path: ' +
path + '\n' + 'queries: ' + queryStr + '\n' + 'method: ' + method + '\n' + 'clientIP: ' + clientIP
+'\n' + 'body: ' + body + '\n')
// var respBody = new Buffer()

Function Compute User Guide

61

vi.

vii.

viii.

Click Next.
(Optional) Configure permissions, and click Next.
Check that all the information is error free, and click Create.

Select and set a trigger after creating a function

Log on to the Function Compute console.

Select a region, such as China East 2 (Shanghai).

Select a service in the left-side navigation pane.

Select the function in the service.

Select the Triggers tab, and click Create Trigger.

On the Create Trigger page, select HTTP Trigger and configure the parameters as follows,
and then click OK.

Step 2. Debug the trigger

Select a function, select the Code tab, and then scroll down on the page.

response.setStatusCode(200)
response.setHeader('content-type', 'application/json')

response.send(respBody)

})
};

Function Compute User Guide

62

Select the Params tab, and enter your key-value pairs. The key-value pairs are automatically
added to the HTTP URL.

Select the Header tab to set the request header, and enter your key-value pairs. When
authentication is required, the request header on this tab automatically contains the Date
and Authorization keys.

Click Invoke.

Example 2. SDK programming

This section uses the Python SDK as an example to describe how to create an HTTP trigger from an
SDK.

Prerequisites

Function Compute User Guide

63

You have already deployed the Python environment.

You have already installed the Function Compute Python SDK and can run pip install aliyun-
fc2 on your local device to obtain the Function Compute Python SDK.

Procedure

Compile a Function Compute function, and copy and paste the sample code to the main.js
file in the code folder.

Create the file create_http_trigger.py, and copy and paste the following Python commands
to the file.

Run python create_http_trigger.py to create an HTTP trigger.

Send an HTTP request to call the function. Example:

The result is as follows:

import fc2
import os
def main():
service_name = "http_trigger_service"
func_name = "test_http_trigger_node"
endpoint = os.getenv("FC_ENDPOINT")
url = "%s/2016-08-15/proxy/%s/%s" % (endpoint, service_name, func_name)
print url
fc_client = fc2.Client(
endpoint=endpoint,
accessKeyID=os.getenv("ACCESS_KEY_ID"),
accessKeySecret=os.getenv("ACCESS_KEY_SECRET"),
Timeout=5)
fc_client.create_service(service_name)
fc_client.create_function(service_name, func_name, "nodejs6", "main.handler", codeDir='./code')

trigger_config = {
"authType" : "anonymous",
"methods" : ["GET", "POST"],
}
fc_client.create_trigger(service_name, func_name, "trigger_on_echo", "http", trigger_config, "dummy_arn",
"")
main()

curl -v "<account-id>.<region>.fc.aliyuncs.com/2016-08-
15/proxy/http_trigger_service/test_http_trigger_node/action"

Function Compute User Guide

64

Troubleshooting

The main types of errors are request errors and function errors. A request error occurs when your
request does is invalid and the response contains a 4xx status code. A function error occurs when the
function is improperly programmed and a 5xx status code is returned. Cases in which request and
function errors may occur are described in the following table for your quick troubleshooting.

Error type X-Fc-Error-
Type

HTTP status
code Cause analysis Still billed?

Request errors

FcCommonErro
r 400

The request
exceeds the
limits for
responses.

No

FcCommonErro
r 400

A request to
invoke a
function that
requires
identity
authentication
does not
contain Date or
Authorization.

No

FcCommonErro
r 403

The signature
of a request to
invoke a
function that
requires
identity
authentication
is incorrect,

No

Function Compute User Guide

65

that is, the
Authorization is
incorrect. A
common cause
is that the
HTTP trigger
requires
identity
authentication
while the
signature is
invalid because
the difference
between the
Date used to
calculate the
signature and
the current
time is more
than 15
minutes.

FcCommonErro
r 403

The method in
the request is
not configured
in the HTTP
trigger. For
example, only
the GET
method is
configured in
the HTTP
trigger while
the POST
method is
requested.

No

FcCommonErro
r 404

An HTTP
request is sent
to invoke a
function
without any
HTTP trigger.

No

User throttling FcCommonErro
r 429

You have been
throttled. You
can reduce the
concurrent
request volume
or contact
Function
Compute to
increase your
concurrency.

No

Function errors UnhandledInvo
cationError 502

The value
returned by the
function
exceeds the

Yes

Function Compute User Guide

66

If the problem persists, please contact us.

CDN events trigger

CDN events trigger

With 1,200+ nodes distributed across the globe, Alibaba Cloud CDN (Content Delivery Network)
enables users to effectively reduce website response time to milliseconds, ensure smooth video
streaming and handle large volumes of traffic. As a low-cost and scalable service, Alibaba Cloud CDN
comes without any long-term contracts or minimum usage commitments. Based on the seamless
integration of Alibaba Cloud Function Compute and Alibaba Cloud CDN, FC can receive and process
different kinds of CDN events. The user can create CDN events trigger with filters to handle events
from a specific domain, and process these events with specific functions. For example, the user can
create CDN events trigger and some logging functions to handle CDN cache purge event from
“www.taobao.com” domain.

limits for
responses.

UnhandledInvo
cationError 502

The function
code has a
syntax error or
exception.

Yes

UnhandledInvo
cationError 502

An HTTP
request is sent
to a function
that does not
use an HTTP
interface.

Yes

System error FcCommonErro
r 500

Function
Compute
system error.
Please try
again.

No

System
throttling

FcCommonErro
r 503

Function
Compute has
activated
system
throttling.
Implement
exponential
backoff retry
attempts.

No

Function Compute User Guide

67

1.

2.

3.

CDN events trigger usage scenario:

When content is pre-warmed or purged, “CachedObjectsPushed “ or
“CachedObjectsRefreshed “ event will fire and invoke user’s function. So the user can
get notified in time instead of keeping polling status from CDN.
When “CachedObjectsBlocked “ event fired, user’s function can be invoked to delete the
original content in time, instead of involving CDN team to handle it.
When CDN log file generated, “LogFileCreated “ event will fire and invoke user’s
function to copy or process log file immediately.

CDN events

CDN will convert the user specified event to JSON string, and invoke the function. Events supported
by CDN events trigger as below:

CDN event schema：

CachedObjectsRefreshed，CachedObjectsPushed和CachedObjectsBlocked event schema：

Event Name Event Version Filter Key Description

CachedObjectsRefre
shed 1.0.0 domain

See
RefreshObjectCache
s API for details.

CachedObjectsBlock
ed 1.0.0 domain CDN resource

blocked

CachedObjectsPush
ed 1.0.0 domain

See
PushObjectCache
API for details.

LogFileCreated 1.0.0 domain
See
DescribeCdnDomain
Logs API for details.

{
"events": [
{
"eventName": "CachedObjectsRefreshed",//event name
"eventVersion": "1.0.0", // event version
"eventSource": "cdn", // event source name
"region": "cn-hangzhou", //default region:"cn-hangzhou"
"eventTime": "2018-03-16T14:19:55+08:00",//refresh start time
"traceId": "cf89e5a8-7d59-4bb5-a33e-4c3d08e25acf",//id of event source, used for debugging
"resource": {
"domain": "example.com"
},
"eventParameter": {
"objectPath": [

Function Compute User Guide

68

LogFileCreated event schema：

Configuration a CDN events trigger：

Trigger example：cdn_events_trigger.yml

"/2018/03/16/13/33b430c57e7.mp4",//content URI
"/2018/03/16/14/4ff6b9bd54d.mp4"//content URI
],
"createTime": 1521180769,//refresh start time
"domain": "example.com",//domain
"completeTime": 1521180777,//refresh complete time
"objectType": "File", //refresh type, including File and Directory
"taskId": 2089687230 //refresh task ID
},
"userIdentity": {
"aliUid": "1xxxxxxxxxx" //account id
}
}
]
}

{
"events": [
{
"eventName": "LogFileCreated",//event name
"eventSource": "cdn",//event source name
"region": "cn-hangzhou",//default region:"cn-hangzhou"
"eventVersion": "1.0.0",//event versino
"eventTime": "2018-06-14T15:31:49+08:00",//event start time
"userIdentity": {
"aliUid": "1xxxxxxxxxxxx" //account id
},
"resource": {
"domain": "example.com"//domain
},
"eventParameter": {
"domain": "example.com",//domain
"endTime": 1528959900, //end time of log file
"fileSize": 1788115,//log file size
"filePath": "http://cdnlog.cn-hangzhou.oss.aliyun-
inc.com/www.aliyun.com/2017_12_27/www.aliyun.com_2017_12_27_0800_0900.gz?OSSAccessKeyId=xxxx&Expires=
xxxx&Signature=xxxx",//log file path
"startTime": 1528959600 //start time of log file
},
"traceId": "c6459282-6a4d-4413-894c-e4ea39686738" //id of event source, used for debugging
}
]
}

triggerConfig:
eventName: “LogFileCreated”

Function Compute User Guide

69

-

-

-

-

1.

2.

Trigger parameter descriptions：

eventName is CDN event which invokes the function execution, can not be changed after
creation.
eventVersion is CDN event version which invokes the function execution, can not be
changed after creation.
notes Descriptions.
filter Filters (Need to have at least one filter).

filter schema：

Demos

There are 3 ways to set CDN events trigger for a given function, Function Compute Console, fcli and
SDK:

Demo 1: Console operations

This example describes how to use Function Compute Console to set CDN events trigger. For more
information about how to create triggers, please see Use event source service and Create a trigger.

Log in on Function Compute Console，select region and service as you need. Please check Create a
service if you need to create service.

Set a trigger while creating a function

Click Create Function, choose Empty Function, then click Next.
Select CDN Events Trigger and configure the parameters as below:

eventVersion: “1.0.0”
notes: “cdn events trigger test”
filter:
domain: {“www.taobao.com”,”www.tmall.com”}

 filter:
key1: {value a，value b}
key2: {value c，value d}

Function Compute User Guide

70

3.

1.

2.

Configure Service Name, Function Name, Function Description and Runtime parameters,
select In-line Edit and paste the following python runtime sample code，then click Next.

4.（Optional）Configure Permissions，click Next, check it all the information is error-free, then click
Create.

Set a trigger after function creation

Select a function in the service, select the Triggers tab, then click Create Trigger.
Select CDN Events Trigger and configure the parameters as below, then click OK.

import json
import logging

LOG = logging.getLogger()

def handler(event, context):
logger = logging.getLogger()
eventObj = json.loads(event)["events"]
logger.info("EventCount: %d" % len(eventObj))
logger.info("eventName: %s" % eventObj[0]["eventName"])
logger.info("eventVersion: %s" % eventObj[0]["eventVersion"])

Function Compute User Guide

71

Demo 2: fcli operations

First, create a yaml file as Trigger Config. A trigger with trigger config yaml file below will invoke
some function when CDN receiving logFileCreated(version 1.0.0) event from www.taobao.com and
www.tmall.com domains:

Command to create trigger under the function folder：

For more about fcli, please see fcli

Demo 3: SDK programming

Using fc-python-sdk as an example to describe how to set a CDN events trigger by SDK. Function
Compute provides fc-nodejs-sdk and fc-java-sdk as well.

Create trigger Python code

triggerConfig:
eventName: “LogFileCreated”
eventVersion: “1.0.0”
notes: “cdn events trigger test”
filter:
domain: {“www.taobao.com”,”www.tmall.com”}

mkt serviceName/functionName -t timer -c TriggerConfig.yaml

client = fc2.Client(
endpoint='<Your Endpoint>',

Function Compute User Guide

72

Function Python code

Please contact us for more information.

Log Service trigger

The Log Service trigger regularly subscribes to incremental data from the Logstore. The incremental
data triggers Extract, Transform, and Load (ETL) of the log updates in Function Compute.

Scenarios

The Log Service trigger is suitable for Data scrubbing and ETL. Log Service allows you to quickly
perform log collection, ETL, query, and analysis, as shown in the following figure:

accessKeyID='<Your AccessKeyID>',
accessKeySecret='<Your AccessKeySecret>')
service_name = 'serviceName'
function_name = 'functionName'
trigger_name = 'triggerName'
trigger_type = 'cdn_events'
source_arn = 'acs:cdn:*:<Your Account ID>'
invocation_role = 'acs:ram::<Your Account ID>:role/<Your Invocation Role>'
trigger_config = {
'eventName': 'logFileCreated',
'eventVersion': '1.0.0',
'notes': 'notes',
'filter': {
'domain' : ['www.taobao.com'],
}
}

client.create_trigger(service_name, function_name, trigger_name, trigger_type, trigger_config, source_arn,
invocation_role)

import json
import logging

LOG = logging.getLogger()

def handler(event, context):
logger = logging.getLogger()
eventObj = json.loads(event)["events"]
logger.info("EventCount: %d" % len(eventObj))
logger.info("eventName: %s" % eventObj[0]["eventName"])
logger.info("eventVersion: %s" % eventObj[0]["eventVersion"])

Function Compute User Guide

73

1.

2.

3.

The trigger supports shipping data to the destination, and building data pipelines between big data
services in the cloud, as shown in the following figure:

Description:

Build and deliver Column-based storage.
Pre-process and deliver fields.
Customize and store response.

Configure Log Service trigger

Trigger example

The following slsTrigger.yml is a configuration template of the Log Service trigger.

triggerConfig:
sourceConfig:
project: "etl"
logstore: "etl-log"
jobConfig:
maxRetryTime: 3
triggerInterval: 60
functionParameter:
a: "b"
c: "d"
logConfig:
project: "ali-fc-test"
logstore: "test-store"
enable: true

Function Compute User Guide

74

-

●

-

●

●

-

-

●

●

-

Trigger parameters

sourceConfig is the data source configuration parameter, and includes the following
properties:

Logstore: The name of the data source (Logstore). The trigger regularly subscribes
to data from this Logstore and sends the data to Function Compute for ETL. You
cannot modify this parameter after you have created it.

jobConfig is the task configuration parameter, and includes the following properties:
triggerInterval: The interval at which the function that is triggered by Log Service
runs. Value range: [3, 600], unit: second. For example, triggerInterval: 60 indicates
that this function reads the locations of data that occurs in the last 60 seconds in
each shard at intervals of 60 seconds. The incremental data triggers executing this
function. If your Logstore shards have a high traffic volume that is more than 1
MiB/s, we recommend that you use a shorter trigger interval. Therefore, the
function can process data of a reasonable size.
maxRetryTime: The maximum number of retries allowed for a single trigger. Value
range: [0, 100]. An error may occur when Log Service triggers function execution at
the specified trigger interval, such as insufficient permissions, network failures, or
function execution exceptions. The function execution may still fail after the
maximum number of retries. In these conditions, Log Service triggers function
execution again after the trigger interval. The impact of retries on the business
varies according to the specific function code logic.

functionParameter: The event parameter directly uses this parameter from the .yml file.
Function usage depends on the custom logic of this function. Each function may require
different function configurations. You must enter parameters for most default function
templates according to the instructions. The default value is empty ({}).
logConfig is the log configuration of the trigger, and includes the following properties:

project: The project name in Log Service.
logstore: The name of the Logstore that stores log files.

enable is used to enable the trigger. Value range: true|false.

Event format

{
"parameter":{
"a":"b",
"c":"d"
},
"source":{
"endpoint":"http://cn-shanghai-intranet.log.aliyuncs.com",
"projectName":"vangie-fc-test",
"logstoreName":"fc-test",
"shardId":0,
"beginCursor":"MTUyMzI2NzI5NDY1NjI4MzgzNg==",
"endCursor":"MTUyMzI2NzI5NDY1NjI4MzgzNw=="

Function Compute User Guide

75

-

-

●

●

●

●

●

●

-

-

-

parameter: The function parameter that you configure for the trigger.
source: The information of the log block that Function Compute reads from Log Service.

endpoint: The region of the Log Service project.
projectName: The project name.
logstoreName: The Logstore name.
shardId: The specified shard in the Logstore.
beginCursor: The location on the shard where the triggered function starts
consuming data.
endCursor: The location on the shard where the triggered function stops
consuming data.

jobName: The name of the ETL job in Log Service. A Log Service trigger in Function Compute
corresponds to an ETL job in Log Service.
taskId: The identifier of the execution of the specified function. This execution corresponds
to an ETL job.
cursorTime: The unix_timestamp of the last log entry that reaches the backend of Log
Service. The function reads this data when retrieving log entries.

Create Log Service trigger

Sample 1. By using Function Compute console

Make sure that Function Compute and Log Service are deployed in the same region. Otherwise,
Function Service cannot locate Log Service when you configure the Log Service trigger. For more
information, see Regions and zones.

Log on to the Alibaba Cloud console.

Navigate to the AliyunLogETLRole role management page, click the Confirm Authorization
Policy button to grant Function Compute the AliyunLogETLRole access policy.

Log on to Log Service console, create one Logstore to process log files and data sources,
and create another Logstore to store the log files that are generated by Function Compute.
For more information, see Log Service topic Preparation.

Log on to the Function Compute console and create a Service. In the Create Service dialog
box that appears:

},
"jobName":"05c79f637c6b46eaa85911cae032cf47551af7bb",
"taskId":"d22697c0-2a41-4d35-b27c-dccec8856768",
"cursorTime":1523323454
}

Function Compute User Guide

76

i.

Select a region, in this sample, we use the China (Shanghai) region.

Click Create Service.

In the Create Service dialog box that appears, enter the service name, in this
sample, the service name is log-com.

Enable the Advanced Settings option.

In the Log Configs, set your available Log Project and Logstore.

In the Role Config, select Create new role from the Role Operation drop-down
list, select AliyunLogFullAccess and AliyunLogReadOnlyAccess from the System
Policies drop-down list.

Click Authorize and OK to confirm your action.

In the left-side navigation pane, select the new service you created.

Click Create Function to go to the Create Function page.

Click Select All, and select python2.7 from the drop-down list. This sample takes
Python code execution for example.

Click Select in Empty Function.

Note: You can create the trigger during or after function creation. Then, you
can configure the trigger. For more information, see Basic operations.

Select Log Service (Log) from the Trigger Type drop-down list, set the Trigger
Name, Log Project Name, Trigger Log, Invocation Interval, Retry Count, and
Function Configuration configuration. In this sample, we set the trigger as follows:

Function Compute User Guide

77

v.

vi.

You can set the Function Configuration field according to the event parameter in
your function code. In this sample, we set the Function Configuration as follows:

Configure the Service Name, Function Name, Function Description, Runtime, and
Runtime Environment parameters.

Click Next.
Make sure that all the settings are correct, and then click Create.

Sample 2. By using Pyhton SDK

This section takes fc-python-sdk for example:

{
"source":{
"endpoint": "http://cn-shanghai-intranet.log.aliyuncs.com"
},
"target": {
"endpoint": "http://cn-shanghai-intranet.log.aliyuncs.com",
"projectName": "etl-test",
"logstoreName": "nginx_access_log_rep"
}
}

Function Compute User Guide

78

References

Log Service trigger use case Demo overview.

Permission management

RAM

Function Compute supports RAM based resource access management. You can access Function
Compute using RAM user or STS token. The RAM permissions of each operations are defined as
follows:

import fc2

client = fc2.Client(
endpoint = '<Your Endpoint>',
accessKeyID = '<Your AccessKeyID>',
accessKeySecret = '<Your AccessKeySecret>')
service_name = '<service_name>'
function_name = '<function_name>'
trigger_name = '<trigger_name>'
Create log trigger
log_trigger_config = {
'sourceConfig': {
'logstore': 'log_store_source'
},
'jobConfig': {
'triggerInterval': 60,
'maxRetryTime': 10
},
'functionParameter': {},
'logConfig': {
'project': 'log_project',
'logstore': 'log_store'
},
'enable': False
}
source_arn = 'acs:log:cn-shanghai:12345678:project/log_project'
invocation_role = 'acs:ram::12345678:role/aliyunlogetlrole'
client.create_trigger('service_name', 'function_name', 'trigger_name', 'oss',
log_trigger_config, source_arn, invocation_role)

Function Compute User Guide

79

Note: In RAM, theResource format is acs:fc:${region}:${account-id}:${resource}. The following table
lists only the content of ${resource}. For example, you can specify the following authorization policies
for CreateService:

{
"Version": "1",
"Statement": [
{
"Action": [
"fc:CreateService"
],
"Resource": "acs:fc:*:*:services/*",
"Effect": "Allow"
}
]
}

API Action Resource

CreateService fc:CreateService services/*

ListServices fc:ListServices services/*

GetService fc:GetService services/${serviceName}

UpdateService fc:UpdateService services/${serviceName}

DeleteService fc:DeleteService services/${serviceName}

CreateFunction fc:CreateFunction services/${serviceName}/func
tions/*

ListFunctions fc:ListFunctions services/${serviceName}/func
tions/*

GetFunction fc:GetFunction services/${serviceName}/func
tions/${functionName}

UpdateFunction fc:UpdateFunction services/${serviceName}/func
tions/${functionName}

DeleteFunction fc:DeleteFunction services/${serviceName}/func
tions/${functionName}

InvokeFunction fc:InvokeFunction services/${serviceName}/func
tions/${functionName}

CreateTrigger fc:CreateTrigger
services/${serviceName}/func
tions/${functionName}/trigg
ers/*

ListTriggers fc:ListTriggers
services/${serviceName}/func
tions/${functionName}/trigg
ers/*

GetTrigger fc:GetTrigger
services/${serviceName}/func
tions/${functionName}/trigg
ers/${triggerName}

Function Compute User Guide

80

User permissions

One must manage the following permissions before using Function Compute to build an application:

One must authorize Function Compute to collect and write the function execution logs to
the logproject/logstore you specified.

If your function needs to access other Alibaba Cloud resources under your account, for
example, data in OSS, you can create a RAM role and grant relevant permission to it.
Function Compute will inherite the permissions from that role to run the functions for you.

Function Compute uses role-based permission management of Alibaba Cloud RAM.

Service role

Each service is associated with a RAM role (service role). When creating or updating a service, you can
specify a role for the service. The permissions you grant to the role determine the operations that
Function Compute can perform when running functions in the service.

Invocatino role

Each trigger is associated with a RAM role (invocation role). When creating a trigger, you must specify
a role for the trigger. The permissions you grant to the role determine the functions that the event
source service can invoke when an event occurs. For example, OSS must obtain your permission to
call the associated function to process the event that occurs.

Note: When creating a RAM role, you actually authorize Function Compute to play the role. In
this case, you must have the ram:PassRole operation permission. If the role is created by an
administrator, you do not need to grant any permissions except the ram:PassRole operation
permission, because the administrator has the full permissions including ram:PassRole.

UpdateTrigger fc:UpdateTrigger
services/${serviceName}/func
tions/${functionName}/trigg
ers/${triggerName}

DeleteTrigger fc:DeleteTrigger
services/${serviceName}/func
tions/${functionName}/trigg
ers/${triggerName}

Function Compute User Guide

81

Monitor service

Metrics userguide

Function Compute metrics are reported in three dimensions:

Region dimension

Service dimension

Function dimension

All metric values are aggregated to 1-minute granularity and are stored as timeseries data. The
Duration metric is aggregated as average and all other metrics are aggregated as sum.

Region Dimension

Region level metrics are useful to measure and monitor the overall usage of FC resources in a region.
The following table lists metrics and descriptions.

Region-dimension metric Unit Description

TotalInvocations Count

Total number of invocations of the
region, including all synchronous
InvokeFunction API calls and
requests handled by FC
asynchronously. Note that
asynchronous invocation metrics are
only reported after FC finished
handling the requests, not at the
time asynchronous InvokeFunction
API returns 202 (i.e. requests with
HTTP status 202 are excluded).

BillableInvocations Count

Number of invocations of the region
that can be metered and billed,
including the InvokeFunction
requests that return the HTTP status
200 or the asynchronous invocation
requests successfully processed by
FC. Note that function errors such as

Function Compute User Guide

82

Service Dimension

Service level metrics are useful to measure and monitor the overall usage of FC resources in a service.
The following table lists metrics and descriptions.

syntax errors, handled/unhandled
errors and function timeout are
included in this metric.

Throttles Count

Number of InvokeFunction requests
of the region that are throttled,
including the requests that call the
InvokeFunction API for access and
return the HTTP status 429 and the
asynchronous invocation requests
that fail to be executed due to
throttling.

ClientErrors Count

Number of InvokeFunction requests
of the region that returned with the
HTTP status 4xx (excluding 429) and
the asynchronous invocation
requests that fail to be executed due
to client side errors.

ServerErrors Count

Number of InvokeFunction requests
of the region that returned the HTTP
status 5XX and the asynchronous
invocation requests that fail to be
run due to server side (FC) errors.

BillableInvocationsRate %

Percentage of BillableInvocations of
the region from the total number of
InvokeFunction requests of the
region.

ThrottlesRate %

Percentage of Throttles of the
region from the total number of
InvokeFunction requests of the
region.

ClientErrorsRate %

Percentage of ClientErrors of the
region from the total number of
InvokeFunction requests of the
region.

ServerErrorsRate %
Percentage of ServerErrors of the
region from the total number of
requests of the region.

Service-dimension metric Unit Description

TotalInvocations Count

Total number of invocations of the
service, including all synchronous
InvokeFunction API calls and
requests handled by FC
asynchronously. Note that

Function Compute User Guide

83

asynchronous invocation metrics are
only reported after FC finished
handling the requests, not at the
time asynchronous InvokeFunction
API returns 202 (i.e. requests with
HTTP status 202 are excluded).

BillableInvocations Count

Number of invocations of the service
that can be metered and billed,
including the InvokeFunction
requests that return the HTTP status
200 or the asynchronous invocation
requests successfully processed by
FC. Note that function errors such as
syntax errors, handled/unhandled
errors and function timeout are
included in this metric.

Throttles Count

Number of InvokeFunction requests
of the service that are throttled,
including the requests that call the
InvokeFunction API for access and
return the HTTP status 429 and the
asynchronous invocation requests
that fail to be executed due to
throttling.

ClientErrors Count

Number of InvokeFunction requests
of the service that returned with the
HTTP status 4xx (excluding 429) and
the asynchronous invocation
requests that fail to be run due to
client side errors.

ServerErrors Count

Number of InvokeFunction requests
of the service that returned the
HTTP status 5XX and the
asynchronous invocation requests
that fail to be run due to server side
(FC) errors.

BillableInvocationsRate %

Percentage of BillableInvocations of
the service from the total number of
InvokeFunction requests of the
service.

ThrottlesRate %

Percentage of Throttles of the
service from the total number of
InvokeFunction requests of the
service.

ClientErrorsRate %

Percentage of ClientErrors of the
service from the total number of
InvokeFunction requests of the
service.

ServerErrorsRate %
Percentage of ServerErrors of the
service from the total number of
requests of the service.

Function Compute User Guide

84

Function Dimension

Function level metrics are useful to measure and monitor the usage of resources of a function. The
following table lists the function-dimension metrics.

Function-dimension
metric Unit Description

AvgDuration Millisecond

The average time in milliseconds
elapsed from the start of function
execution to the stop during the
aggregation period (1-minute).
Unlike the metering rules that
round up the request duration by
100ms, this metric reports actual
function execution time.

MaxMemoryUsage MB
The maximum memory in MB used
by function executions during the
aggregation period (1-minute).

TotalInvocations Count

Total number of invocations of the
function, including all synchronous
InvokeFunction API calls and
requests handled by FC
asynchronously. Note that
asynchronous invocation metrics
are only reported after FC finished
handling the requests, not at the
time asynchronous InvokeFunction
API returns 202 (i.e. requests with
HTTP status 202 are excluded).

BillableInvocations Count

Number of invocations of the
function that can be metered and
billed, including the
InvokeFunction requests that
return the HTTP status 200 or the
asynchronous invocation requests
successfully processed by FC. Note
that function errors such as syntax
errors, handled/unhandled errors
and function timeout are included
in this metric

FunctionErrors Count

Number of function invocations
encountered errors such as
Handled/Unhandled/OOM/timeou
t that are caused by function
execution.

Throttles Count

Number of InvokeFunction
requests of the function that are
throttled, including the requests
that call the InvokeFunction API for
access and return the HTTP status
429 and the asynchronous
invocation requests that fail to be

Function Compute User Guide

85

Metrics data userguide

This section describes how to use the Alibaba Cloud OpenAPI or the CloudMonitor SDK to query
Function Compute (FC) metrics from CloudMonitor Service (CMS).

CloudMonitor Interface introduction

CloudMonitor JavaSDK user manual

Project
FC metrics data is available for querying under CMS project: acs_fc.

executed due to throttling.

ClientErrors Count

Number of InvokeFunction
requests of the function that
returned with the HTTP status 4xx
(excluding 429) and the
asynchronous invocation requests
that fail to be run due to client
side errors.

ServerErrors Count

Number of InvokeFunction
requests of the function that
returned the HTTP status 5XX and
the asynchronous invocation
requests that fail to be run due to
server side (FC) errors

BillableInvocationsRate %

Percentage of BillableInvocations
of the function from the total
number of InvokeFunction
requests of the function.

ThrottlesRate %

Percentage of Throttles of the
region from the function number
of InvokeFunction requests of the
function.

ClientErrorsRate %

Percentage of ClientErrors of the
function from the total number of
InvokeFunction requests of the
function.

ServerErrorsRate %
Percentage of ServerErrors of the
function from the total number of
requests of the function.

Function Compute User Guide

86

-

-

-

Sample Java code using CMS SDK:

StartTime and EndTime

CloudMonitor metrics data time range is specified by (StartTime, EndTime] inputs where StartTime
timestamp is exclusive and EndTime timestamp is inclusive.

CloudMonitor data retention is 31 days. The interval between StartTime and EndTime cannot exceed
31 days, and data earlier than 31 days cannot be queried.

For more detailed parameters information, see CloudMonitor Interface introduction.

Sample Java code using CMS SDK:

Dimensions

FC metrics are dimensioned into region, service, and function.

Set Dimensions as the following to access regional dimension metrics data:

Set Dimensions as the following to access service-dimension metric data:

Set Dimensions as the following to access function-dimension metric data:

Note: “Dimensions” parameter is a JSON string and has only one Key-Value pair for FC.

Sample Java code using CMS SDK:

QueryMetricRequest request = new QueryMetricRequest();
request.setProject("acs_fc");

request.setStartTime("2017-04-26 08:00:00");
request.setEndTime("2017-04-26 09:00:00");

{"region": "${your_region}"}

{"region": "${your_region}", "serviceName": "${your_serviceName}"}

{"region": "${your_region}", "serviceName": "${your_serviceName}", "functionName": "${your_functionName}"}

request.setDimensions("{\"region\":\"your_region\"}");

Function Compute User Guide

87

Period

FC metrics are aggregated in 60s period.Sample Java code using CMS SDK:

Metric

Sample Java code using CMS SDK:

The following table lists all the supported metric keys.

request.setPeriod("60");

request.setMetric("your_metric");

Metric Metric name

RegionTotalInvocations Region total invocations

RegionBillableInvocations Region-dimension billable invocations

RegionThrottles Region-dimension throttles

RegionClientErrors Region-dimension client errors

RegionServerErrors Region-dimension server errors

RegionBillableInvocationsRate Percentage of region-dimension billable
invocations

RegionThrottlesRate Percentage of region-dimension throttles

RegionClientErrorsRate Percentage of region-dimension client errors

RegionServerErrorsRate Percentage of region-dimension server errors

ServiceTotalInvocations Service-dimension total invocations

ServiceBillableInvocations Service-dimension billable invocations

ServiceThrottles Service-dimension throttles

ServiceClientErrors Service-dimension client errors

ServiceServerErrors Service-dimension server errors

ServiceBillableInvocationsRate Percentage of service-dimension billable
invocations

ServiceThrottlesRate Percentage of service-dimension throttles

ServiceClientErrorsRate Percentage of service-dimension client errors

ServiceServerErrorsRate Percentage of service-dimension server errors

FunctionTotalInvocations Function-dimension total invocations

Function Compute User Guide

88

Example

Adding CMS SDK using Maven pom.xml:

Sample code:

FunctionBillableInvocations Function-dimension billable invocations

FunctionFunctionErrors Function-dimension function errors

FunctionThrottles Function-dimension throttles

FunctionFunctionErrorsRate Percentage of function-dimension function
errors

FunctionClientErrors Function-dimension client errors

FunctionServerErrors Function-dimension server errors

FunctionBillableInvocationsRate Percentage of function-dimension billable
invocations

FunctionThrottlesRate Percentage of function-dimension throttles

FunctionClientErrorsRate Percentage of function-dimension client
errors

FunctionServerErrorsRate Percentage of function-dimension server
errors

FunctionAvgDuration Function-dimension average duration

FunctionMaxMemoryUsage Function-dimension maximum memory usage

...
<dependencies>
<dependency>
<groupId>com.aliyun</groupId>
<artifactId>aliyun-java-sdk-core</artifactId>
<version>3.1.0</version>
</dependency>
<dependency>
<groupId>com.aliyun</groupId>
<artifactId>aliyun-java-sdk-cms</artifactId>
<version>5.0.1</version>
</dependency>
</dependencies>
...

import com.alibaba.fastjson.JSONObject;
import com.aliyuncs.DefaultAcsClient;
import com.aliyuncs.IAcsClient;
import com.aliyuncs.cms.model.v20170301.QueryMetricListRequest;
import com.aliyuncs.cms.model.v20170301.QueryMetricListResponse;
import com.aliyuncs.exceptions.ClientException;

Function Compute User Guide

89

import com.aliyuncs.exceptions.ServerException;
import com.aliyuncs.http.FormatType;
import com.aliyuncs.profile.DefaultProfile;
import com.aliyuncs.profile.IClientProfile;

public class MonitorService {
public static void main(String[] args) {
IClientProfile profile = DefaultProfile.getProfile("cn-hangzhou", "<your_access_key_id>",
"<your_access_key_secret>");
IAcsClient client = new DefaultAcsClient(profile);

QueryMetricListRequest request = new QueryMetricListRequest();
request.setProject("acs_fc");
request.setPeriod("60");
request.setStartTime("2017-04-26 16:20:00");
request.setEndTime("2017-04-26 16:30:00");
request.setAcceptFormat(FormatType.JSON);

try {
// Region dimension
JSONObject dim = new JSONObject();
request.setMetric("RegionTotalInvocations"); // Select the metric
dim.put("region", "<your_region>"); // 如: cn-shanghai
request.setDimensions(dim.toJSONString());
QueryMetricListResponse response = client.getAcsResponse(request);
System.out.println(response.getCode());
System.out.println(response.getMessage());
System.out.println(response.getRequestId());
System.out.println(response.getDatapoints());

// Service dimension
dim = new JSONObject();
request.setMetric("ServiceTotalInvocations"); // Select the metric
dim.put("region", "<your_region>");
dim.put("serviceName", "<your_service_name>");
request.setDimensions(dim.toJSONString());
response = client.getAcsResponse(request);
System.out.println(response.getCode());
System.out.println(response.getMessage());
System.out.println(response.getRequestId());
System.out.println(response.getDatapoints());

// Function dimension
dim = new JSONObject();
request.setMetric("FunctionTotalInvocations"); // Select the metric
dim.put("region", "<your_region>");
dim.put("serviceName", "<your_service_name>");
dim.put("functionName", "<your_function_name>");
request.setDimensions(dim.toJSONString());
response = client.getAcsResponse(request);
System.out.println(response.getCode());
System.out.println(response.getMessage());
System.out.println(response.getRequestId());
System.out.println(response.getDatapoints());
} catch (ServerException e) {

Function Compute User Guide

90

Limits

Service resource restrictions

Function runtime envrionment restrictions

Resource restrictions per account in each region

e.printStackTrace();
} catch (ClientException e) {
e.printStackTrace();
}
}
}

Restriction Default value

Maximum number of functions that can be
created under a single service 50

Maximum number of triggers that can be
created under a single function 10

Resource Default value

Temporary disk space (space of “/tmp”) 1024 MB

Number of file descriptors 1024

Number of processes and threads (total) 1024

Maximum execution duration per request 600s

Request payload size for synchronous
function call 6 MB

Response body for synchronous function call 6 MB

Request payload size for asynchronous
function call 128 KB

Code package size (compressed .zip or .jar
file) 100 MB

Uncompressed code size 500 MB

Resource Default value

Number of functions that can be concurrently
executed 100

Function Compute User Guide

91

-

Subaccount userguide

RAM User Console Logon Prerequisites

The following prerequisites should be met when a RAM user is used to login to Function Compute
console:

Console Logon is enabled, and logon user name and password are set for the RAM user. For
more information, see Logon to the console using a RAM user.

Permissions Required by the RAM User

A RAM policy is required to be attached to the RAM user so it has necessary permissions to access
cloud services. You can add, delete, or modify below policy template to grants the RAM user required
permissions.

Total size of the packages that can be
uploaded 100 GB

{
"Version": "1",
"Statement": [
{
"Action": "fc:*",
"Resource": "*",
"Effect": "Allow"
},
{
"Action": [
"ram:PassRole"
],
"Effect": "Allow",
"Resource": "*"
},
{
"Effect": "Allow",
"Action": [
"log:ListProject",
"log:ListLogStore"
],
"Resource": "acs:log:*:*:project/*"
},
{
"Effect": "Allow",
"Action": [

Function Compute User Guide

92

If you want to restrict the RAM user to have read-only permissions such as getting functions,
invoking functions, below policy template can be attached to your RAM user:

"ram:ListRoles"
],
"Resource": [
"acs:ram:*:*:role/*"
]
},
{
"Action": [
"oss:ListBucket"
],
"Effect": "Allow",
"Resource": "*"
},
{
"Action": [
"oss:GetBucketEventNotification",
"oss:PutBucketEventNotification",
"oss:DeleteBucketEventNotification"
],
"Effect": "Allow",
"Resource": "*"
}
]
}

{
"Version": "1",
"Statement": [
{
"Effect": "Allow",
"Action": "fc:ListService",
"Resource": "acs:fc:cn-shanghai:*:services/*"
},
{
"Effect": "Allow",
"Action": [
"fc:GetFunction"
],
"Resource": [
"acs:fc:*:*:services/your-helloworld-fc/functions/*",
"acs:fc:*:*:services/your-helloworld-oss/functions/*"
]
},
{
"Effect": "Allow",
"Action": [
"fc:InvokeFunction"
],
"Resource": [
"acs:fc:*:*:services/your-helloworld-fc/functions/your-hello-world-fc"
]
},

Function Compute User Guide

93

Authorize a RAM User to Perform Basic Functionalities

Basic functionalities include creating and deleting services, obtaining service information, creating
and deleting functions, updating and obtaining function information, and executing functions.
Operations related to logging and triggers are excluded. Below are the fundamental permissions that
are needed for logging and triggering. Follow these steps to authorize the RAM user.

Grant the AliyunFCFullAccess permission to the RAM user.

In Resource Access Management console, select Users > Authorize for the RAM user

{
"Action": [
"ram:PassRole"
],
"Effect": "Allow",
"Resource": "*"
},
{
"Effect": "Allow",
"Action": [
"log:ListProject",
"log:ListLogStore"
],
"Resource": "acs:log:*:*:project/*"
},
{
"Effect": "Allow",
"Action": [
"ram:ListRoles"
],
"Resource": [
"acs:ram:*:*:role/*"
]
},
{
"Action": [
"oss:ListBucket"
],
"Effect": "Allow",
"Resource": "*"
},
{
"Action": [
"oss:GetBucketEventNotification",
"oss:PutBucketEventNotification",
"oss:DeleteBucketEventNotification"
],
"Effect": "Allow",
"Resource": "*"
}
]
}

Function Compute User Guide

94

Logon to console using the RAM user to perform basic functionalities.

After the preceding steps are completed, the RAM user can be used to create, delete,
describe and update services/functions and invoke functions.

In Resource Access Management console, select Users, inside the User Details select Web
Console Logon Management > Enable Console Logon* (enter and confirm password).

Configure function logging. Skip this step if you do not want the RAM user to have log related
functionalities.

Click Create Function and enter the basic information then execute the code.

How to restrict RAM user permissions, for example, only allowing the RAM user to create
services, list services, create functions, and invoke functions?

Some basic RAM concepts of RAM such as the cloud resource policy are helpful before
moving forward.

Function Compute User Guide

95

Create a custom policy to grant services, functions creation, listing and execution. Attach the custom
policy to the service role. See the preceding figures for more details. Below sample policy template
can be modifed and reused.

For more information about the action and resource, see Function Compute permission management.

Note: A role can be associated with up to five custom policies. We recommend that you organize
multiple custom policies into one to avoid exceeding the policy limit.

{
"Version": "1",
"Statement": [
{
"Action": [
"fc:CreateService",
"fc:GetService",
"fc:CreateFunction",
"fc:GetFunction",
"fc:InvokeFunction"
],
"Resource": "*",
"Effect": "Allow"
}
]
}

 {

Function Compute User Guide

96

See Permission definition for detailed permission granularity control.

Logging and Other Advanced Settings

Advanced settings are used to manage function logging and grant the permission of accessing other
cloud services with service roles. PassRole permission is also required in addition to UpdateService
permission. To create roles in advanced settings, you must have the create role permission. The
following shows a policy for setting the PassRole permission.

"Version": "1",
"Statement": [
{
"Effect": "Allow",
"Action": "fc:CreateService",
"Resource": "acs:fc:cn-shanghai:*:services/*"
},
{
"Effect": "Allow",
"Action": [
"fc:CreateFunction"
],
"Resource": [
"acs:fc:*:*:services/your-helloworld-fc/functions/*",
"acs:fc:*:*:services/your-helloworld-oss/functions/*"
]
},
{
"Effect": "Allow",
"Action": [
"fc:UpdateFunction"
],
"Resource": [
"acs:fc:*:*:services/your-helloworld-fc/functions/your-hello-world-fc"
]
}
]
}

{
"Statement": [
{
"Action": [
"ram:PassRole"
],
"Effect": "Allow",
"Resource": "*"
}
],
"Version": "1"
}

Function Compute User Guide

97

Log service project, logstore, and current role must be provided. It is recommended to add “list
project”, “list logstore” and “list role” to prevent manual errors. See Log Service permission
management and RAM permission management for more details.

The following is a template to help creating a policy to be attached to the RAM user.

{
"Version": "1",
"Statement": [
{
"Effect": "Allow",
"Action": [
"log:ListProject",
"log:ListLogStore"
],
"Resource": "acs:log:*:*:project/*"
},
{
"Effect": "Allow",
"Action": [

Function Compute User Guide

98

Set Permissions for RAM User for Trigger Functionalities

If you have attached PassRole and create trigger permissions, you can create a trigger. Only text
boxes are provided if the RAM user does not have list bucket or list role permission. To use the drop-
down selection list, you can use the following template to create a policy and attach it to the RAM
user. See OSS permission management for more information.

Each role can be attach up to five custom policy templates. We recommend that you edit the
statement to existing policy template to reduce the number of policies.

Note: If you successfully create a trigger but it is not displayed, you still need three permissions. The
following is a template that can be used to create a policy and attach it with the RAM user.

After completing previous steps, you have the required permissions to use console with the RAM

"ram:ListRoles"
],
"Resource": [
"acs:ram:*:*:role/*"
]
}
]
}

{
"Statement": [
{
"Action": [
"oss:ListBucket"
],
"Effect": "Allow",
"Resource": "*"
}
],
"Version": "1"
}

{
"Statement": [
{
"Action": [
"oss:GetBucketEventNotification",
"oss:PutBucketEventNotification",
"oss:DeleteBucketEventNotification"
],
"Effect": "Allow",
"Resource": "*"
}
],
"Version": "1"
}

Function Compute User Guide

99

user. Make sure you only select necessary permissions.

VPC Access

VPC Access

Virtual Private Cloud (VPC) is an isolated cloud network built for private usage. It allows you to
logically isolate your cloud resources in a virtual network environment. All FC functions are running in
the FC owned VPC network environment. By default, FC function cannot access your private VPC
resources due to the nature of VPC network isolation.

Function Compute now seamless integrates with VPC. You can grant Function Compute permissions
to manipulate elastic network interfaces (ENIs) and provide VPC-specific configuration information
that includes VPC ID, vswitch IDs and security group ID. Function Compute will peer the function
execution environment with the specific VPC by using the ENIs. Once VPC configuration is enabled,
your function will run as if it is running inside the specific VPC.

VPC Configuraion

Permissions

You need to grant Function Compute ENI permissions in order to enable the VPC access. Function
Compute obtains the permissions from the service role that you provide. You can grant Function
Compute permissions by either creating a new service role with
AliyunECSNetworkInterfaceManagememtAccess policy or attach this policy to your existing service
role.

Function Compute User Guide

100

VPC Information

You need to grant Funtion Compute VPC specific information, includes VPC ID, at least one VSwitch
IDs and security group ID, in order to complete the set up. Function Compute will create ENI
randomly in the provided VSwitches and uses that to access your specific VPC. We recommend that
you provided at least one VSwitch from each availability zone so that your functions can still run in
case that the availability zone is down or your VSwithc is running out of IP addresses.

Internet Access

Once VPC access is enabled, your function will run as if it is running inside your specific VPC where
internet access may not be available. If your function needs both VPC access and internet access, your
can set up a NAT to provide internet access for your specific VPC, or a more easy way is to enable
internet access for your functions. Function Compute will setup a NAT and peers it with your function
running environment. If you enable both VPC access and internet access for your functions, your
functions can access your specific VPC through your ENIs and access internet through a FC NAT.

Function Compute User Guide

101

-

-

-

-

-

-

-

-

-

How to use the console

Alibaba Cloud Function Compute provides a complete console operation interface that simplifies
most of your work through the interactive operations. You can see the following subtitles to use
resources in the console, create your first service, function, and trigger, and view the Function
Compute execution results, bills, and data monitoring results.

Activate Function Compute
View AccessKeys
View service regions
Create a service, function, and trigger
Create a function trigger event
View role authorization
View execution results
View data monitoring
View bills

Function Compute User Guide

102

Activate Function Compute

Go to the Alibaba Cloud Function Compute homepage and click Activate Now. If you have not
logged on to the system yet, you are prompted to log on first. After successful logon before the
activation page is displayed. Click Activate Now and Management Console to go to the console. If the
console page is not displayed, click here.

View AccessKeys

In the console, click your account in the upper-right corner and select accesskeys from the drop-
down menu. Before the AccessKeys page is displayed, you are prompted to choose whether to
continue with the AccessKey or use the AccessKey of the primary account or subaccount. Both
AccessKeys can be used to normally access Function Compute. You can select one based on your
business features.

Function Compute User Guide

103

If you do not have any AccessKey, click “Create Access Key”.

Use your AccessKey if you already have one.

Note: You must enter the mobile phone number of the primary account and obtain the verification
code to view the AccessKeySecret.

View service regions

For more information about the list of currently activated regions and corresponding region codes,
see List of regions and codes.

Create a service

You can create a service in the Function Compute console. In the console, select Function Compute

Function Compute User Guide

104

-

-

to go to the Function Compute homepage. Then, select a region and click Create Service in the
upper-right corner.

Note:

After a service is successfully created, you can click Advanced Settings to configure log and
role authorization.
You can create unlimited number of services and a maximum of 50 functions for each service
currently. For more information about the system restrictions, see Restrictions.

Create a function

You can create functions under a service. A function is the smallest code execution unit. Each function
can have only one entry method but multiple other methods. A maximum of 10 triggers can be set
for each function. A navigation page displays the function creation process, which includes three
steps: selecting a template, configuring a trigger (optional), and configuring the function. Two
templates are available currently. One is the blank function template that allows you to compile your
own code. The other template contains a sample code, where you can compile your own business
function using the sample code.

Page for creating a function

Function Compute User Guide

105

1.

2.

3.

-

-

-

-

Parameters with the red asterisk (*) are required, such as the function name, running environment,
and code upload method.

Precautions:

The function code entry varies with the language. For more information, click here.
You can set the entry function, memory size, and time-out for the function.
You can compile the code of a function online. Currently, you can compile codes online
using Node.js or Python. If you use other languages, you can only upload codes through
OSS or locally. You can upload a maximum of 5 MB codes locally. To upload codes greater
than 5 MB, use the Command line tool or store the codes to OSS for execution.

Create a trigger

You can create a trigger on the navigation page when creating a function or after creating the
function. The configuration varies with the trigger type. The following uses the OSS trigger as an
example. Parameters with the asterisk (*) are required.

Note:

When using the trigger for the first time, click OK on the displayed authorization page to
authorize OSS to call Function Compute.
If you have already configured a role, select it.
The trigger events are stored in a Bucket. Therefore, you must first create a Bucket in the
region of Function Compute in OSS.
For trigger event execution, we recommend that you set the file prefix or suffix to prevent
Function Compute from random execution.

Function Compute User Guide

106

-

-

Create a function trigger event

A function trigger event is a tool used to simulate your actual request for function debugging. After
you put a request string into an event source, the system uses this request string to run the function.

Note: The trigger event string is stored in the local browser cache. You must enter the string again if
you clear the cached data or use a new browser.

View role authorization

Function Compute supports two role authorization methods:

You can configure role authorization in Advanced Settings of the service to authorize
Function Compute to access certain resources. Generally, Function Compute can be
authorized to access Log Service, OSS, and Table Store. Currently, only the Read-Only
permission is granted. To grant more permissions, configure role authorization in RAM.
You can also configure role authorization in Advanced Settings when creating the trigger to
authorize the trigger to trigger execution of Function Compute. Generally, the trigger is
authorized, and each trigger needs to be authorized only once.

View execution results

After a function is executed, the execution result and abstract of the execution process are displayed
in the console. For example, the execution status, execution duration, actual billing time, configured
memory size, actual used memory size, and other information are displayed. The execution log on the
right displays the debugging information during the execution process.

Function Compute User Guide

107

Note:

If Log Service is disabled, the console displays only the latest 4 KB running logs. To view more logs,
enable Log Service in Advanced Settings of the service.

View data monitoring

You can click Real-time Service Monitoring in the upper-right corner of the Function Compute
console to view the function execution status in a period.

After logging on to CloudMonitor, you can view the execution status of each service in detail, such as
the average latency and total number of calls, which are measured by service.

View bills

Select Billing Center > Consumption Record > Consumption Details > Function Compute. The billing
items of Function Compute mainly include the resource usage, number of requests, and Internet
outbound traffic. For more information about the billing information, see Product pricing. The bill is
calculated by hour, which is one hour delayed. For example, the bill of data consumed from 01:00 to
02:00 is output at 04:00.

Function Compute User Guide

108

	User Guide
	Programming language
	Execution environment
	Use a code directory
	Use an intranet domain name

	Java
	Java
	Advanced usage
	Use context
	Use logging
	Function interfaces
	Use a custom module
	Use maven to package the jar file
	Use IDEA to package the jar file
	Use maven to package the jar file and put dependency .jar files in a separate /lib directory

	Handle exception

	Node.js
	Node.js
	Advanced usage
	Event usage
	Context usage
	Logging
	Log level can be changed by using console.setLogLevel. Log levels rank from highest to lowest:

	Built-in modules usage
	Custom modules usage
	Call an external command
	Understand callback
	1. Make sure that the callback is called.
	2. The function is completed after callback is called.

	Handle exception

	Python
	Python
	Advanced usage
	Use event
	Use context
	Use logging
	Use a built-in module
	Use a custom module
	Call an external command
	Handle exceptions

	Service management
	Create a service
	Service attributes
	Create and update service using the command line tool

	View a service
	View a service using the command line tool

	Delete a service
	Delete a service using the command line tool

	Function management
	Create a function
	Function attributes
	Supported function runtimes
	Create and update a function using the CLI

	Invoking a function
	Invocation types
	Concurrent Execution
	Concurrent Execution Limits
	Throttling errors handling

	Function entry definition
	Nodejs
	Python
	Java

	Trigger management
	Create a trigger
	Trigger attributes
	Supported trigger type and configuration
	OSS trigger configuration

	Create and update a trigger using the command line tool

	Configure triggers and events
	HTTP triggers
	Configure a trigger

	OSS triggers
	Configure a trigger
	Event format

	Log Service triggers
	Configure a trigger
	Event format

	Timer triggers
	Configure a trigger
	Event format

	CDN events trigger
	Configure a trigger
	Event format

	Table Store triggers
	Event format

	API Gateway triggers
	Event format
	Input format
	Output format

	DataHub triggers
	Event format

	IoT triggers
	Event format

	References

	Trigger
	HTTP trigger
	Limits
	Configure an HTTP trigger
	Assemble the HTTP trigger URL
	HTTP trigger Config

	HTTP trigger functions
	HTTP trigger interface format
	Request structure
	Response methods

	Limits for requests
	Limits for responses

	Example 1. Console operations
	Step 1. Select and set an HTTP trigger
	Select and set a trigger while creating a function
	Select and set a trigger after creating a function

	Step 2. Debug the trigger

	Example 2. SDK programming
	Prerequisites
	Procedure

	Troubleshooting

	CDN events trigger
	CDN events trigger
	CDN events
	CDN event schema：
	Configuration a CDN events trigger：
	Demos
	Demo 1: Console operations
	Set a trigger while creating a function
	Set a trigger after function creation

	Demo 2: fcli operations
	Demo 3: SDK programming
	Create trigger Python code
	Function Python code

	Log Service trigger
	Scenarios
	Configure Log Service trigger
	Trigger example
	Trigger parameters
	Event format

	Create Log Service trigger
	Sample 1. By using Function Compute console
	Sample 2. By using Pyhton SDK
	References

	Permission management
	RAM
	User permissions
	Service role
	Invocatino role

	Monitor service
	Metrics userguide
	Region Dimension
	Service Dimension
	Function Dimension

	Metrics data userguide
	Project
	StartTime and EndTime
	Dimensions
	Period
	Metric
	Example

	Limits
	Service resource restrictions
	Function runtime envrionment restrictions
	Resource restrictions per account in each region

	Subaccount userguide
	RAM User Console Logon Prerequisites
	Permissions Required by the RAM User
	Authorize a RAM User to Perform Basic Functionalities
	Logging and Other Advanced Settings
	Set Permissions for RAM User for Trigger Functionalities

	VPC Access
	VPC Access
	VPC Configuraion
	Permissions
	VPC Information
	Internet Access

	How to use the console
	Activate Function Compute
	View AccessKeys
	View service regions
	Create a service
	Note:

	Create a function
	Page for creating a function
	Precautions:

	Create a trigger
	Note:

	Create a function trigger event
	View role authorization
	View execution results
	Note:

	View data monitoring
	View bills

