
Function Compute

Advanced Tutorial

Advanced Tutorial

Use template

The Function Compute (FC) console provides function templates to easily create functions such as
web crawlers, automatic image classification, and access to Alibaba Cloud Object Storage Service
(OSS) or Table Store that can be customized to fulfill your own requirements. The following example
demostrates how to use a web crawler template to create a function for web crawling.

Steps

Create a FC service named DEMO in the console.

Create a function inside service DEMO, select the image-crawler function template, and
leave the Trigger Configurations as Trigger Type: No Trigger.

In the Configure Function Settings step, provide the Function Name and Function
Description (optional).

Function Compute Advanced Tutorial

1

In the Configure Function Permissions step, click Authorize, after re-directed, give a Role
Name image-crawler-demo-role and a Policy Name image-crawler-demo-policy

In Code Management, edit and customize the code online, replace your region and your
bucket name in the code with real values.

Function Compute Advanced Tutorial

2

Click the Event and modify the event parameter.

Invoke the function.

Conclusion

Using a function template can make permissions configurations and code development easier. More

Function Compute Advanced Tutorial

3

templates will be added overtime to help developers stay focus on business logic development rather
than setups.

Log Service trigger sample

Demo overview

Function Compute integrated with Log Service can provide a fully-managed processing service for
streaming data.

Introduction

You can configure a Log Service trigger. This trigger regularly obtains updated data and triggers
function execution. In this way, Function Compute consumes incremental data from the Logstore in
Log Service, and completes custom processing tasks, such as data scrubbing and extract, transform,
and load (ETL). Then, Function Compute ships data to a third-party service, as shown in the following
figure:

The functions used to process data can be templates provided by Log Service or your custom
functions.

In this sample, Log Service uses a function from Function Compute to retrieve log files and print them
to Function Compute. This example describes how to use the Log Service trigger to integrate Log
Service with Function Compute.

Before starting the process that is shown in this example, make sure that you have signed up for
Function Compute and Log Service.

Contents
To run a function triggered by the Log Service event source, follow these steps:

Function Compute Advanced Tutorial

4

Activate Log Service, and create the project and Logstores of Log Service and the Log
Service trigger.

Author the function.

Test your function.

References

Developer Guide

1. Set up services

In this guide, you will go through the process of activating Log Service, creating a Log Service project
and two Logstores, creating a Function Compute service, creating a Function Compute function, and
then configure a Log Service trigger. Skip this guide if you have available Log Service, Functions, and
Log Service Trigger.

Preparations

Make sure that Function Compute and Log Service are deployed in the same region. Otherwise,
Function Service cannot locate Log Service when you configure the Log Service trigger. For more
information, see Regions and zones.

Log on to the Alibaba Cloud console.

Navigate to the AliyunLogETLRole role management page, click the Confirm Authorization
Policy button to grant Function Compute the AliyunLogETLRole access policy.

Log on to Log Service console, create one Logstore to process log files and data sources,
and create another Logstore to store the log files that are generated by Function Compute.
For more information, see Log Service topic Preparation.

Log on to the Function Compute console and create a Service. In the Create Service dialog
box that appears:

Function Compute Advanced Tutorial

5

i.

Select a region, in this sample, we use the China (shanghai) region.

Click Create Service.

In the Create Service dialog box that appears, enter the service name, in this
sample, the service name is log-com.

Enable the Advanced Settings option.

In the Log Configs, set your available Log Project and Logstore.

In the Role Config, select Create new role from the Role Operation drop-down
list, select AliyunLogFullAccess and AliyunLogReadOnlyAccess from the System
Policies drop-down list.

Click Authorize and OK to confirm your action.

In the left-side navigation pane, select the new service you created.

Click Create Function to go to the Create Function page.

Click Select All, and select python2.7 from the drop-down list. This sample takes
Python code execution for example.

Click Select in Empty Function.

Note: You can create the trigger during or after function creation. Then, you
can configure the trigger. For more information, see Basic operations.

Select Log Service (Log) from the Trigger Type drop-down list, set the Trigger
Name, Log Project Name, Trigger Log, Invocation Interval, Retry Count, and
Function Configuration configuration. In this sample, we set the trigger as follows:

Function Compute Advanced Tutorial

6

v.

vi.

You can set the Function Configuration field according to the event parameter in
your function code. In this sample, we set the Function Configuration as follows:

Configure the Service Name, Function Name, Function Description, Runtime, and
Runtime Environment parameters.

Click Next.
Make sure that all the settings are correct, and then click Create.

Next step

2. Author your function.

{
"source":{
"endpoint": "http://cn-shanghai-intranet.log.aliyuncs.com"
},
"target": {
"endpoint": "http://cn-shanghai-intranet.log.aliyuncs.com",
"projectName": "etl-test",
"logstoreName": "nginx_access_log_rep"
}
}

Function Compute Advanced Tutorial

7

References

For more information about creating services in the console, see Create a service.

Function logs are saved to the Logstore and used in debugging. For more information about
logs, see Function logs.

Roles that you configure in Function Compute automatically have access permissions for
other cloud services. For more information about permissions, see Introduction.

2. Author your function

After the previous step and your Service is ready, you can create new functions in the service. You can
use the Function Compute console or the fcli tool to submit your functions. This guide provides
sample code that uses the specified programming language to the code edit field in the Function
Compute console.

In this guide, incremental log entries collected by Log Service trigger executing this function. Then,
the function retrieves log entries, and prints them to Function Compute. For more information about
programming, see Log Service topic Development guide for ETL function.

Sample function for Python 2.7

You can use this code example as the template for retrieving all logical-log files. The accessKeyId and
accessKey must be either manually specified or obtained from context and creds objects.

-*- coding: utf-8 -*-
import logging
import json
from aliyun.log import LogClient
from time import time

def logClient(endpoint, creds):
logger = logging.getLogger()
logger.info('creds info')
logger.info(creds.access_key_id)
logger,info(creds.access_key_secret)
logger,info(creds.security_token)
accessKeyId = 'your accessKeyId'
accessKey = 'your accessKeyId scr'

Function Compute Advanced Tutorial

8

Request parameters

The event parameter is the Function Compute object. The format of event is as follows:

client = LogClient(endpoint, accessKeyId, accessKey)
return client

def handler(event, context):
logger = logging.getLogger()
logger.info('start deal SLS data')
logger.info(event.decode().encode())
info_arr = json.loads(event.decode())
fetchdata(info_arr['source'])
return 'hello world'

def fetchdata(event):
logger = logging.getLogger()
endpoint = event['endpoint']
creds = context.credentials
client = logClient(endpoint, creds)
if client == None :
logger.info("client creat failed")
return False
project = event['projectName']
logstore = event['logstoreName']
start_cursor = event['beginCursor']
end_cursor = event['endCursor']
loggroup_count = 10
shard_id = event['shardId']
while True:
res = client.pull_logs(project, logstore, shard_id, start_cursor, loggroup_count, end_cursor)
res.log_print()
next_cursor = res.get_next_cursor()
if next_cursor == start_cursor :
break
start_cursor = next_cursor

#log_data = res.get_loggroup_json_list()
return True

{
"parameter": {},
"source": {
"endpoint": "http://cn-shanghai-intranet.log.aliyuncs.com",
"projectName": "log-com",
"logstoreName": "log-en",
"shardId": 0,
"beginCursor": "MTUyOTQ4MDIwOTY1NTk3ODQ2Mw==",
"endCursor": "MTUyOTQ4MDIwOTY1NTk3ODQ2NA=="
},
"jobName": "1f7043ced683de1a4e3d8d70b5a412843d817a39",
"taskId": "c2691505-38da-4d1b-998a-f1d4bb8c9994",
"cursorTime": 1529486425
}

Function Compute Advanced Tutorial

9

parameter: Contains the function configuration of the trigger.

source: The information of the log block that the triggered function reads from Log Service.

endpoint: The region of the Log Service project.

projectName: The Log Service project name.

logstoreName: The Logstore name.

shardId: The specified shard in the Logstore.

beginCursor: The location on the shard where the triggered function starts
consuming data.

endCursor: The location on the shard where the triggered function stops
consuming data.

jobName: The name of the Extract, Transform, and Load (ETL) job in Log Service. A Log
Service trigger in Function Compute corresponds to an ETL job in Log Service.

taskId: The identifier of the execution of the specified function. This execution corresponds
to an ETL job.

cursorTime: The unix_timestamp of the last log entry that reaches Log Service. The function
reads this data when retrieving log entries.

Next step

3. Test your function.

3. Debug your function

In this guide, we use Function Compute console for debugging. You can write an incremental log
entry to Log Service, and check whether Function Compute prints this log entry or not.

Function Compute Advanced Tutorial

10

Create and debug a HELLO WORLD function

Create the function that prints Hello World.

Note: When you create this function, enable Advanced Settings, and set LogStore to
the Logstore that the demo uses in execution.

Click Invoke.

Check whether or not the Logstore that you have configured for the Log Service trigger has
collected the incremental log entry.

Now, you have created the program for executing the function triggered by Log Service. For more
information, see Log Service topic Development guide for ETL function.

Function Compute Advanced Tutorial

11

	Advanced Tutorial
	Use template
	Steps
	Conclusion

	Log Service trigger sample
	Demo overview
	Introduction
	Contents
	References

	1. Set up services
	Preparations
	Next step
	References

	2. Author your function
	Sample function for Python 2.7
	Request parameters
	Next step

	3. Debug your function
	Create and debug a HELLO WORLD function

