

EDB Postgres Advanced Server ODBC Connector Guide
[bookmark: _GoBack][image: new_EDB-logo-4c]

EDB Postgres™ Advanced Server
ODBC Connector Guide

Connectors Release 11.0.1
ODBC Connector Version 10.03.0000.01
October 25, 2018

EDB Postgres™ Advanced Server ODBC Connector Guide
by EnterpriseDB® Corporation
Copyright © 2009 - 2018 EnterpriseDB Corporation. All rights reserved.

EnterpriseDB Corporation, 34 Crosby Drive Suite 201, Bedford, MA 01730, USA
T +1 781 357 3390 F +1 978 467 1307 E info@enterprisedb.com www.enterprisedb.com

2
Copyright © 2009 - 2018 EnterpriseDB Corporation. All rights reserved.

Table of Contents
1	Introduction	4
1.1	What’s New	5
1.2	Typographical Conventions Used in this Guide	5
2	EDB-ODBC Overview	6
2.1	Installing EDB-ODBC	7
2.1.1	Installing the Connector with an RPM Package	7
2.1.2	Installing the Connector on an SLES 12 Host	9
2.1.3	Using the Graphical Installer to Install the Connector	11
2.2	Creating a Data Source	15
2.3	EDB-ODBC Connection Properties	16
2.3.1	Adding a Data Source Definition in Windows	21
2.3.2	Adding a Data Source Definition in Linux	32
3	EDB-ODBC Driver Functionality	39
3.1	SQLGetInfo()	39
3.2	Connection Attributes	55
3.2.1	SQLGetConnectAttr()	55
3.2.2	SQLSetConnectAttr()	57
3.3	Environment Attributes	59
3.3.1	SQLGetEnvAttr()	59
3.3.2	SQLSetEnvAttr()	61
3.4	Statement Attributes	63
3.4.1	SQLGetStmtAttr()	63
3.4.2	SQLSetStmtAttr()	65
3.5	Error Handling	67
3.5.1	SQLGetDiagRec()	67
3.6	SUPPORTED ODBC API FUNCTIONS	69
3.7	SUPPORTED DATA TYPES	71
3.8	Thread Safety	71

EDB Postgres Advanced Server ODBC Connector Guide

[bookmark: _Toc528236438]Introduction
ODBC (Open Database Connectivity) is a programming interface that allows a client application to connect to any database that provides an ODBC driver. EDB-ODBC provides connectivity between EDB Postgres Advanced Server (Advanced Server) and ODBC-compliant applications.
This guide contains installation information for EDB-ODBC as well as information about creating data source definitions for EDB-ODBC. This guide also contains reference information that details the ODBC functionality supported by EDB-ODBC.

[bookmark: _Toc528236439]What’s New
The following feature has been added to the Advanced Server ODBC Connector 10.0.2 to produce Advanced Server ODBC Connector 10.0.3:
· Merged with the upstream community driver version 10.03.0000

[bookmark: _Toc490837164][bookmark: _Toc490837165][bookmark: _Toc490837166][bookmark: _Toc490837167][bookmark: _Toc490837168][bookmark: _Ref103071763][bookmark: _Ref103071794][bookmark: _Ref103073047][bookmark: _Ref103073090][bookmark: _Toc528236440]Typographical Conventions Used in this Guide
Certain typographical conventions are used in this manual to clarify the meaning and usage of various commands, statements, programs, examples, etc. This section provides a summary of these conventions.
In the following descriptions a term refers to any word or group of words that are language keywords, user-supplied values, literals, etc. A term’s exact meaning depends upon the context in which it is used.
· Italic font introduces a new term; typically, in the sentence that defines it for the first time.
· Fixed-width (mono-spaced) font is used for terms that must be given literally such as SQL commands, specific table and column names used in the examples, programming language keywords, etc. For example, SELECT * FROM emp;
· Italic fixed-width font is used for terms for which the user must substitute values in actual usage. For example, DELETE FROM table_name;
· A vertical pipe | denotes a choice between the terms on either side of the pipe. A vertical pipe is used to separate two or more alternative terms within square brackets (optional choices) or braces (one mandatory choice).
· Square brackets [] denote that one or none of the enclosed term(s) may be substituted. For example, [a | b], means choose one of “a” or “b” or neither of the two.
· Braces {} denote that exactly one of the enclosed alternatives must be specified. For example, { a | b }, means exactly one of “a” or “b” must be specified.
· [bookmark: _First_level_Heading]Ellipses ... denote that the proceeding term may be repeated. For example, [a | b] ... means that you may have the sequence, “b a a b a”.
[bookmark: _Toc528236441]EDB-ODBC Overview
[bookmark: _toc1328][bookmark: _toc1338]EDB-ODBC is an interface that allows an ODBC compliant client application to connect to an Advanced Server database. The EDB-ODBC connector allows an application that was designed to work with other databases to run on Advanced Server; EDB-ODBC provides a way for the client application to establish a connection, send queries and retrieve results from Advanced Server.
While EDB-ODBC provides a level of application portability, it should be noted that the portability is limited; EDB-ODBC provides a connection, but does not guarantee command compatibility. Commands that are acceptable in another database, may not work in Advanced Server.
The major components in a typical ODBC application are:
· The client application - written in a language that has a binding for ODBC
· The ODBC Administrator - handles named connections for Windows or Linux
· The database specific ODBC driver - EDB-ODBC
· The ODBC compliant server - EDB Postgres Advanced Server
Client applications can be written in any language that has a binding for ODBC; C, MS-Access, and C++ are just a few.

[bookmark: _Toc528236442]Installing EDB-ODBC
The EDB-ODBC Connector is distributed with and installed the EDB Postgres Advanced Server graphical or RPM installer.
[bookmark: _Toc456173980][bookmark: _Toc456156741][bookmark: _Toc528236443]Installing the Connector with an RPM Package
Before using an RPM installer to install the ODBC connector, you must first create and configure the EnterpriseDB repository file, providing a user name and password that allows access to the files in the repository. To request credentials to access the repository, visit the following website:
https://www.enterprisedb.com/repository-access-request
The name of the package that creates the repository file for Advanced Server is edb-repo. You can download the package at:
https://yum.enterprisedb.com/
After downloading the repository configuration file, assume superuser privileges, and use the following command to create the repository configuration file:
rpm -Uvh edb-repo-latest.noarch.rpm
The installer creates a repository configuration file named edb.repo; the file resides in /etc/yum.repos.d. The file contains entries for each of the EnterpriseDB repositories; to install the connector, you must enable the entry for the enterprisedb-tools repository:
[enterprisedb-tools]
name=EnterpriseDB Tools $releasever - $basearch
baseurl=http://<username>:<password>@yum.enterprisedb.com/tools/redhat/rhel-$releasever-$basearch
enabled=1
gpgcheck=1
gpgkey=file:///etc/pki/rpm-gpg/ENTERPRISEDB-GPG-KEY
Use your choice of editor to modify the repository configuration file:
1. Replace the user_name and password placeholders in the baseurl specification with your user name and the repository password.
1. Replace the 0 next to enabled with a 1.
Save the configuration file and exit the editor.

After modifying the content of the repository configuration file, you can use the yum install command to install the connector; use the command:
yum install edb-odbc
During the installation, yum may encounter a dependency that it cannot resolve. If it does, it will provide a list of the required dependencies that you must manually resolve.

[bookmark: _Toc528236444]Installing the Connector on an SLES 12 Host
You can use the zypper package manager to install the connector on an SLES 12 host. zypper will attempt to satisfy package dependencies as it installs a package, but requires access to specific repositories that are not hosted at EnterpriseDB.
Before installing the connector, use the following commands to add EnterpriseDB repository configuration files to your SLES host:
zypper addrepo https://zypp.enterprisedb.com/suse/epas96-sles.repo
zypper addrepo https://zypp.enterprisedb.com/suse/epas-sles-tools.repo
zypper addrepo https://zypp.enterprisedb.com/suse/epas-sles-dependencies.repo
Each command creates a repository configuration file in the /etc/zypp/repos.d directory. The files are named:
· edbas96suse.repo
· edbasdependencies.repo
· edbastools.repo
After creating the repository configuration files, use the zypper refresh command to refresh the metadata on your SLES host to include the EnterpriseDB repositories:
/etc/zypp/repos.d # zypper refresh
Repository 'SLES12-12-0' is up to date.
Repository 'SLES12-Pool' is up to date.
Repository 'SLES12-Updates' is up to date.
Retrieving repository 'EDB Postgres Advanced Server 9.6 12 - x86_64' metadata -----------------------[\]
Authentication required for 'https://zypp.enterprisedb.com/9.6/suse/suse-12-x86_64'
User Name:
Password:
Retrieving repository 'EDB Postgres Advanced Server 9.6 12 - x86_64' metadata...................................[done]
Building repository 'EDB Postgres Advanced Server 9.6 12 - x86_64' cache..........................[done]
All repositories have been refreshed.
...
When prompted for a User Name and Password, provide your connection credentials for the EnterpriseDB repository. If you need credentials, contact EnterpriseDB at:
https://www.enterprisedb.com/repository-access-request
Before installing EDB Postgres Advanced Server or supporting components, you must also add SUSEConnect and the SUSE Package Hub extension to the SLES host, and register the host with SUSE, allowing access to SUSE repositories. Use the commands:
zypper install SUSEConnect
SUSEConnect -p PackageHub/12/x86_64
SUSEConnect -p sle-sdk/12/x86_64
For detailed information about registering a SUSE host, visit:
https://www.suse.com/support/kb/doc/?id=7016626
Then, you can use the zypper utility to install the connector:
zypper install edb-odbc
zypper install edb-odbc-devel

[bookmark: _Toc456173981][bookmark: _Toc456156742][bookmark: _Toc528236445]Using the Graphical Installer to Install the Connector
You can use the ODBC Connector Installation wizard to install the connector; the wizard is available at:
https://www.enterprisedb.com/advanced-downloads
Download the installer, and then, right-click on the installer icon, and select Run As Administrator from the context menu.
When the Language Selection popup opens, select an installation language and click OK to continue to the Setup window (shown in Figure 2.1).
[image:]
Figure 2.1 - The Odbc Connectors Installation wizard.
Click Next to continue.
[image:]
Figure 2.2- The Installation dialog.
Use the Installation Directory dialog (see Figure 2.2) to specify the directory in which the connector will be installed, and click Next to continue.
[image:]
Figure 2.3- The Ready to Install dialog.
Click Next on the Ready to Install dialog (see Figure 2.3) to start the installation; popup dialogs confirm the progress of the installation wizard.
[image:]
Figure 2.4 - The installation is complete.
When the wizard informs you that it has completed the setup, click the Finish button to exit the dialog (see Figure 2.4).

You can also use StackBuilder Plus to add or update the connector on an existing Advanced Server installation; to open StackBuilder Plus, select StackBuilder Plus from the Advanced Server 11 menu (see Figure 2.5).
[image:]Figure 2.5 - Starting StackBuilder Plus.
When StackBuilder Plus opens, follow the onscreen instructions, selecting the EnterpriseDB Connectors option from the Database Drivers node of the tree control (see Figure 2.6).
[image:]
Figure 2.6 - Selecting the Connectors installer.
Follow the directions of the onscreen wizard to add or update an installation of the EnterpriseDB Connectors.
[bookmark: _Toc528236446]Creating a Data Source
When a client application tries to establish a connection with a server, it typically provides a data source name (also known as a "DSN"). The driver manager looks through the ODBC configuration database for a data source whose name matches the DSN provided by the application.
On a Linux or Unix host, data sources are defined in a file; that file is usually named /etc/odbc.ini, but the name (and location) may vary. Use the following command to find out where unixODBC is searching for data source definitions:
$ odbc_config --odbcini --odbcinstini
On a Windows host, data sources are typically defined in the Windows registry.
You can also store a data source definition (called a "File DSN") in a plain-text file of your choice. A typical data source definition for the EDB-ODBC driver looks like this:
$ cat /etc/odbc.ini
[EnterpriseDB]
Description = EnterpriseDB DSN
Driver = EnterpriseDB
Trace = yes
TraceFile = /tmp/odbc.log
Database = edb
Servername = localhost
UserName = enterprisedb
Password = manager
Port = 5444
The first line in the data source is the data source name. The name is a unique identifier, enclosed in square brackets. The data source name is followed by a series of 'keyword=value' pairs that identify individual connection properties that make up the data source.
The ODBC administrator utility creates named data sources for ODBC connections. In most cases, an ODBC administrator utility is distributed with the operating system (if you’re using Windows or unixODBC, the tool is called the ODBC Data Source Administrator). If your operating system doesn’t include an ODBC administrator, third-party options are available online.
Sections 2.3.1 and 2.3.2 walk you through adding a data source in Windows and Linux using the graphical tools available for each operating system. During the process of defining a data source, you’ll be asked to specify a set of connection properties. Section 2.3 contains information about optional data source connection properties; you can specify connection properties with graphical tools or edit the odbc.ini file with a text editor.
[bookmark: _Toc528236447]EDB-ODBC Connection Properties
The following table describes the connection properties that you can specify through the dialogs in the graphical connection manager tools, or in the odbc.ini file that defines a named data source. The columns identify the connection property (as it appears in the ODBC Administrator dialogs), the corresponding keyword (as it appears in the odbc.ini file), the default value of the property, and a description of the connection property.
	Property
	Keyword name
	Default value
	Description

	Database
	Database
	None
	The name of the database that you are connecting to.

	Driver
	Driver
	EDB-ODBC
	The name of the ODBC driver.

	Server
	Servername
	Localhost
	The name or IP address of the server that you are connecting to.

	dbms_name
	dbms_name
	EnterpriseDB
	Database system. Either EnterpriseDB or PostgreSQL.

	Description
	Description
	
	Descriptive name of the data source.

	User Name
	Username
	
	The name of the user that this data source uses to connect to the server.

	Password
	Password
	
	The password of the user associated with this named data source.

	CPTimeout
	CPTimeout
	0
	Number of seconds before a connection times out (in a connection pooling environment).

	Port
	Port
	5444
	The TCP port that the postmaster is listening on.

	Protocol
	Protocol
	7.4
	If specified, forces the driver to use the given protocol version.

	Level of Rollback on Errors
	Use the Protocol option to specify rollback behavior.
	Transaction Level
	Specifies how the driver handles errors:
0 - Don't rollback
1 - Rollback the transaction
2 - Rollback the statement

	Usage Count
	UsageCount
	1
	The number of installations using this driver.

	Read Only
	ReadOnly
	No
	Specifies that the connection is READONLY.

	Show System Tables
	ShowSystemTables
	No
	If enabled, the driver reports system tables in the result set of the SQLTables() function.

	OID Options: Show Column
	ShowOidColumn
	No
	If enabled, the SQLColumns() function reports the OID column.

	OID Options: Fake Index
	FakeOidIndex
	No
	If enabled, the SQLStatistics() function reports that a unique index exists on each OID column.

	Keyset Query Optimization
	Ksqo
	On
	If enabled, enforces server-side support for keyset queries (generated by the MS Jet database engine).

	Recognize Unique Indexes
	UniqueIndex
	On
	If enabled, the SQLStatistics() function will report unique indexes. If not enabled, the SQLStatistics() function reports that indexes allow duplicate values.

	Use Declare/Fetch
	UseDeclareFetch
	Off
	If enabled, the driver will use server-side cursors. To enable UseDeclareFetch, specify a value of 1; to disable UseDeclareFetch, specify a value of 0.

	CommLog
	CommLog
	Off
	If enabled, records all client/server traffic in a log file.

	Parse Statements
	Parse
	Off
	If enabled, the driver parses simple SELECT statements when you call the SQLNumResultCols(), SQLDescribeCol() or SQLColAttributes() functions.

	Cancel as FreeStmt
	CancelAsFreeStmt
	Off
	If enabled, the SQLCancel() function will call SQLFreeStmt(SQL_Close) on your behalf.

	MyLog
	Debug
	Off
	If enabled, the driver records its work in a log file. On Windows, the file name is C:\mylog_<process-id>; on Linux the file name is /tmp/mylog_<username><process-id>.log.

	Unknown Sizes
	UnknownSizes
	Maximum
	Determines how the SQLDescribeCol() and SQLColAttributes() functions compute the size of a column. Specify 0 to force the driver to report the maximum size allowed for the type; specify 1 to force the driver to report an unknown length or 2 to force the driver to search the result set to find the longest value. Do not specify 2 if you have enabled UseDeclareFetch.

	Text as LongVarchar
	TextAsLongVarChar
	8190
	If enabled, the driver treats TEXT columns as if they are of type SQL_LONGVARCHAR. If disabled, the driver treats TEXT columns as SQL_VARCHAR values.

	Unknown as Long Varchar
	LongVarChar
	False
	If enabled, the driver treats values of unknown type as SQL_LONGVARCHAR values. If unchecked, the driver will treat values of unknown type as SQL_VARCHAR values. By default, values of unknown type are treated as Y values.

	Bools as Char
	BoolsAsChar
	On
	If enabled, the driver treats BOOL columns as SQL_CHAR values. If disabled, BOOL columns are treated as SQL_BIT values.

	Max Varchar
	MaxVarcharSize
	255
	If enabled, the driver treats VARCHAR and BPCHAR values longer than MaxVarCharSize as SQL_LONGVARCHAR values

	Max Long Varchar Size
	MaxLongVarcharSize
	8190
	If TextAsLongVarChar is on, the driver reports TEXT values are MaxLongVarcharSize bytes long.
If UnknownAsLongVarChar is on, columns of unknown type are MaxLongVarcharSize bytes long; otherwise, they are reported to be MaxVarcharSize bytes in length.

	Cache Size
	Fetch
	100
	Determines the number of rows fetched by the driver when UseDeclareFetch is enabled.

	SysTable Prefixes
	ExtraSysTablePrefixes
	dd_;
	Use the SysTablePrefixes field to specify a semi-colon delimited list of prefixes that indicate that a table is a system table. By default, the list contains dd_;.

	Cumulative Row Count for Insert
	MapSqlParcNoBatch
	Off/0
	If enabled, the SQLRowCount() function will return a single, cumulative row count for the entire array of parameter settings for an INSERT statement. If disabled, an individual row count will be returned for each parameter setting. By default, this option is disabled.

	LF<-> CR/LF conversion
	LFConversion
	System Dependent
	The LF<->CR/LF conversion option instructs the driver to convert line-feed characters to carriage-return/line-feed pairs when fetching character values from the server and convert carriage-return/line-feed pairs back to line-feed characters when sending character values to the server. By default, this option is enabled.

	Updatable Cursors
	UpdatableCursors
	Off
	Permits positioned UPDATE and DELETE operations using the SQLSetPos() or SQLBulkOperations() functions.

	Bytea as Long VarBinary
	ByteaAsLongVarBinary
	Off
	If enabled, the driver treats BYTEA values as if they are of type SQL_LONGVARBINARY. If disabled, BYTEA values are treated as SQL_VARBINARY values.

	Bytea as LO
	ByteaAsLO
	False
	If enabled, the driver treats BYTEA values as if they are large objects.

	Row versioning
	RowVersioning
	Off
	The Row Versioning option specifies if the driver should include the xmin column when reporting the columns in a table. The xmin value is the ID of the transaction that created the row. You must use row versioning if you plan to create cursors where SQL_CONCURRENCY = SQL_CONCUR_ROWVER.

	Disallow Premature
	DisallowPremature
	No/0
	Determines driver behavior if you try to retrieve information about a query without executing the query. If Yes, the driver declares a cursor for the query and fetches the meta-data from the cursor. If No, the driver executes the command as soon as you request any meta-data.

	True is -1
	TrueIsMinus1
	Off/0
	TrueIsMinus1 tells the driver to return BOOL values of TRUE as -1. If this option is not enabled, the driver will return BOOL values of TRUE as 1. The driver always returns BOOL values of FALSE as 0.

	Server side prepare
	UseServerSidePrepare
	No/0
	If enabled, the driver uses the PREPARE and EXECUTE commands to implement the Prepare/Execute model.

	Use GSSAPI for GSS request
	GssAuthUseGSS
	False/0
	If set to True/1, the driver will send a GSSAPI authentication request to the server. Windows only.

	Int8 As
	BI
	0
	The value of BI determines how the driver treats BIGINT values:
If -5 as a SQL_BIGINT,
If 2 as a SQL_NUMERIC,
If 8 as a SQL_DOUBLE,
If 4 as a SQL_INTEGER,
If 12 as a SQL_VARCHAR,
If 0 (on an MS Jet client), as a SQL_NUMERIC,
If 0 on any other client, as a SQL_BIGINT.

	Extra options
	AB
	0x0
	0x1 - Forces the output of short-length formatted connection strings. Specify this option if you are using the MFC CDatabase class.
0x2 - Allows MS Access to recognize PostgreSQL's serial type as AutoNumber type.
0x4 - Return ANSI character types for the inquiries from applications. Specify this option for applications that have difficulty handling Unicode data.
0x8 - If set, NULL dates are reported as empty strings and empty strings are interpreted as NULL dates on input.
0x10 - Determines if SQLGetInfo returns information about all tables, or only accessible tables. If set, only information is returned for accessible tables.
0x20 - If set, each SQL command is processed in a separate network round-trip, otherwise, SQL commands are grouped into as few round-trips as possible to reduce network latency.

	Connect Settings
	ConnSettings
	
	Contains a semicolon-delimited list of SQL commands that are executed when the driver connects to the server.

	
	Socket
	4096
	Specifies the buffer size that the driver uses to connect to the client.

	
	Lie
	Off
	If enabled, the driver claims to support unsupported ODBC features.

	 Lowercase Identifier
	LowerCaseIdentifier
	Off
	If enabled, the driver translates identifiers to lowercase.

	Disable Genetic Optimizer
	Optimizer
	Yes/1
	Disables the genetic query optimizer.

	Allow Keyset
	UpdatableCursors
	Yes/1
	Allow Keyset driven cursors

	SSL mode
	SSLMode
	Disabled
	If libpq (and its dependencies) are installed in the same directory as the EDB-ODBC driver, enabling SSL Mode allows you to use SSL and other utilities.

	Force Abbreviated Connection String
	CX
	No/0
	Enables the option to force abbreviation of connection string.

	Fake MSS
	FakeOidIndex
	No/0
	Impersonates MS SQL Server enabling MS Access to recognize PostgreSQL’s serial type as AutoNumber type.

	BDE Environment
	BDE
	No/0
	Enabling this option tunes EDB-ODBC to cater to Borland Database Engine compliant output (related to Unicode).

	XA_Opt
	INI_XAOPT
	Yes/1
	If enabled, calls to SQL_TABLES only include user-accessible tables.

[bookmark: _Toc528236448]Adding a Data Source Definition in Windows
The Windows ODBC Data Source Administrator is a graphical interface that creates named data sources. You can open the ODBC Data Source Administrator (shown in Figure 2.2) by navigating to the Control Panel, opening the Administrative Tools menu, and double-clicking the appropriate ODBC Data Sources icon (32- or 64- bit).
[image:]
Figure 2.2 - The Windows Data Source Administrator
Click the Add button to open the Create New Data Source dialog (shown in Figure 2.3). Choose EnterpriseDB (ANSI) or EnterpriseDB (UNICODE) from the list of drivers and click Finish.

[image:]
Figure 2.3 - The Create New Data Source dialog.
The EnterpriseDB ODBC Driver dialog opens (see Figure 2.4).
[image:]
Figure 2.4 - Define the data source.
Use the fields on the dialog to define the named data source:
· Enter the Database name in the Database field.
· Enter the host name or IP address of Advanced Server in the Server field.
· Enter the name of a user in the User Name field.
· Enter a descriptive name for the named data source in the Description field.
· If libpq is installed in the same directory as the EDB-ODBC driver, the drop-down listbox next to the SSL Mode label will be active, allowing you to use SSL and other Advanced Server utilities.
· Accept the default port number (5444), or enter an alternative number in the Port field.
· Enter the password of the user in the Password field.
Use the Datasource button (located in the Options box) to open the Advanced Options dialog (see Figure 2.5) and specify connection properties.
The Global button opens a dialog on which you can specify logging options for the EDB-ODBC driver (not the data source, but the driver itself).
[image:]
Figure 2.5 - Page 1 of the Advanced Options dialog.
· Check the box next to Disable Genetic Optimizer to disable the genetic query optimizer. By default, the query optimizer is on.
· Check the box next to KSQO (Keyset Query Optimization) to enable server-side support for keyset queries. By default, Keyset Query Optimization is on.
· Check the box next to Recognize Unique Indexes to force the SQLStatistics() function to report unique indexes; if the option is not checked, the SQLStatistics() function will report that all indexes allow duplicate values. By default, Recognize Unique Indexes is on.
· Check the box next to Use Declare/Fetch to specify that the driver should use server-side cursors whenever your application executes a SELECT command. By default, Use Declare/Fetch is off.
· Check the box next to CommLog (C:\psqlodbc_xxxx.log) to record all client/server traffic in a log file. By default, logging is off.
· Check the box next to Parse Statements to specify that the driver (rather than the server) should attempt to parse simple SELECT statements when you call the SQLNumResultCols(), SQLDescribeCol(), or SQLColAttributes() function. By default, this option is off.
· Check the box next to Cancel as FreeStmt (Exp) to specify that the SQLCancel() function should call SQLFreeStmt(SQLClose) on your behalf. By default, this option is off.
· Check the box next to MyLog (C:\mylog_xxxx.log) to record a detailed record of driver activity in a log file. The log file is named c:\mylog_process-id.log. By default, logging is off.
The radio buttons in the Unknown Sizes box specify how the SQLDescribeCol() and SQLColAttributes() functions compute the size of a column of unknown type (see Section 3.7, Supported Data Types for a list of known data types).
· Choose the button next to Maximum to specify that the driver report the maximum size allowed for a VARCHAR or LONGVARCHAR (dependent on the Unknowns as LongVarChar setting). If Unknowns as LongVarChar is enabled, the driver returns the maximum size of a LONGVARCHAR (specified in the Max LongVarChar field in the Miscellaneous box). If Unknowns as LongVarChar is not enabled, the driver returns the size specified in the Max VarChar field (in the Miscellaneous box).
· Choose the button next to Don’t know to specify that the driver report a length of "unknown".
· Choose the button next to Longest to specify that the driver search the result set and report the longest value found. (Note: you should not specify Longest if UseDeclareFetch is enabled.)
The properties in the Data Type Options box determine how the driver treats columns of specific types:
· Check the box next to Text as LongVarChar to treat TEXT values as if they are of type SQL_LONGVARCHAR. If the box is not checked, the driver will treat TEXT values as SQL_VARCHAR values. By default, TEXT values are treated as SQL_LONGVARCHAR values.
· Check the box next to Unknowns as LongVarChar to specify that the driver treat values of unknown type as SQL_LONGVARCHAR values. If unchecked, the driver will treat values of unknown type as SQL_VARCHAR values. By default, values of unknown type are treated as SQL_VARCHAR values.
· Check the box next to Bools as Char to specify that the driver treat BOOL values as SQL_CHAR values. If unchecked, BOOL values are treated as SQL_BIT values. By default, BOOL values are treated as SQL_CHAR values.
You can specify values for some of the properties associated with the named data source in the fields in the Miscellaneous box:
· Indicate the maximum length allowed for a VARCHAR value in the Max VarChar field. By default, this value is set to 255.
· Enter the maximum length allowed for a LONGVARCHAR value in the Max LongVarChar field. By default, this value is set to 8190.
· Specify the number of rows fetched by the driver (when UseDeclareFetch is enabled) in the Cache Size field. The default value is 100.
· Use the SysTablePrefixes field to specify a semi-colon delimited list of prefixes that indicate that a table is a system table. By default, the list contains dd_;.
You can reset the values on this dialog to their default settings by choosing the Defaults button.
Click the Apply button to apply any changes to the data source properties, or the Cancel button to exit the dialog without applying any changes. Choose the OK button to apply any changes to the dialog and exit.
Select the Page 2 button (in the upper-left hand corner of the Advanced Options dialog) to access a second set of advanced options (shown in figure 2.6).
[image:]
Figure 2.6 - Page 2 of the Advanced Options dialogs.
· Check the box next to Read Only to prevent the driver from executing the following commands: INSERT, UPDATE, DELETE, CREATE, ALTER, DROP, GRANT, REVOKE or LOCK. Invoking the Read Only option also prevents any calls that use ODBC’s procedure call escape syntax (call=procedure-name?). By default, this option is off.
· Check the box next to Show System Tables to include system tables in the result set of the SQLTables() function. If the option is enabled, the driver will include any table whose name starts with pg_ or any of the prefixes listed in the SysTablePrefixes field of Page 1 of the Advanced Options dialog. By default, this option is off.
· Check the box next to Show sys/dbo Tables [Access] to access objects in the sys schema and dbo schema through the ODBC data source. By default, this option is enabled (checked).
· Check the box next to Cumulative Row Count for Insert to cause a single, cumulative row count to be returned for the entire array of parameter settings for an INSERT statement when a call to the SQLRowCount() method is performed. If this option is not enabled (the box is not checked), then an individual row count is available for each parameter setting in the array, and thus, a call to SQLRowCount() returns the count for the last inserted row.
· Check the box next to LF<->CR/LF conversion to instruct the driver to convert line-feed characters to carriage-return/line-feed pairs when fetching character values from the server and convert carriage-return/line-feed pairs back to line-feed characters when sending character values to the server. By default, this option is enabled.
· Check the box next to Updatable Cursors to specify that the driver should permit positioned UPDATE and DELETE operations with the SQLSetPos() or SQLBulkOperations() functions. By default, this option is enabled.
· Check the box next to bytea as LO to specify that the driver should treat BYTEA values as if they are SQL_LONGVARBINARY values. If the box is not checked, EDB-ODBC will treat BYTEA values as if they are SQL_VARBINARY values. By default, BYTEA values are treated as SQL_VARBINARY values.
· Check the box next to Row Versioning to include the xmin column when reporting the columns in a table. The xmin column is the ID of the transaction that created the row. You must use row versioning if you plan to create cursors where SQL_CONCURRENCY = SQL_CONCUR_ROWVER. By default, Row Versioning is off.
· Check the box next to Disallow Premature to specify that the driver should retrieve meta-data about a query (i.e., the number of columns in a result set, or the column types) without actually executing the query. If this option is not specified, the driver executes the query when you request meta-data about the query. By default, Disallow Premature is off.
· Check the box next to True is -1 to tell the driver to return BOOL values of True as a -1. If this option is not enabled, the driver will return BOOL values of True as 1. The driver always returns BOOL values of False as 0.
· Check the box next to Server side prepare to tell the driver to use the PREPARE and EXECUTE commands to implement the Prepare/Execute model. By default, this box is checked.
· Check the box next to use gssapi for GSS request to instruct the driver to send a GSSAPI connection request to the server.
· Enter the database system (either EnterpriseDB or PostgreSQL) in the dbms_name field. The value entered here is returned in the SQL_DBMS_NAME argument when the SQLGetInfo() function is called. The default is EnterpriseDB.
Use the radio buttons in the Int8 As box to specify how the driver should return BIGINT values to the client. Select the radio button next to default to specify the default type of NUMERIC if the client is MS Jet, BIGINT if the client is any other ODBC client. You can optionally specify that the driver return BIGINT values as a bigint (SQL_BIGINT), numeric (SQL_NUMERIC), varchar (SQL_VARCHAR), double (SQL_DOUBLE), or int4 (SQL_INTEGER).
The default value of the Extra Opts field is 0x0. Extra Opts may be:
	Option
	Specifies

	0x1
	Forces the output of short-length formatted connection string. Select this option when you are using the MFC CDatabase class.

	0x2
	Allows MS Access to recognize PostgreSQL's serial type as AutoNumber type.

	0x4
	Return ANSI character types for the inquiries from applications. Select this option for applications that have difficulty handling Unicode data.

	0x8
	If set, NULL dates are reported as empty strings and empty strings are interpreted as NULL dates on input.

	0x10
	Determines if SQLGetInfo returns information about all tables, or only accessible tables. If set, only information is returned for accessible tables.

	0x20
	If set, each SQL command is processed in a separate network round-trip, otherwise, SQL commands are grouped into as few round-trips as possible to reduce network latency.

The Protocol box contains radio buttons that tell the driver to interact with the server using a specific front-end/back-end protocol version. By default, the Protocol selected is 7.4+; you can optionally select from versions 6.4+, 6.3 or 6.2.
The Level of Rollback on errors box contains radio buttons that specify how the driver handles error handling:
	Option
	Specifies

	Transaction
	If the driver encounters an error, it will rollback the current transaction.

	Statement
	If the driver encounters an error, it will rollback the current statement.

	Nop
	If the driver encounters an error, you must manually rollback the current transaction before the application can continue.

The OID Options box contains options that control the way the driver exposes the OID column contained in some tables:
· Check the box next to Show Column to include the OID column in the result set of the SQLColumns() function. If this box is not checked, the OID column is hidden from SQLColumns().
· Check the box next to Fake Columns to specify that the SQLStatistics() function should report that a unique index exists on each OID column.
Use the Connect Settings field to specify a list of parameter assignments that the driver will use when opening this connection. Any configuration parameter that you can modify with a SET statement can be included in the semi-colon delimited list. For example:
set search_path to company1,public;
When you’ve defined the connection properties for the named data source, click the Apply button to apply the options; you can optionally exit without saving any options by choosing Cancel. Select the OK button to save the options and exit.
Choose the Global button (on the EnterpriseDB ODBC Driver dialog) to open the Global Settings dialog (shown in Figure 2.7). The options on this dialog control logging options for the EDB-ODBC driver. Use this dialog to enforce logging when the driver is used without a named data source, or for logging driver operations that occur before the connection string is parsed.
[image:]
Figure 2.7 - The Global Settings dialog
· Check the box next to the CommLog field to record all client/server traffic in a log file. The logfile is named C:\psqlodbc_process-id where process-id is the name of the process in use.
· Check the box next to the Mylog field to keep a logfile of the driver’s activity. The logfile is named c:\mylog_process-id where process-id is the name of the process in use.
· Specify a location for the logfiles in the Folder for logging field.
When you’ve entered the connection information for the named data source, click the Test button to verify that the driver manager can connect to the defined data source (see Figure 2.8).
[image:]
Figure 2.8 - The Connection is successful.
Click the OK button to exit Connection Test dialog. If the connection is successful, click the Save button to save the named data source. If there are problems establishing a connection, adjust the parameters and test again.

[bookmark: _Toc528236449]Adding a Data Source Definition in Linux
The Linux ODBC Administrator is a graphical tool that is distributed with unixODBC; you can use the ODBC Administrator to manage ODBC drivers and named resources. To add the ODBC Administrator to your system, open a terminal window, assume superuser privileges, and enter:
yum install unixODBC
followed by:
yum install unixODBC-kde
To invoke the ODBC Administrator (shown in Figure 2.9), open a terminal window and enter ODBCConfig.
[image:]
Figure 2.9 - The unixODBC Data Source Administrator
When you install the Advanced Server Connectors component, the EDB-ODBC driver is added to the list of drivers in the ODBC Administrator. Click Advanced, and then select the Drivers tab to verify that the enterprisedb driver appears in the list (see Figure 2.10).
[image:]
Figure 2.10 - The Drivers tab shows the installed EDB-ODBC driver.
If the EDB-ODBC driver does not appear in the list of drivers, you can add it using the ODBC Administrator. To add a driver definition, select the Drivers tab, and click Add. The Driver Properties (new) window opens, as shown in Figure 2.11.
[image:]
Figure 2.11 - The Driver Properties window.
Complete the Driver Properties window to register the EDB-ODBC driver with the driver manager:
· Add a unique name for the driver to the Name field.
· Add a driver description to the Description field.
· Add the path to the location of the EDB-ODBC driver in the Driver field. By default, the complete path to the driver is:
/usr/edb/odbc/lib/edb-odbc.so
· Add the path to the location of the EDB-ODBC driver setup file in the Setup field. By default, the complete path to the driver setup file is:
/usr/edb/odbc/lib/libodbcedbS.so
When you’ve described the driver properties for the EDB-ODBC driver, click OK. The ODBC Data Source Administrator window now includes the EDB-ODBC driver in the list of available ODBC drivers (Figure 2.12).
[image:]
Figure 2.12 - The Drivers tab shows the new driver definition.
With the EDB-ODBC driver available to the driver manager, you can add a data source. Click the Data Source Names option in the left panel, and then choose the appropriate DSN tab for the type of data source name you would like to add:
· Choose the User tab to add a named data source that is available only to the current user (the data source will be stored in ~user/.odbc.ini).
· Choose the System tab add a named data source that is available to all users. All system data sources are stored in a single file (usually /etc/odbc.ini).
· Choose the File tab to add a named data source that is available to all users, but that is stored in a file of your choosing.
Select the appropriate tab and click Add. The Create a New Data Source… window opens, as shown in Figure 2.13.
[image:]
Figure 2.13 - Select a driver for the named data source.
Select the EDB-ODBC driver from the list, and click OK to open the Data Source Properties window.

Complete the Data Source Properties (new) window (shown in Figure 2.14), specifying the connection properties for the EDB-ODBC driver.
[image:]
Figure 2.14 - The Data Source Properties window.
· Enter the data source name in the Name field.
· Enter a description of the named data source in the Description field.
· The unixODBC driver includes a trace utility that records the sequence of calls made an ODBC application to a log file. Specify Yes in the Trace field to turn the trace utility on. Note that using the trace utility can slow down an application.
· Use the TraceFile field to specify a file to receive information returned by the Trace utility.
· Enter the name of the Advanced Server database in the Database field.
· Enter the host name or IP address of Advanced Server in the Servername field.
· Enter the name of a user in the Username field.
· Enter the password for the user in the Password field.
· Enter a port number (or accept the default value of 5444) in the Port field.
· Use the Protocol field to specify a front-end/back-end protocol version; the default value is 7.4. You can optionally select from protocol versions 7.4, 6.4, 6.3 or 6.2.
· Use the ReadOnly field to specify Yes to prevent the driver from executing the following commands: INSERT, UPDATE, DELETE, CREATE, ALTER, DROP, GRANT, REVOKE or LOCK. Enabling the Read Only option also prevents any calls that use the ODBC procedure call escape syntax (call=procedure-name?). By default, ReadOnly is set to No.
· Use the RowVersioning field to specify Yes if the driver should include the xmin column when reporting the columns in a table. The xmin column is the ID of the transaction that created the row. You must use row versioning if you plan to create cursors where SQL_CONCURRENCY = SQL_CONCUR_ROWVER. By default, Row Versioning is set to No.
· Use the ShowSystemTables field to specify Yes if the driver should include system tables in the result set of the SQLTables() function. By default, this field is set to No.
· Use the ShowOidColumn field to specify Yes if the driver should include the OID column in the result set of the SQLColumns() function. If ShowOidColumn is set to No, the OID column is hidden from SQLColumns(). By default, this option is set to No.
· Use the FakeOidIndex field to specify Yes if the SQLStatistics() function should report that a unique index exists on each OID column. This is useful when your application needs a unique identifier and your table doesn’t include one. The default value is No.
· Use the ConnSettings field to specify a list of parameter assignments that the driver will use when opening this connection.
When you’ve defined the connection properties, click OK.

The new data source is added to the list of data source names (shown in Figure 2.15).
[image:]
Figure 2.15 - The new data source is included on the Data Source Names list.

[bookmark: _Toc118855025][bookmark: _Toc528236450]EDB-ODBC Driver Functionality
You can use ODBC functions to query ODBC for specific information about the various attributes of the connection between EDB-ODBC and the server.
· SQLGetInfo() returns information about the EDB-ODBC driver and Advanced Server.
· SQLGetEnvAttr() returns information about ODBC environment attributes.
· SQLGetConnectAttr() returns information about attributes specific to an individual connection.
· SQLGetStmtAttr() returns information about the attributes specific to an individual statement.
You can also use ODBC functions to set various attributes of the objects that you use to interface with ODBC:
· Use the SQLSetConnectAttr() function to set connection attributes.
· Use the SQLSetEnvAttr() function to set environment attributes.
· Use the SQLSetStmtAttr() function to set statement attributes.

[bookmark: _Toc118855026][bookmark: _Toc528236451]SQLGetInfo()
The ODBC SQLGetInfo() function returns information about the EDB-ODBC driver and Advanced Server. You must have an open connection to call SQLGetInfo(), unless you specify SQL_ODBC_VER as the info_type. The signature for SQLGetInfo() is:
SQLRETURN SQLGetInfo
(
 SQLHDBC conn_handle, // Input
 SQLUSMALLINT info_type, // Input
 SQLPOINTER info_pointer, // Output
 SQLSMALLINT	 buffer_len, // Input
 SQLSMALLINT	 *string_length_pointer // Output
);
conn_handle
The connection handle.
info_type
The type of information SQLGetInfo() is retrieving.
info_pointer
A pointer to a memory buffer that will hold the retrieved value.
If the info_type argument is SQL_DRIVER_HDESC or SQL_DRIVER_HSTMT, the info_pointer argument is both Input and Output.
buffer_len
buffer_len is the length of the allocated memory buffer pointed to by info_pointer. If info_pointer is NULL, buffer_len is ignored. If the returned value is a fixed size, buffer_len is ignored. buffer_len is only used if the requested value is returned in the form of a character string.
string_length_pointer
string_length_pointer is a pointer to an SQLSMALLINT value. SQLGetInfo() writes the size of the requested value in this integer.
A typical usage is to call SQLGetInfo() with a NULL info_pointer to obtain the length of the requested value, allocate the required number of bytes, and then call SQLGetInfo() again (providing the address of the newly allocated buffer) to obtain the actual value. The first call retrieves the number of bytes required to hold the value; the second call retrieves the value.
If the size of the returned value exceeds buffer_len, the information is truncated and NULL terminated. If the returned value is a fixed size, string_length is ignored (and the size of the requested value is not provided by SQLGetInfo()).
SQLGetInfo() writes information in one of the following formats:
· a SQLUINTEGER bitmask
· a SQLUINTEGER flag
· a SQLUINTEGER binary value
· a SQLUSMALLINT value
· a NULL terminated character string
SQLGetInfo() returns SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or SQL_INVALID_HANDLE.

The following table lists the information returned by EDB-ODBC about the Advanced Server connection:
	SQL info_type Argument
	Description
	EDB_ODBC/Advanced Server Returns:

	SQL_ACCESSIBLE_PROCEDURES
	Indicates if procedures returned by SQLProcedures()can be executed by the application.
	Returns N
Some procedures executed by the SQLProcedures() function may be executed by the application.

	SQL_ACCESSIBLE_TABLES
	Indicates if the user has SELECT privileges on all table names returned by SQLTables().
	Returns N
The user may not have select privileges on one or more tables returned by the SQLTables() function.

	SQL_ACTIVE_CONNECTIONS
prev. SQL_MAX_DRIVER_CONNECTIONS
	Indicates the maximum number of connections EDB-ODBC can support.
	Returns 0
There is no specified limit to the number of connections allowed.

	SQL_ACTIVE_ENVIRONMENTS
	The number of active environments EDB-ODBC can support.
	Returns 0
There is no specified limit to the number of environments allowed.

	SQL_ACTIVE_STATEMENTS
prev.
SQL_MAX_CONCURRENT_ACTIVITIES
	Indicates the maximum number of active statements EDB-ODBC can support.
	Returns 0
There is no specified limit to the number of active statements allowed.

	SQL_AGGREGATE_FUNCTION
	Identifies the aggregate functions supported by the server and driver.
	Returns SQL_AF_ALL

	SQL_ALTER_DOMAIN
	Identifies the ALTER DOMAIN clauses supported by the server.
	Returns 0
ALTER DOMAIN clauses are not supported.

	SQL_ALTER_TABLE
	Identifies the ALTER TABLE clauses supported by the server.
	Returns:
SQL_AT_ADD_COLUMN
SQL_AT_DROP_TABLE_CONSTRAINT_CASCADE
SQL_AT_DROP_TABLE_CONSTRAINT
SQL_AT_CONSTRAINT_INITIALLY_DEFERRED
SQL_AT_CONSTRAINT_INITIALLY_IMMEDIATE
SQL_AT_CONSTRAINT_DEFERRABLE

	SQL_ASYNC_MODE
	Level of Asynchronous Mode Supported by EDB-ODBC.
	Returns SQL_AM_NONE
Asynchronous mode is not supported.

	SQL_BATCH_ROW_COUNT
	Indicates how the driver returns row counts.
	Returns SQL_BRC_EXPLICIT
Row Counts are available when executed by calling SQLExecute or SQLExecDirect.

	SQL_BATCH_SUPPORT
	Indicates support for batch statement execution.
	Returns:
SQL_BS_SELECT_EXPLICIT
SQL_BS_ROW_COUNT_EXPLICIT
The driver supports explicit batches with result set and row count generating statements.

	SQL_BOOKMARK_PERSISTENCE
	Indicates level of support for bookmarks.
	Returns:
SQL_BP_DELETE
SQL_BP_TRANSACTION
SQL_BP_UPDATE
SQL_BP_SCROLL

	SQL_CATALOG_LOCATION
Now SQL_QUALIFIER_LOCATION
	Indicates the position of the catalog in a qualified table name.
	Returns SQL_CL_START
The catalog portion of a qualified table name is at the beginning of the name.

	SQL_CATALOG_NAME
Now SQL_QUALIFIER_NAME
	Indicates support for catalog names.
	Returns Y
The server supports catalog names

	SQL_CATALOG_NAME_SEPARATOR
Now SQL_QUALIFIER_NAME_SEPARATOR
	Character separating the catalog name from the adjacent name element.
	Returns '.'
The server expects a '.' character between the qualifier and the table name.

	SQL_CATALOG_TERM
Now SQL_QUALIFIER_TERM
	The term used to describe a catalog.
	Returns catalog

	SQL_CATALOG_USAGE
Now SQL_QUALIFIER USAGE
	Indicates the SQL statements that may refer to catalogs.
	Returns SQL_CU_DML_STATEMENTS
Catalog names can be used in SELECT, INSERT, UPDATE, DELETE, SELECT FOR UPDATE and positioned UPDATE and DELETE statements.

	SQL_COLLATION_SEQ
	Returns the name of the Collation Sequence.
	Returns an empty string
The name of the default collation is unknown.

	SQL_COLUMN_ALIAS
	Indicates server support for column aliases.
	Returns Y
The server supports column aliases.

	SQL_CONCAT_NULL_BEHAVIOR
	Indicates how the server handles concatenation of NULL values.
	Returns SQL_CB_NON_NULL
Concatenation of a NULL value and a non NULL value will result in a NULL value.

	SQL_CONVERT_BIGINT
	Indicates conversion support from the BIGINT type using the CONVERT function.
	Returns 0
The server does not support conversion.

	SQL_CONVERT_BINARY
	Indicates conversion support from the BINARY type using the CONVERT function.
	Returns 0
The server does not support conversion.

	SQL_CONVERT_BIT
	Indicates conversion support from the BIT type using the CONVERT function.
	Returns:
SQL_CVT_INTEGER
SQL_CVT_BIT

	SQL_CONVERT_CHAR
	Indicates conversion support from the CHAR type using the CONVERT function.
	Returns 0
The server does not support conversion.

	SQL_CONVERT_DATE
	Indicates conversion support from the DATE type using the CONVERT function.
	Returns 0
The server does not support conversion.

	SQL_CONVERT_DECIMAL
	Indicates conversion support from the DECIMAL type using the CONVERT function.
	Returns 0
The server does not support conversion.

	SQL_CONVERT_DOUBLE
	Indicates conversion support from the DOUBLE type using the CONVERT function.
	Returns 0
The server does not support conversion.

	SQL_CONVERT_FLOAT
	Indicates conversion support from, the FLOAT type using the CONVERT function.
	Returns 0
The server does not support conversion.

	SQL_CONVERT_FUNCTIONS
	Lists the scalar conversion functions supported by the server and driver using the CONVERT function.
	Returns:
SQL_FN_CVT_CONVERT

	SQL_CONVERT_INTEGER
	Lists the conversion support from the INTEGER type using the CONVERT function.
	Returns:
SQL_CVT_INTEGER
SQL_CVT_BIT

	SQL_CONVERT_INTERVAL_DAY_TIME
	Indicates conversion support from the INTERVAL_DAY_TIME type using the CONVERT function.
	This info_type is not currently supported.

	SQL_CONVERT_INTERVAL_YEAR_MONTH
	Indicates conversion support from the INTERVAL_YEAR_MONTH type using the CONVERT function.
	This info_type is not currently supported.

	SQL_CONVERT_LONGVARBINARY
	Indicates conversion support for the LONG_VARBINARY type using the CONVERT function.
	Returns 0
The server does not support conversion.

	SQL_CONVERT_LONGVARCHAR
	Indicates conversion support for the LONGVARCHAR type using the CONVERT function.
	Returns 0
The server does not support conversion.

	SQL_CONVERT_NUMERIC
	Indicates conversion support for the NUMERIC type using the CONVERT function.
	Returns 0
The server does not support conversion.

	SQL_CONVERT_REAL
	Indicates conversion support for the REAL type using the CONVERT function.
	Returns 0
The server does not support conversion.

	SQL_CONVERT_SMALLINT
	Indicates conversion support for the SMALLINT type using the CONVERT function.
	Returns:
SQL_CVT_INTEGER
SQL_CVT_BIT

	SQL_CONVERT_TIME
	Indicates conversion support for TIME type using the CONVERT function.
	Returns 0
The server does not support conversion.

	SQL_CVT_TIMESTAMP
	Indicates conversion support for TIMESTAMP type using the CONVERT function.
	Returns 0
The server does not support conversion.

	SQL_CONVERT_TINYINT
	Indicates conversion support for the TINYINT type using the CONVERT function.
	Returns:
SQL_CVT_INTEGER
SQL_CVT_BIT

	SQL_CONVERT_VARBINARY
	Indicates conversion support for the VARBINARY type using the CONVERT function.
	Returns 0
The server does not support conversion.

	SQL_CONVERT_VARCHAR
	Indicates conversion support for VARCHAR type using the CONVERT function.
	Returns:
SQL_CVT_INTEGER
SQL_CVT_BIT

	SQL_CONVERT_WCHAR
	Indicates conversion support for the WCHAR type using the CONVERT function.
	This info_type is valid only when using the Unicode driver.

Returns 0

The server does not support conversion.

	SQL_CONVERT_WLONGVARCHAR
	Indicates conversion support for the WLONGVARCHAR type using the CONVERT function.
	This info_type is valid only when using the Unicode driver.
Returns 0

The server does not support conversion.

	SQL_CONVERT_WVARCHAR
	Indicates conversion support for the WVARCHAR type using the CONVERT function.
	This info_type is valid only when using the Unicode driver.
Returns 0

The server does not support conversion.

	SQL_CORRELATION_NAME
	Indicates server support for correlation names.
	Returns SQL_CN_ANY
Correlation names are supported and can be any valid name.

	SQL_CREATE_ASSERTION
	Indicates support for the CREATE ASSERTION statement.
	Returns 0
The CREATE ASSERTION statement is not supported.

	SQL_CREATE_CHARACTER_SET
	Indicates support for CREATE CHARACTER statement.
	Returns 0
The CREATE CHARACTER statement is not supported.

	SQL_CREATE_COLLATION
	Indicates support for the CREATE COLLATION.
	Returns 0
The CREATE COLLATION statement is not supported.

	SQL_CREATE_DOMAIN
	Indicates support for the CREATE DOMAIN statement.
	Returns 0
The CREATE DOMAIN statement is not supported.

	SQL_CREATE_SCHEMA
	Indicates support for the CREATE SCHEMA statement.
	Returns:
SQL_CS_CREATE_SCHEMA
SQL_CS_AUTHORIZATION

	SQL_CREATE_TABLE
	Indicates support for the CREATE TABLE statement.
	Returns:
SQL_CT_CREATE_TABLE
SQL_CT_GLOBAL_TEMPORARY
SQL_CT_CONSTRAINT_INITIALLY_DEFERRED
SQL_CT_CONSTRAINT_INITIALLY_IMMEDIATE
SQL_CT_CONSTRAINT_DEFERRABLE
SQL_CT_COLUMN_CONSTRAINT
SQL_CT_COLUMN_DEFAULT
SQL_CT_TABLE_CONSTRAINT
SQL_CT_CONSTRAINT_NAME_DEFINITION

	SQL_CREATE_TRANSLATION
	Indicates support for the CREATE TRANSLATION statement.
	Returns 0
The CREATE TRANSLATION statement is not supported.

	SQL_CREATE_VIEW
	Indicates support for the CREATE VIEW statement.
	Returns SQL_CV_CREATE_VIEW

	SQL_CURSOR_COMMIT_BEHAVIOR
	Indicates how a COMMIT operation affects the cursor.
	Returns SQL_CB_PRESERVE
Cursors are unchanged, and can continue to fetch data.

	SQL_CURSOR_ROLLBACK_BEHAVIOR
	Indicates the server behavior after a ROLLBACK operation.
	Returns SQL_CB_PRESERVE
Cursors are unchanged, and can continue to fetch data.

	SQL_CURSOR_SENSITIVITY
	Indicates how the server synchronizes changes to a result set.
	This info_type is not currently supported.

	SQL_DATA_SOURCE_NAME
	Returns the server name used during connection.
	The value returned is determined by the connection properties.

	SQL_DATA_SOURCE_READ_ONLY
	Indicates if the connection is in READ ONLY mode.
	The value returned is determined by the connection properties.

	SQL_DATABASE_NAME
	Returns the name of the database.
	The value returned is determined by the connection properties.

	SQL_DATETIME_LITERALS
	Indicates the DATETIME LITERALS supported by the server.
	This info_type is not supported.

	SQL_DBMS_NAME
	Returns the name of the DBMS system.
	Returns the value given by the dbms_name parameter from the odbc.ini file on Linux or the dbms_name field of page 2 of the Advanced Options dialog box when defining a data source in Windows. The default is EnterpriseDB.

	SQL_DBMS_VER
	Returns the server version.
	Determined by the server.

	SQL_DDL_INDEX
	Indicates support for creating and dropping indexes.
	Returns:
SQL_DI_CREATE_INDEX |
SQL_DI_DROP_INDEX

	SQL_DEFAULT_TXN_ISOLATION
	Indicates support for transaction isolation by the server.
	Returns TXN_READ_COMMITTED
Non-repeatable or phantom reads are possible; Dirty reads are not.

	SQL_DESCRIBE_PARAMETER
	Indicates support for the DESCRIBE INPUT statement.
	Returns N
The DESCRIBE INPUT statement is not supported.

	SQL_DM_VER
	The version of the Driver Manager.
	Determined by driver manager.

	SQL_DRIVER_HDBC
	The Driver's connection handle.
	Returns an SQLULEN value that contains the driver’s connection handle.

	SQL_DRIVER_HDESC
	The Driver descriptor handle.
	Returns an SQLULEN value that contains driver’s descriptor handle.

	SQL_DRIVER_HENV
	The Driver's environment handle.
	Returns an SQLULEN value that contains the driver’s environment handle.

	SQL_DRIVER_HLIB
	The Driver handle.
	Returns an SQLULEN value that contains the library handle (returned to the ODBC driver manager when the manager loaded the driver).

	SQL_DRIVER_HSTMT
	The Driver's statement handle.
	Returns an SQLULEN value that contains the driver’s statement handle.

	SQL_DRIVER_NAME
	The name of the driver.
	Returns EDB-ODBC.DLL

	SQL_DRIVER_ODBC_VER
	Identifies the ODBC version that the driver supports.
	Returns 03.50

	SQL_DRIVER_VER
	Identifies the driver version.
	Returns 9.0.0.6

	SQL_DROP_ASSERTION
	Lists the DROP ASSERTION clauses supported by the server.
	Returns 0

	SQL_DROP_CHARACTER_SET
	Lists the DROP CHARACTER clauses supported by the server.
	Returns 0

	SQL_DROP_COLLATION
	Lists the DROP COLLATION clauses supported by the server.
	Returns 0

	SQL_DROP_DOMAIN
	Lists the DROP DOMAIN clauses supported by the server.
	Returns 0

	SQL_DROP_SCHEMA
	Lists the DROP SCHEMA clauses supported by the server.
	Returns:
SQL_DS_DROP_SCHEMA
SQL_DS_RESTRICT
SQL_DS_CASCADE

	SQL_DROP_TABLE
	Lists the DROP TABLE clauses supported by the server.
	Returns:
SQL_DT_DROP_TABLE
SQL_DS_RESTRICT
SQL_DS_CASCADE

	SQL_DROP_TRANSLATION
	Lists the DROP TRANSLATION clauses supported by the server.
	Returns 0

	SQL_DROP_VIEW
	Lists the DROP VIEW clauses supported by the server.
	Returns:
SQL_DV_DROP_VIEW
SQL_DS_RESTRICT
SQL_DS_CASCADE

	SQL_DYNAMIC_CURSOR_ATTRIBUTES1
	Describes the first set of dynamic cursor attributes supported by the driver.
	Returns 0

	SQL_DYNAMIC_CURSOR_ATTRIBUTES2
	Describes the second set of dynamic cursor attributes supported by the driver.
	Returns 0

	SQL_EXPRESSIONS_IN_ORDERBY
	Indicates server support for ORDER BY.
	Returns Y

	SQL_FETCH_DIRECTION
	Indicates FETCH order options (deprecated in ODBC 3.0).
	Returns:
SQL_FD_FETCH_NEXT
SQL_FD_FETCH_FIRS
SQL_FD_FETCH_LAST
SQL_FD_FETCH_PRIOR
SQL_FD_FETCH_ABSOLUTE
SQL_FD_FETCH_RELATIVE
SQL_FD_FETCH_BOOKMARK

	SQL_FILE_USAGE
	Indicates how a single-tier driver treats files on the server.
	Returns SQL_FILE_NOT_SUPPORTED
The driver is not a single-tier file.

	SQL_FORWARD_ONLY_CURSOR_ATTRIBUTES1
	Describes the forward-only cursor attributes supported by the driver.
	Returns SQL_CA1_NEXT

	SQL_FORWARD_ONLY_CURSOR_ATTRIBUTES2
	Describes extended attributes for the forward-only cursor designated by SQL_FORWARD_ONLY_CURSOR_ATTRIBUTES1.
	Returns:
SQL_CA2_READ_ONLY_CONCURRENCY
SQL_CA2_CRC_EXACT

	SQL_GETDATA_EXTENSIONS
	Lists supported extensions to SQLGetData.
	Returns:
SQL_GD_ANY_COLUMN
SQL_GD_ANY_ORDER
SQL_GD_BLOCK
SQL_GD_BOUND

	SQL_GROUP_BY
	Indicates the relationship between a GROUP BY clause and columns in the SELECT list.
	Returns SQL_GB_GROUP_BY_EQUALS_SELECT

	SQL_IDENTIFIER_CASE
	Indicates case-sensitivity and case-storage of SQL identifiers.
	Returns SQL_IC_LOWER

	SQL_IDENTIFIER_QUOTE_CHAR
	Delimiter used to enclose quote identifiers.
	Returns "

	SQL_INDEX_KEYWORDS
	Indicates support for the CREATE INDEX statement.
	Returns SQL_IK_NONE

	SQL_INFO_SCHEMA_VIEWS
	Lists the views supported in the INFORMATION_SCHEMA.
	Returns 0

	SQL_INTEGRITY
Prev. SQL_ODBC_SQL_OPT_IEF
	Indicates server support for referential integrity syntax checking.
	Returns N

	SQL_INSERT_STATEMENT
	Indicates level of support for the INSERT statement.
	Returns:
SQL_IS_INSERT_LITERALS | SQL_IS_INSERT_SEARCHED | SQL_IS_SELECT_INTO

	SQL_KEYSET_CURSOR_ATTRIBUTES1
	Describes the first set of keyset cursor attributes supported by the driver.
	Returns:
SQL_CA1_NEXT
SQL_CA1_ABSOLUTE
SQL_CA1_RELATIVE
SQL_CA1_BOOKMARK
SQL_CA1_LOCK_NO_CHANGE
SQL_CA1_POS_POSITION
SQL_CA1_POS_UPDATE
SQL_CA1_POS_DELETE
SQL_CA1_POS_REFRESH
SQL_CA1_BULK_ADD
SQL_CA1_BULK_UPDATE_BY_BOOKMARK
SQL_CA1_BULK_DELETE_BY_BOOKMARK
SQL_CA1_BULK_FETCH_BY_BOOKMARK

	SQL_KEYSET_CURSOR_ATTRIBUTES2
	Describes the second set of keyset cursor attributes supported by the driver.
	Returns:
SQL_CA2_READ_ONLY_CONCURRENCY
SQL_CA2_OPT_ROWVER_CONCURRENCY
SQL_CA2_SENSITIVITY_ADDITIONS
SQL_CA2_SENSITIVITY_DELETIONS
SQL_CA2_SENSITIVITY_UPDATES
SQL_CA2_CRC_EXACT

	SQL_KEYWORDS
	Identifies the server specific reserved keywords.
	Returns ""
There are no server specific reserved keywords.

	SQL_LIKE_ESCAPE_CLAUSE
	Indicates support for an escape character in LIKE predicates.
	Returns N
Advanced Server does not support escape characters in LIKE predicates.

	SQL_LOCK_TYPES
	Lists supported lock types (deprecated in ODBC 3.0).
	Returns SQL_LCK_NO_CHANGE

	SQL_MAX_ASYNC_CONCURRENT_STATEMENTS
	The number of active concurrent statements that the driver can support.
	This info_type is currently unsupported.

	SQL_MAX_BINARY_LITERAL_LEN
	The maximum length of a binary literal.
	Returns 0
The maximum length is unspecified.

	SQL_MAX_CATALOG_NAME_LEN
	The maximum length of a catalog name on the server.
	Returns 0
The maximum length is unspecified.

	SQL_MAX_QUALIFIER_NAME_LEN
	The maximum length of a qualifier.
	Returns 0
The maximum length is unspecified.

	SQL_MAX_CHAR_LITERAL_LEN
	The maximum number of characters in a character string.
	Returns 0
The maximum length is unspecified.

	SQL_MAX_COLUMN_NAME_LEN
	The maximum length of a column name.
	Returns 64
Column names cannot exceed 64 characters in length.

	SQL_MAX_COLUMNS_IN_GROUP_BY
	The maximum number of columns allowed in a GROUP BY clause.
	Returns 0
The maximum length is unspecified.

	SQL_MAX_COLUMNS_IN_INDEX
	The maximum number of columns allowed in an index.
	Returns 0
The maximum length is unspecified.

	SQL_MAX_COLUMNS_IN_ORDER_BY
	The maximum number of columns allowed in an ORDER BY clause.
	Returns 0
The maximum length is unspecified.

	SQL_MAX_COLUMNS_IN_SELECT
	The maximum number of columns allowed in a SELECT list.
	Returns 0
The maximum length is unspecified.

	SQL_MAX_COLUMNS_IN_TABLE
	The maximum number of columns allowed in a table.
	Returns 0
The maximum length is unspecified.

	SQL_MAX_CONCURRENT_ACTIVITIES
prev. SQL_MAX_ACTIVE_STATEMENTS
	The maximum number of active SQL statements that the driver can support.
	Returns 0
The maximum length is unspecified.

	SQL_MAX_CURSOR_NAME_LEN
	The maximum length of a cursor name.
	Returns 32
A cursor name cannot exceed 32 characters in length.

	SQL_MAX_DRIVER_CONNECTIONS
prev. SQL_ACTIVE_CONNECTIONS
	The maximum number of active connections the driver can support.
	Returns 0
There is no specified limit to the number of connections supported.

	SQL_MAX_IDENTIFIER_LEN
	The maximum identifier length allowed by the server.
	Returns 64
Identifiers cannot exceed 64 characters in length.

	 SQL_MAX_INDEX_SIZE
	The maximum number of bytes allowed in the (combined) fields of an index.
	Returns 0
The maximum size is unspecified.

	SQL_MAX_OWNER_NAME_LEN
Now SQL_MAX_SCHEMA_NAME_LEN
	The maximum length of an owner name allowed by the server.
	Returns 64
The maximum length of an owner name is 64 characters.

	SQL_MAX_PROCEDURE_NAME_LEN
	The maximum length of a procedure name allowed by the server.
	Returns 0
The maximum length is unspecified.

	SQL_MAX_QUALIFIER_NAME_ LEN
Now SQL_MAX_CATALOG_NAME_LEN
	The maximum length of a qualifier name allowed by the server.
	Returns 0
The maximum length of a qualifier is unspecified.

	SQL_MAX_ROW_SIZE
	The maximum length of a row.
	Returns 0
The maximum row length is unspecified.

	SQL_MAX_ROW_SIZE_INCLUDES_LONG
	Indicates whether the SQL_MAX_ROW_SIZE includes the length of any LONGVARCHAR or LONGVARBINARY columns in the row.
	Returns Y
SQL_MAX_ROW_SIZE includes the length of any LONGVARCHAR or LONGVARBINARY columns in the row.

	SQL_MAX_SCHEMA_NAME_LEN
	The maximum length of a schema name allowed by the server.
	Returns 64
The maximum length of a schema name is 64 characters.

	SQL_MAX_STATEMENT_LEN
	The maximum length of a SQL statement.
	Returns 0
Maximum statement length is limited by available memory.

	SQL_MAX_TABLE_NAME_LEN
	The maximum length of a table name allowed by the server.
	Returns 64
The maximum length of a table name is 64 characters.

	SQL_MAX_TABLES_IN_SELECT
	The maximum number of tables allowed in the FROM clause of a SELECT statement.
	Returns 0
The maximum number of tables allowed is unspecified.

	SQL_MAX_USER_NAME_LEN
	The maximum length of the user name allowed by the server.
	Returns 0
The maximum length of a user name is unspecified.

	SQL_MULT_RESULT_SETS
	Indicates server support for multiple result sets.
	Returns Y
Advanced Server supports multiple result sets.

	SQL_MULTIPLE_ACTIVE_TXN
	Indicates if the server supports multiple active transactions.
	Returns Y
Advanced Server supports multiple active transactions.

	SQL_NEED_LONG_DATA_LEN
	Indicates if the server needs the length of a LONG data value before receiving the value.
	Returns N
Advanced Server does not need the length of a LONG data value before receiving the value.

	SQL_NON_NULLABLE_COLUMNS
	Indicates if the server supports NOT NULL values in columns.
	Returns SQL_NNC_NON_NULL
Advanced Server does support NOT NULL values in columns.

	SQL_NULL_COLLATION
	Indicates where NULL values are located in a result set.
	Returns SQL_NC_HIGH
The location of NULL values in a data set is determined by the ASC and DESC keywords; NULL values are sorted to the high end of the data set.

	SQL_NUMERIC_FUNCTIONS
	Lists the numeric functions supported by the driver and the server.
	Returns :
SQL_FN_NUM_ABS | SQL_FN_NUM_ATAN | SQL_FN_NUM_CEILING | SQL_FN_NUM_COS | SQL_FN_NUM_EXP | SQL_FN_NUM_FLOOR | SQL_FN_NUM_LOG | SQL_FN_NUM_MOD | SQL_FN_NUM_SIGN | SQL_FN_NUM_SIN | SQL_FN_NUM_SQRT | SQL_FN_NUM_TAN | SQL_FN_NUM_RAND | SQL_FN_NUM_POWER | SQL_FN_NUM_ROUND

	SQL_ODBC_API_CONFORMANCE
	Indicates the ODBC 3.0 compliance level
	Returns SQL_OAC_LEVEL1
The driver conforms to ODBC Level 1 interface.

	SQL_ODBC_INTERFACE_CONFORMANCE
	Indicates the ODBC interface that the driver adheres to.
	Returns SQL_OIC_CORE

	SQL_ODBC_SAG_CLI_CONFORMANCE
	Indicates the SQL Access Group compliance level that the driver adheres to.
	Returns SQL_OSCC_NOT_COMPLIANT
The driver is not SAG CLI compliant.

	SQL_ODBC_SQL_CONFORMANCE
	Indicates the SQL grammar level that the driver conforms to.
	Returns SQL_OSC_CORE
The driver conforms to the core grammar level.

	SQL_ODBC_SQL_OPT_IEF
Now SQL_INTEGRITY
	Indicates server support for referential integrity syntax checking.
	Returns N
The server does not support referential integrity syntax checking.

	SQL_ODBC_VER
	The ODBC version supported by the driver manager
	Returns 03.52.0000

	SQL_OJ_CAPABILITIES
	Identifies the outer joins that are supported by the server.
	Returns SQL_OJ_LEFT
SQL_OJ_RIGHT
SQL_OJ_FULL
SQL_OJ_NESTED
SQL_OJ_NOT_ORDERED
SQL_OJ_INNER
SQL_OJ_ALL_COMPARISON_OPS

	SQL_OUTER_JOINS
	Indicates support for outer joins and the outer join escape sequence.
	Returns Y
Outer joins are supported.

	SQL_OWNER_TERM
prev. SQL_SCHEMA_TERM
	The term used to describe a schema.
	Returns schema

	SQL_ORDER_BY_COLUMNS_IN_SELECT
	Indicates if the columns in an ORDER BY clause must be included in the SELECT list.
	Returns N
Columns in an ORDER BY clause do not have to be in the SELECT list.

	SQL_OWNER_USAGE
prev. SQL_SCHEMA_USAGE
	Returns a string that indicates which statements support schema qualifiers.
	Returns SQL_OU_DML_STATEMENTS
SQL_OU_TABLE_DEFINITION
SQL_OU_INDEX_DEFINITION
SQL_OU_PRIVILEGE_DEFINITION

	SQL_PARAM_ARRAY_ROW_COUNTS
	Indicates if the server will return a single row count or separate row counts for each element in an array when executing a parameterized statement with at least one parameter bound to the array.
	Returns SQL_PARC_BATCH
if separate row counts are available for each element in an array.
Returns SQL_PARC_NO_BATCH if a single, cumulative row count is available for the entire array.

	SQL_PARAM_ARRAY_SELECTS
	Indicates if the server will return one result set or a separate result set for each element in an array (or if the driver does not allow this feature) when executing a parameterized statement with at least one parameter bound to the array.
	Returns SQL_PAS_BATCH
One data set is available for each element in an array.

	SQL_POS_OPERATION
	Lists the options supported by SQLSetPos().
	Returns:
SQL_POS_POSITION
SQL_POS_REFRESH
SQL_POS_UPDATE
SQL_POS_DELETE
SQL_POS_ADD

	SQL_POSITIONED_STATEMENTS
	Lists the supported positioned SQL statements.
	Returns:
SQL_PS_POSITIONED_DELETE | SQL_PS_POSITIONED_UPDATE | SQL_PS_SELECT_FOR_UPDATE

	SQL_PROCEDURE_TERM
	The term used to describe a procedure.
	Returns procedure

	SQL_PROCEDURES
	Indicates if the server and the driver support SQL procedures and procedure invocation syntax.
	Returns Y
The server and driver support procedures and procedure invocation syntax.

	SQL_QUALIFIER_LOCATION
prev. SQL_CATALOG_LOCATION
	Indicates the position of the schema name in a qualified table name.
	Returns SQL_CL_START
The catalog portion of a qualified table name is at the beginning of the name.

	SQL_QUALIFIER_NAME
prev. SQL_CATALOG_NAME
	Indicates server support for catalog names.
	Returns Y
The server supports catalog names.

	SQL_QUALIFIER_NAME_SEPARATOR
prev. SQL_CATALOG_NAME_SEPARATOR
	Character separating the qualifier name from the adjacent name element.
	Returns '.'
The server expects a '.' character between the qualifier and the table name.

	SQL_QUALIFIER_TERM
prev. SQL_CATALOG_TERM
	The term used to describe a qualifier.
	Returns catalog

	SQL_QUALIFIER_USAGE
prev. SQL_CATALOG_USAGE
	Indicates the SQL statements that may refer to qualifiers.
	Returns SQL_CU_DML_STATEMENTS
Catalog names can be used in SELECT, INSERT, UPDATE, DELETE, SELECT FOR UPDATE and positioned UPDATE and DELETE statements.

	SQL_QUALIFIER_USAGE
Now
SQL_CATALOG_USAGE
	Identifies DML statements that support qualifier names.
	Returns SQL_CU_DML_STATEMENTS
Qualifiers can be used in all DML statements (SELECT, INSERT, UPDATE, DELETE, SELECT FOR UPDATE).

	SQL_QUOTED_IDENTIFIER_CASE
	Indicates case sensitivity of quoted identifiers.
	Returns SQL_IC_SENSITIVE
Quoted identifiers are case sensitive.

	SQL_QUALIFIER_NAME_SEPARATOR
Now
SQL CATALOG_NAME_SEPARATOR
	The character that separates the name qualifier from the name element.
	Returns .
The '.' character is used as a separator in qualified names.

	SQL_QUALIFIER_TERM
	The term used to describe a qualifier.
	Returns catalog

	SQL_QUALIFIER_LOCATION
	The position of the qualifier in a qualified table name.
	Returns SQL_CL_START
The qualifier precedes the table name in a qualified table name.

	SQL_ROW_UPDATES
	Indicates if keyset-driven or mixed cursors maintain row versions or values.
	Returns Y
Cursors maintain values for all fetched rows and can detect updates to the row values.

	SQL_SCHEMA_TERM
	The term used to describe a schema.
	Returns schema

	SQL_SCHEMA_USAGE
	Indicates the SQL statements that may refer to schemas.
	Returns :
SQL_OU_DML_STATEMENTS
SQL_OU_TABLE_DEFINITION
SQL_OU_INDEX_DEFINITION
SQL_OU_PRIVILEGE_DEFINITION

	SQL_SCROLL_CONCURRENCY
	Indicates the cursor concurrency control options supported by the server.
	Returns:
SQL_SCCO_READ_ONLY
SQL_SCCO_OPT_ROWVER

	SQL_SCROLL_OPTIONS
	Indicates the cursor scroll options supported by the server.
	Returns:
SQL_SO_FORWARD_ONLY
SQL_SO_KEYSET_DRIVEN
SQL_SO_STATIC

	SQL_SEARCH_PATTERN_ESCAPE
	The escape character that allows use of the wildcard characters % and _ in search patterns.
	Returns \
The '\' character is used as an escape character for the '%' and '_' characters in search patterns.

	SQL_SERVER_NAME
	Indicates the name of the host.
	The returned value is determined by connection properties.

	SQL_SPECIAL_CHARACTERS
	Indicates any special characters allowed in identifier names.
	Returns _
The underscore character is allowed in identifier names.

	SQL_SQL_CONFORMANCE
	Indicates the level of SQL-92 compliance.
	Returns SQL_SC_SQL92_ENTRY
The driver is SQL92 Entry level compliant.

	SQL_SQL92_DATETIME_FUNCTIONS
	Lists the datetime functions supported by the server.
	Returns:
SQL_SDF_CURRENT_DATE
SQL_SDF_CURRENT_TIME
SQL_SDF_CURRENT_TIMESTAMP

	SQL_SQL92_FOREIGN_KEY_DELETE_RULE
	Indicates the server-enforced rules for using a foreign key in a DELETE statement.
	Returns:
SQL_SFKD_CASCADE
SQL_SFKD_NO_ACTION
SQL_SFKD_SET_DEFAULT
SQL_SFKD_SET_NULL

	SQL_SQL92_FOREIGN_KEY_UPDATE_RULE
	Indicates the server-enforced rules for using a foreign key in an UPDATE statement.
	Returns:
SQL_SFKU_CASCADE
SQL_SFKU_NO_ACTION
SQL_SFKU_SET_DEFAULT
SQL_SFKU_SET_NULL

	SQL_SQL92_GRANT
	Indicates the supported GRANT statement clauses.
	Returns:
SQL_SG_DELETE_TABLE
SQL_SG_INSERT_TABLE
SQL_SG_REFERENCES_TABLE
SQL_SG_SELECT_TABLE
SQL_SG_UPDATE_TABLE

	SQL_SQL92_NUMERIC_VALUE_FUNCTIONS
	Lists the scalar numeric functions supported by the server and driver.
	Returns:
SQL_SNVF_BIT_LENGTH
SQL_SNVF_CHAR_LENGTH
SQL_SNVF_CHARACTER_LENGTH
SQL_SNVF_EXTRACT
SQL_SNVF_OCTET_LENGTH
SQL_SNVF_POSITION

	SQL_SQL92_PREDICATES
	Identifies the predicates of a SELECT statement supported by the server.
	Returns:
SQL_SP_EXISTS
SQL_SP_ISNOTNULL
SQL_SP_ISNULL
SQL_SP_OVERLAPS
SQL_SP_LIKE
SQL_SP_IN
SQL_SP_BETWEEN
SQL_SP_COMPARISON
SQL_SP_QUANTIFIED_COMPARISON

	SQL_SQL92_RELATIONAL_JOIN_OPERATORS
	Identifies the relational join operators supported by the server.
	Returns:
SQL_SRJO_CROSS_JOIN
SQL_SRJO_EXCEPT_JOIN
SQL_SRJO_FULL_OUTER_JOIN
SQL_SRJO_INNER_JOIN
SQL_SRJO_INTERSECT_JOIN
SQL_SRJO_LEFT_OUTER_JOIN
SQL_SRJO_NATURAL_JOIN
SQL_SRJO_RIGHT_OUTER_JOIN
SQL_SRJO_UNION_JOIN

	SQL_SQL92_REVOKE
	Identifies the clauses in a REVOKE statement that are supported by the server.
	Returns:
SQL_SR_DELETE_TABLE
SQL_SR_INSERT_TABLE
SQL_SR_REFERENCES_TABLE
SQL_SR_SELECT_TABLE
SQL_SR_UPDATE_TABLE

	SQL_SQL92_ROW_VALUE_CONSTRUCTOR
	Indicates the row value constructor expressions in a SELECT statement that are supported by the server.
	Returns:
SQL_SRVC_VALUE_EXPRESSION
SQL_SRVC_NULL

	SQL_SQL92_STRING_FUNCTIONS
	Lists the string scalar functions supported by the server and driver.
	Returns:
SQL_SSF_CONVERT
SQL_SSF_LOWER
SQL_SSF_UPPER
SQL_SSF_SUBSTRING
SQL_SSF_TRANSLATE
SQL_SSF_TRIM_BOTH
SQL_SSF_TRIM_LEADING
SQL_SSF_TRIM_TRAILING

	SQL_SQL92_VALUE_EXPRESSIONS
	Indicates the value expressions supported by the server.
	Returns:
SQL_SVE_CASE
SQL_SVE_CAST
SQL_SVE_COALESCE
SQL_SVE_NULLIF

	SQL_STANDARD_CLI_CONFORMANCE
	Indicates the CLI standard the driver conforms to.
	This info_type is currently unsupported.

	SQL_STATIC_CURSOR_ATTRIBUTES1
	Describes the first set of static cursor attributes supported by the driver.
	Returns:
SQL_CA1_NEXT
SQL_CA1_ABSOLUTE
SQL_CA1_RELATIVE
SQL_CA1_BOOKMARK
SQL_CA1_LOCK_NO_CHANGE
SQL_CA1_POS_POSITION
SQL_CA1_POS_UPDATE
SQL_CA1_POS_DELETE
SQL_CA1_POS_REFRESH
SQL_CA1_BULK_ADD
SQL_CA1_BULK_UPDATE_BY_BOOKMARK
SQL_CA1_BULK_DELETE_BY_BOOKMARK
SQL_CA1_BULK_FETCH_BY_BOOKMARK

	SQL_STATIC_CURSOR_ATTRIBUTES2
	Describes the second set of static cursor attributes supported by the driver.
	Returns:
SQL_CA2_READ_ONLY_CONCURRENCY
SQL_CA2_OPT_ROWVER_CONCURRENCY
SQL_CA2_SENSITIVITY_ADDITIONS
SQL_CA2_SENSITIVITY_DELETIONS
SQL_CA2_SENSITIVITY_UPDATES
SQL_CA2_CRC_EXACT

	SQL_STATIC_SENSITIVITY
	Indicates whether changes made to a static cursor by SQLSetPos() or UPDATE or DELETE statements are detected by the application.
	Returns:
SQL_SS_ADDITIONS
SQL_SS_DELETIONS
SQL_SS_UPDATES

	SQL_STRING_FUNCTIONS
	Lists the scalar string functions supported by the server and driver.
	Returns:
SQL_FN_STR_CONCAT
SQL_FN_STR_LTRIM | SQL_FN_STR_LENGTH
SQL_FN_STR_LOCATE | SQL_FN_STR_LCASE
SQL_FN_STR_RTRIM
SQL_FN_STR_SUBSTRING
SQL_FN_STR_UCASE

	SQL_SUBQUERIES
	Identifies the subquery predicates to a SELECT statement supported by the server.
	Returns:
SQL_SQ_COMPARISON
SQL_SQ_EXISTS
SQL_SQ_IN
SQL_SQ_QUANTIFIED

	SQL_SYSTEM_FUNCTIONS
	Lists the scalar system functions supported by the server and driver.
	Returns 0

	SQL_TABLE_TERM
	The term used to describe a table.
	Returns table

	SQL_TIMEDATE_ADD_INTERVALS
	Indicates the timestamp intervals supported by the server for the TIMESTAMPADD scalar function.
	Returns 0

	SQL_TIMEDATE_DIFF_INTERVALS
	Indicates the timestamp intervals supported by the server for the TIMESTAMPDIFF scalar function.
	Returns 0

	SQL_TIMEDATE_FUNCTIONS
	Indicates the date and time functions supported by the server.
	Returns:
SQL_FN_TD_NOW | SQL_FN_TD_CURDATE|
SQL_FN_TD_CURTIME

	SQL_TXN_CAPABLE
	Identifies the transaction support offered by the server and driver.
	Returns SQL_TC_ALL
Transactions can contain both DML and DDL statements

	SQL_TXN_ISOLATION_OPTION
	Indicates the transaction isolation level supported by the server.
	Returns:
SQL_TXN_READ_COMMITTED
SQL_TXN_SERIALIZABLE

	SQL_UNION
	Indicates server support for the UNION clause.
	Returns:
SQL_U_UNION
SQL_U_UNION_ALL

	SQL_USER_NAME
	Identifies the name of the user connected to a database; may be different than the login name.
	This value is determined by the connection properties.

	SQL_XOPEN_CLI_YEAR
	The publication year of the X/Open specification that the driver manager complies with.
	This info_type is currently unsupported.

[bookmark: _Toc118855027][bookmark: _Toc528236452]Connection Attributes
You can use the ODBC SQLGetConnectAttr() and SQLSetConnectAttr() functions to retrieve or set the value of a connection attribute.
[bookmark: _Toc118855028][bookmark: _Toc528236453]SQLGetConnectAttr()
The SQLGetConnectAttr() function returns the current value of a connection attribute. The signature is:
SQLRETURN SQLGetConnectAttr
(
 SQLHDBC conn_handle, //Input
 SQLINTEGER attribute, //Input
 SQLPOINTER value_pointer, //Output
 SQLINTEGER buffer_length, //Input
 SQLINTEGER *string_length_pointer //Output
);
conn_handle
The connection handle.
attribute
attribute identifies the attribute whose value you wish to retrieve.
value_pointer
A pointer to the location in memory that will receive the attribute value.
buffer_length
If attribute is defined by ODBC and value_pointer points to a character string or binary buffer, buffer_length is the length of value_pointer. If value_pointer points to a fixed-size value (such as an integer), buffer_length is ignored.
If EDB-ODBC defines the attribute, SQLGetConnectAttr() sets the buffer_length parameter. buffer_length can be:
	Value type
	Meaning

	Character string
	The length of the character string

	Binary buffer
	The result of SQL_LEN_BINARY_ATTR(length)

	Fixed length data type
	SQL_IS_INTEGER or SQL_IS_UINTEGER

	Any other type
	SQL_IS_POINTER

string_length_pointer
A pointer to a SQLINTEGER that receives the number of bytes available to return in value_pointer. If value_pointer is NULL, string_length_pointer is not returned.
This function returns SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NO_DATA, SQL_ERROR or SQL_INVALID_HANDLE.
The following table lists the connection attributes supported by EDB-ODBC.
	Attribute
	Supported?
	Notes

	SQL_ATTR_ACCESS_MODE
	NO
	SQL_MODE_READ_WRITE

	SQL_ATTR_ASYNC_ENABLE
	NO
	SQL_ASYNC_ENABLE_OFF

	SQL_ATTR_AUTO_IPD
	NO
	

	SQL_ATTR_AUTOCOMMIT
	
	SQL_AUTOCOMMIT, SQL_AUTOCOMMIT_ON, SQL_AUTOCOMMIT_OFF

	SQL_ATTR_CONNECTION_TIMEOUT
	NO
	

	SQL_ATTR_CURRENT_CATALOG
	NO
	

	SQL_ATTR_DISCONNECT_BEHAVIOR
	NO
	

	SQL_ATTR_ENLIST_IN_DTC
	YES
	For win32 and with conditional compilation

	SQL_ATTR_ENLIST_IN_XA
	NO
	

	SQL_ATTR_LOGIN_TIMEOUT
	NO
	SQL_LOGIN_TIMEOUT

	SQL_ATTR_ODBC_CURSORS
	NO
	

	SQL_ATTR_PACKET_SIZE
	NO
	

	SQL_ATTR_QUIET_MODE
	NO
	

	[bookmark: OLE_LINK1][bookmark: OLE_LINK2]SQL_ATTR_TRACE
	NO
	

	SQL_ATTR_TRACEFILE
	NO
	

	SQL_ATTR_TRANSLATE_LIB
	NO
	

	SQL_ATTR_TRANSLATE_OPTION
	NO
	

	SQL_ATTR_TXN_ISOLATION
	YES
	SQL_TXN_ISOLATION, SQL_DEFAULT_TXN_ISOLATION

[bookmark: _Toc118855029][bookmark: _Toc528236454]SQLSetConnectAttr()
You can use the ODBC SQLSetConnectAttr() function to set the values of connection attributes. The signature of the function is:
SQLRETURN SQLSetConnectAttr
(
 SQLHDBC	conn_handle,	// Input
 SQLINTEGER	attribute,	// Input
 SQLPOINTER	value_pointer,	// Input
 SQLINTEGER	string_length,	// Input
);

conn_handle
The connection handle
attribute
attribute identifies the attribute whose value you wish to set
value_pointer
A pointer to the value that the attribute will assume.
string_length
If attribute is defined by ODBC and value_pointer points to a binary buffer or character string, string_length is the length of value_pointer. If value_pointer points to a fixed-length value (such as an integer), string_length is ignored.
If EDB-ODBC defines the attribute, the application sets the string_length parameter. Possible string_length values are:
	Value Type
	Meaning

	Character string
	The length of the character string or SQL_NTS

	Binary buffer
	The result of SQL_LEN_BINARY_ATTR(length)

	Fixed length data type
	SQL_IS_INTEGER or SQL_IS_UINTEGER

	Any other type
	SQL_IS_POINTER

SQLSetConnectAttr() returns SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, SQL_STILL_EXECUTING or SQL_INVALID_HANDLE.
You can call SQLSetConnectAttr() any time after the connection handle is allocated, until the time that the connection is closed with a call to SQLFreeHandle(). All attributes set by the call persist until the call to SQLFreeHandle().
Connection attributes have a specific time frame in which they can be set. Some attributes must be set before the connection is established, while others can only be set after a connection is established.
The following table lists the connection attributes and the time frame in which they can be set:
	Attribute
	Set Before or After establishing a connection?

	SQL_ATTR_ACCESS_MODE
	Before or After

	SQL_ATTR_ASYNC_ENABLE
	Before or After

	SQL_ATTR_AUTO_IPD
	Before or After

	SQL_ATTR_AUTOCOMMIT
	Before or After

	SQL_ATTR_CONNECTION_TIMEOUT
	Before or After

	SQL_ATTR_CURRENT_CATALOG
	Before or After

	SQL_ATTR_ENLIST_IN_DTC
	After

	SQL_ATTR_ENLIST_IN_XA
	After

	SQL_ATTR_LOGIN_TIMEOUT
	Before

	SQL_ATTR_ODBC_CURSORS
	Before

	SQL_ATTR_PACKET_SIZE
	Before

	SQL_ATTR_QUIET_MODE
	Before or After

	SQL_ATTR_TRACE
	Before or After

	SQL_ATTR_TRACEFILE
	Before or After

	SQL_ATTR_TRANSLATE_LIB
	After

	SQL_ATTR_TRANSLATE_OPTION
	After

	SQL_ATTR_TXN_ISOLATION
	Before or After

[bookmark: _Toc118855030][bookmark: _Toc528236455]Environment Attributes
You can use the ODBC SQLGetEnvAttr() and SQLSetEnvAttr() functions to retrieve or set the value of an environment attribute.
[bookmark: _Toc118855031][bookmark: _Toc528236456]SQLGetEnvAttr()
Use the SQLGetEnvAttr() function to find the current value of environment attributes on your system. The signature of the function is:
SQLRETURN SQLGetConnectAttr
(
 SQLHDBC env_handle, // Input
 SQLINTEGER attribute, // Input
 SQLPOINTER value_ptr, // Output
 SQLINTEGER buffer_length, // Input
 SQLINTEGER *string_length_pointer // Output
);
env_handle
The environment handle.
attribute
attribute identifies the attribute whose value you wish to retrieve.
value_pointer
A pointer to the location in memory that will receive the attribute value.
buffer_length
If the attribute is a character string, buffer_length is the length of value_ptr. If the value of the attribute is not a character string, buffer_length is unused.
string_length_pointer
A pointer to a SQLINTEGER that receives the number of bytes available to return in value_pointer. If value_pointer is NULL, string_length_pointer is not returned.
This function returns SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NO_DATA, SQL_ERROR or SQL_INVALID_HANDLE.

The following table lists the environment attributes supported by EDB-ODBC.
	Attribute
	Supported?
	Restrictions?

	SQL_ATTR_CONNECTION_POOLING
	SQL_CP_ONE_PER_DRIVER or SQL_CP_OFF
	Determined by connection properties

	SQL_ATTR_ODBC_VERSION
	(SQL_OV_ODBC3)
(SQL_OV_ODBC2)
	NONE

	SQL_ATTR_OUTPUT_NTS
	SQL_SUCCESS
	NONE

[bookmark: _Toc118855032][bookmark: _Toc528236457]SQLSetEnvAttr()
You can use the SQLSetEnvAttr() function to set the values of environment attributes. The signature of the function is:
SQLRETURN SQLSetEnvAttr
(
 SQLHENV	env_handle,	//Input
 SQLINTEGER	attribute,	//Input
 SQLPOINTER	value_pointer,	//Input
 SQLINTEGER	string_length	//Input
);
env_handle
The environment handle.
attribute
attribute identifies the attribute whose value you wish to set.
value_pointer
A pointer to the value assigned to the attribute. The value will be a NULL terminated character string or a 32 bit integer value depending on the specified attribute.
string_length
If value_pointer is a pointer to a binary buffer or character string, string_length is the length of value_pointer. If the value being assigned to the attribute is a character, string_length is the length of that character string. If value_pointer is NULL, string_length is not returned. If value_pointer is an integer, string_length is ignored.
SQLSetEnvAttr() returns SQL_SUCCESS, SQL_INVALID_HANDLE, SQL_ERROR or SQL_SUCCESS_WITH_INFO.
The application must call SQLSetEnvAttr() before allocating a connection handle; all values applied to environment attributes will persist until SQLFreeHandle() is called for the connection. ODBC version 3.x allows you to allocate multiple environment handles simultaneously.
The following table lists the environment attributes you can set with SQLSetAttr().
	Attribute
	Value_pointer type
	Restrictions?

	SQL_ATTR_ODBC_VERSION
	32 bit Integer
	Set this attribute before the application calls any function that includes an SQLHENV argument.

	SQL_ATTR_OUTPUT_NTS
	32-bit Integer
	Defaults to SQL_TRUE. Calls that set this attribute to SQL_FALSE return SQL_ERROR/SQLSTATEHYC00 (feature not implemented).

[bookmark: _Toc118855033][bookmark: _Toc528236458]Statement Attributes
You can use the ODBC SQLGetStmtAttr() and SQLSetStmtAttr() functions to retrieve and set the value of a statement attribute.
[bookmark: _Toc118855034][bookmark: _Toc528236459]SQLGetStmtAttr()
The SQLGetStmtAttr() function returns the current value of statement attribute. The signature is:
SQLRETURN SQLGetConnectAttr
(
 SQLHDBC stmt_handle, //Input
 SQLINTEGER attribute, //Input
 SQLPOINTER value_ptr, //Output
 SQLINTEGER buffer_length, //Input
 SQLINTEGER *string_length_pointer //Output
);
stmt_handle
The statement handle
attribute
attribute is the attribute value
value_pointer
A pointer to the location in memory that will receive the attribute value.
buffer_length
If the attribute is defined by ODBC, buffer_length is the length of value_pointer (if value_pointer points to a character string or binary buffer). If value_pointer points to an integer, buffer_length is ignored.
If EDB-ODBC defines the attribute, the application sets the buffer_length parameter. buffer_length can be:
	Value Type
	Meaning

	Character string
	The length of the character string

	Binary buffer
	The result of SQL_LEN_BINARY_ATTR(length)

	Fixed length data type
	SQL_IS_INTEGER or SQL_IS_UINTEGER

	Any other type
	SQL_IS_POINTER

string_length_pointer
A pointer to an SQLINTEGER that receives the number of bytes required to hold the requested value. If value_pointer is NULL, string_length_pointer is not returned.
This function returns SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR or SQL_INVALID_HANDLE.
The following table lists the statement attributes supported by EDB-ODBC:
	Attribute
	Supported?
	Restrictions?

	SQL_ATTR_APP_PARAM_DESC
	YES
	

	SQL_ATTR_APP_ROW_DESC
	YES
	

	SQL_ATTR_ASYNC_ENABLE
	NO
	

	SQL_ATTR_CONCURRENCY
	YES
	SQL_CONCUR_READ_ONLY

	SQL_ATTR_CURSOR_SCROLLABLE
	YES
	

	SQL_ATTR_CURSOR_TYPE
	YES
	SQL_CURSOR_FORWARD_ONLY

	SQL_ATTR_CURSOR_SENSITIVITY
	YES
	SQL_INSENSITIVE

	SQL_ATTR_ENABLE_AUTO_IPD
	NO
	

	SQL_ATTR_FETCH_BOOKMARK_PTR
	YES
	

	SQL_ATTR_IMP_PARAM_DESC
	YES
	

	SQL_ATTR_IMP_ROW_DESC
	YES
	

	SQL_ATTR_KEYSET_SIZE
	NO
	

	SQL_ATTR_MAX_LENGTH
	NO
	

	SQL_ATTR_MAX_ROWS
	NO
	

	SQL_ATTR_METADATA_ID
	YES
	

	SQL_ATTR_NOSCAN
	NO
	

	SQL_ATTR_PARAM_BIND_OFFSET_PTR
	YES
	ODBC V2.0

	SQL_ATTR_PARAM_BIND_TYPE
	YES
	

	SQL_ATTR_PARAM_OPERATION_PTR
	YES
	

	SQL_ATTR_PARAM_STATUS_PTR
	YES
	

	SQL_ATTR_PARAMS_PROCESSED_PTR
	YES
	

	SQL_ATTR_PARAMSET_SIZE
	YES
	

	SQL_ATTR_QUERY_TIMEOUT
	NO
	

	SQL_ATTR_RETRIEVE_DATA
	NO
	

	SQL_ATTR_ROW_BIND_OFFSET_PTR
	YES
	

	SQL_ATTR_ROW_BIND_TYPE
	NO
	

	SQL_ATTR_ROW_NUMBER
	YES
	

	SQL_ATTR_ROW_OPERATION_PTR
	YES
	

	SQL_ATTR_ROW_STATUS_PTR
	YES
	

	SQL_ATTR_ROWS_FETCHED_PTR
	YES
	

	SQL_ATTR_ROW_ARRAY_SIZE
	YES
	

	SQL_ATTR_SIMULATE_CURSOR
	NO
	

	SQL_ATTR_USE_BOOKMARKS
	YES
	

	SQL_ROWSET_SIZE
	YES
	

[bookmark: _Toc118855035]
[bookmark: _Toc528236460]SQLSetStmtAttr()
You can use the SQLSetStmtAttr() function to set the values of environment attributes. The signature is:
SQLRETURN SQLSetStmtAttr
(
 SQLHENV	stmt_handle,	//Input
 SQLINTEGER	attribute,	//Input
 SQLPOINTER	value_pointer,	//Input
 SQLINTEGER	string_length	//Input
);
stmt_handle
stmt_handle is the environment handle.
attribute
attribute identifies the statement attribute whose value you wish to set.
value_pointer
value_pointer is a pointer to the location in memory that holds the value that will be assigned to the attribute. value_pointer can be a pointer to:
· A null-terminated character string
· A binary buffer
· A value defined by the driver
· A value of the type SQLLEN, SQLULEN or SQLUSMALLINT
 Value-pointer can also optionally hold one of the following values:
· An ODBC descriptor handle
· A SQLUINTEGER value
· A SQLULEN value
· A signed INTEGER (if attribute is a driver-specific value)
string_length
If attribute is defined by ODBC and value_pointer points to a binary buffer or character string, string_length is the length of value_pointer. If value_pointer points to an integer, string_length is ignored.
If EDB-ODBC defines the attribute, the application sets the string_length parameter. Possible string_length values are:
	Value Type
	Meaning

	Character string
	The length of the character string or SQL_NTS

	Binary buffer
	The result of SQL_LEN_BINARY_ATTR(length)

	Fixed length data type
	SQL_IS_INTEGER or SQL_IS_UINTEGER

	Any other type
	SQL_IS_POINTER

[bookmark: _Toc118855036][bookmark: _Toc528236461]Error Handling
Diagnostic information for the ODBC functions mentioned in this guide can be retrieved via the ODBC SQLGetDiagRec() function.
[bookmark: _Toc118855037][bookmark: _Toc528236462]SQLGetDiagRec()
The SQLGetDiagRec() function returns status and error information from a diagnostic record written by the ODBC functions that retrieve or set attribute values. The signature is:
SQLRETURN SQLGetDiagRec(
 SQLSMALLINT handle_type, // Input
 SQLHANDLE handle, // Input
 SQLSMALLINT record_number, // Input
 SQLCHAR *SQLState_pointer, // Output
 SQLINTEGER *native_error_pointer, // Output
 SQLCHAR *error_text_pointer, // Output
 SQLSMALLINT buffer_length, // Input
 SQLSMALLINT *text_length_pointer // Output
);
handle_type
The handle type of the handle argument. handle_type must be one of the following:
· SQL_HANDLE_ENV specifies an environment handle.
· SQL_HANDLE_STMT specifies a statement handle.
· SQL_HANDLE_DBC specifies a connection handle.
· SQL_HANDLE_DESC specifies a descriptor handle.
handle
The handle associated with the attribute error message.
record_number
The status record that the application is seeking information from (must be greater than or equal to 1).
SQLState_pointer
Pointer to a memory buffer that receives the SQLState error code from the record.

native_error_pointer
Pointer to a buffer that receives the native error message for the data source (contained in the SQL_DIAG_NATIVE field).
error_text_pointer
Pointer to a memory buffer that receives the error text (contained in the SQL_DIAG_MESSAGE_TEXT field)
buffer_length
The length of the error_text buffer.
text_length_pointer
Pointer to the buffer that receives the size (in characters) of the error_text_pointer field. If the number of characters in the error_text_pointer parameter exceeds the number available (in buffer_length), error_text_pointer will be truncated.
SQLGetDiagRec() returns SQL_SUCCESS, SQL_ERROR, SQL_INVALID_HANDLE, SQL_SUCCESS_WITH_DATA or SQL_NO_DATA

[bookmark: _Toc118855038][bookmark: _Toc528236463]SUPPORTED ODBC API FUNCTIONS
The following table lists the ODBC API functions; the right column specifies Yes if the API is supported by the EDB-ODBC driver. Use the ODBC SQLGetFunctions() function (specifying a function ID of SQL_API_ODBC3_ALL_FUNCTIONS) to return a current version of this list.
	ODBC API Function Name
	Supported by EDB-ODBC?

	SQLAllocConnect()
	Yes

	SQLAllocEnv()
	Yes

	SQLAllocStmt()
	Yes

	SQLBindCol()
	Yes

	SQLCancel()
	Yes

	SQLColAttributes()
	Yes

	SQLConnect()
	Yes

	SQLDescribeCol()
	Yes

	SQLDisconnect()
	Yes

	SQLError()
	Yes

	SQLExecDirect()
	Yes

	SQLExecute()
	Yes

	SQLFetch()
	Yes

	SQLFreeConnect()
	Yes

	SQLFreeEnv()
	Yes

	SQLFreeStmt()
	Yes

	SQLGetCursorName()
	Yes

	SQLNumResultCols()
	Yes

	SQLPrepare()
	Yes

	SQLRowCount()
	Yes

	SQLSetCursorName()
	Yes

	SQLSetParam()
	Yes

	SQLTransact()
	Yes

	SQLColumns()
	Yes

	SQLDriverConnect()
	Yes

	SQLGetConnectOption()
	Yes

	SQLGetData()
	Yes

	SQLGetFunctions()
	Yes

	SQLGetInfo()
	Yes

	SQLGetStmtOption()
	Yes

	SQLGetTypeInfo()
	Yes

	SQLParamData()
	Yes

	SQLPutData()
	Yes

	SQLSetConnectOption()
	Yes

	SQLSetStmtOption()
	Yes

	SQLSpecialColumns()
	Yes

	SQLStatistics()
	Yes

	SQLTables()
	Yes

	SQLBrowseConnect()
	No

	SQLColumnPrivileges()
	No

	SQLDataSources()
	Yes

	SQLDescribeParam()
	No

	SQLExtendedFetch()
	Yes

	SQLForeignKeys()
	Yes

	SQLMoreResults()
	Yes

	SQLNativeSQL()
	Yes

	SQLNumParams()
	Yes

	SQLParamOptions()
	Yes

	SQLPrimaryKeys()
	Yes

	SQLProcedureColumns()
	Yes

	SQLProcedures()
	Yes

	SQLSetPos()
	Yes

	SQLSetScrollOptions()
	No

	SQLTablePrivileges()
	Yes

	SQLDrivers()
	Yes

	SQLBindParameter()
	Yes

	SQLAllocHandle()
	Yes

	SQLBindParam()
	Yes

	SQLCloseCursor()
	Yes

	SQLColAttribute()
	Yes

	SQLCopyDesc()
	Yes

	SQLendTran()
	Yes

	SQLFetchScroll()
	Yes

	SQLFreeHandle()
	Yes

	SQLGetConnectAttr()
	Yes

	SQLGetDescField()
	Yes

	SQLGetDescRec()
	Yes

	SQLGetDiagField()
	Yes

	SQLGetDiagRec()
	Yes

	SQLGetEnvAttr()
	Yes

	SQLGetStmtAttr()
	Yes

	SQLSetConnectAttr()
	Yes

	SQLSetDescField()
	Yes

	SQLSetDescRec()
	No

	SQLSetEnvAttr()
	Yes

	SQLSetStmtAttr()
	Yes

	SQLBulkOperations()
	Yes

[bookmark: _Toc118855039][bookmark: _Toc528236464]SUPPORTED DATA TYPES
EDB-ODBC supports the following ODBC data types:
	ODBC Data Type
	Corresponding Advanced Server Data Type

	SQL_BIGINT
	PG_TYPE_INT8

	SQL_BINARY
	PG_TYPE_BYTEA

	SQL_BIT
	PG_TYPE_BOOL or PG_TYPE_CHAR

	SQL_CHAR
	PG_TYPE_BPCHAR

	SQL_TYPE_DATE
	PG_TYPE_DATE

	SQL_DECIMAL
	PG_TYPE_NUMERIC

	SQL_DOUBLE
	PG_TYPE_FLOAT8

	SQL_FLOAT
	PG_TYPE_FLOAT8

	SQL_INTEGER
	PG_TYPE_INT4

	SQL_LONGVARBINARY
	PG_TYPE_BYTEA

	SQL_LONGVARCHAR
	PG_TYPE_VARCHAR or PG_TYPE_TEXT

	SQL_NUMERIC
	PG_TYPE_NUMERIC

	SQL_NUMERIC
	PG_TYPE_NUMERIC

	SQL_REAL
	PG_TYPE_FLOAT4

	SQL_SMALLINT
	PG_TYPE_INT2

	SQL_TYPE_TIME
	PG_TYPE_TIME

	SQL_TYPE_TIMESTAMP
	PG_TYPE_DATETIME

	SQL_TINYINT
	PG_TYPE_INT2

	SQL_VARBINARY
	PG_TYPE_BYTEA

	SQL_VARCHAR
	PG_TYPE_VARCHAR

[bookmark: _Toc528236465]Thread Safety
EDB-ODBC is thread safe.

image3.png
EDB ™™

POSTGRES Welcome to the EDB Postgres Ocbe Setup.

EDB Postgres™

Advanced Server

| M

image4.png
Installation Directory

Please spedfy the directory where Ocbe wil be nstalled.

T == —]

image5.png
Ready to Install

Setup i now ready to begin nstaling Odbc on your computer.

image6.png
DB

POSTGRES

Completing the Odbc Setup Wizard

EnterpriseDB i the leading provider of value-added products and
services for the Postares community.

Please vist our website at wiw.enterprisech.com

image7.png
EEEE e sven @ (B

88 Accessories
3 € Expert Configuration
5 Graphics @ Run SQL Command Line - 11
@ iemet @ Documentation- 11

{§ offce W poscmin4-v20

W postgresaL o6
~ Programming
H) Sound & Video

System Tools.

image8.png
Pubished by:

EDB

POSTGRES

EDB Postgres

Advanced Server

Please select the applications you would lie to nstal.

- Categories
I Add-ons, tooks and utites:
[Database Drivers
[V EnterpriseDB Conectors v10.0.3-1
B Database Server
I EnterpriseDB Tooks
I Replcaton Solutions.
I Spatal Extensions
I Web Development

Detais

image9.png
User DSN [System DSN | File DSN | Drivers | Tracing | Connection Pooling | About
User Data Sources:

Name Platform = Driver

dBASE Files 32bt Driver do Microsoft dBase (".dbf)
Excel Files 32bit Driver do Microsoft Excel(*xds)

MS Access Database 32bt Driver do Microsoft Access (*mdb)

An ODBC User data source stores information about how to connect to the indicated data provider. A
User data source is only visible to you and can only be used on this computer.

o Cem]]

image10.png
Select a driver for which you want to set up a data source.

Name

EnterpriseDB (ANSI)
EnterpriseDB (UNICODE)
SQL Server

image11.png
Data Source
Database
Server

User Name

Options

EnterpriseDB ODBC Driver

EnterpriseDB

edb

127.001

enterprisedb

Datasource

Global

Description
SS5L Mode
Port

Password

My EDB-AS Datasource

disable

5444

Test

Save

Cancel

image12.png
Advanced Options (EnterpriseDB) 1/2

Page 1 Page 2

Disable Genetic Dptimizer CommLog (C:\psglodbe_sxxx.log)
I KSQ0([Keyset Query Optimization) Parse Statements
| Recognize Unique Indexes Cancel as FreeStmt (Exp)
Use Declare/Fetch MyLog (C:\mylog_xxxx.log)
Unknown Sizes
Masimum O Don't Know O Longest
Data Type Options
/] Text as LongVarChar Unknowns as LongVaChar (v Bools as Char

Miscellaneous

Max Varchar |255 Max LongVarChar: 8190

SysTable Prefixes: o

Cache Size: 100

0K Cancel Apply Defauls

image13.png
Advanced Options (EnterpriseDB) 2/2 X

Page 1 Page 2

Row Versioning

Read Only
Show System Tables Disallow Premature
(V] Show sys/dbo Tables [Access] Trueis -1
Cumulative Row Eounl. for Insert ¥ Server side prepare
V| LF <-> CR/LF conversion .
V] Updatable Cursors oGS5 re
bytea as LO dbms_name: |EnterpriseDB
Intg As Extra Opts
defaut O bigint O numeric O varchar O double 0x0
Protocol Level of rollback on erors
74+ O64+ OB3 O62 ONop O Transaction O Statement
0ID Options
Show Column Fake Index

Connect Settings:

118 Cancel Apply

image14.png
Global settings

Pre-connection/default logging options

CommLog (C:\edb-odbc_xxxx.log - Communications log)

Mpylog (C:\mylog_xxxx.log - Detailed debug output)

Folder for logging

0K Cancel

image15.png
Connection Test

A Connection successful

oK

image16.png
o) ©

JAdministy

@ Data Source Names

| User | system | file |
Data

Source
Names Name Descri

Add...

Driver

Configure...

i

Remove

Advanced User Data Source Names (DSN's) exist for use
by a specific system account (User). The DSN's
are typically stored somewhere in the User's

o home directory. These have precedence over
System DSN's when DSN exists in both.

About

The most common way to connect to a Data Source
via a Data Source Name (DSN). A DSN is a saved
set of connection options - a very convenient way.
to repeatedly connect to a Data Source.

Help oK

image17.png
Data
Source
Names

Monitor
Advanced

About

Advanced

Pooling ‘ Tracing ‘ Threading

enterprised PostgresPlus Advanced Server ODBC driver

Name Description Add...
PostgreSQL ODBC for PostgreSQL [configure..|
MySQL ODBC for MySQL (remove]

G

B

Remove

(]

An ODBC Driver allows your ODBC enabled applications to
get to your data. Many ODBC drivers can be downloaded

% from the Internet while others are obt

database vendor. Typically; you must be a ‘root' user to

manage drivers.

ed from your

Most of the features which usi
(read; ‘root" access) are adm

istered here.

lly require elevated privileges

Help

image18.png
@ [Driverproperticsl(new)}

Name Value

Name
Description
Driver
Driver64.
Setup

Setup6d

Help

image19.png
g Advanced

Data Pooling ‘ Tracing ‘ Threading
Source
Names
Name Description
MysQL ODBC for MysSQL
enterprisedh PostgresPlus Advanced Server ODBC...

Monitor
My EDB-AS ODBC Driver EnterpriseDB Advanced Server ODBC...

3 @ W I)

Advanced
g [+] An ODBC Driver allows your ODBC enabled applications to get to
0 — your data. Many ODBC drivers can be downloaded from the Internet
- while others are obtained from your database vendor. Typically;
About Yyou must be a ‘root’ user to manage drivers.

Most of the features which usually require elevated privileges (read;
‘root' access) are administered here.

Help oK

image20.png
@ cre

ewlDatalsourcer &

Select a driver for which you want to set up a data source...

Name Description
MySQL ODBC for MySQL

enterprisedd PostgresPlus Advanced Server ODBC driver
My EDB-AS ODBC Driver EnterpriseDB Advanced Server ODBC Driver

@ m I

Help

image21.png
(-] ISource) ()
Name Value
Name My EDB-AS ODBC Driver
Description EDB Postgres Advanced Server Data Source
Driver enterprisedb
Trace No
Tracefile
Database edb
Servername localhost
Username enterprisedb
Password my_password
Port. 5444
Protocol 7.4
ReadOnly No
RowVersioning No
ShowSystemTables No
ShowOidColumn No
FakeOidIndex No
ConnSettings
[rew] x

image22.png
£
1

% Data Source Names
User

System ‘ File ‘
Data
Source
Names Name Driver

My EDB-AS ODBC Driver |EDB Postgres Advanced Server Data Source enterprisedb

Advanced

(1)

About

User Data Source Names (DSN's) exist for use by a specific system account (User).
The DSN's are typically stored somewhere in the User's home directory. These have
precedence over System DSN's when DSN exists in both.

DSN is a saved set of connection options - a very convenient way to repeatedly connect

g ‘The most common way to connect to a Data Source is via a Data Source Name (DSN). A
to a Data Source.

image2.png
D =1

POSTGRES

